Supporting Information

Discovery of Chlorine Exposure Signatures in Plant Material Using Targeted and Comparative Mass Spectrometry Methods

Jayda E. Meisel*, Cory Fix, Jerry Casbohm, Amy Hill, James Ficker, Christina Saeger, Sarah Dreher, Michael Murray, Craig Shepherd, Kristyn Johnson, and Mark Bauer

¹Battelle Memorial Institute. 505 King Avenue Columbus, Ohio 43201 *Corresponding Author

Compound No.	Matrix ⁷	Tentative Identification	CASRN	Confirmed?	
1	PN	Chloroanilinal	95-51-2	Yes	
		Chloroannine	108-42-9		
2		1-chloromethyl-2-chloro-4-(2-hydroxypropyl-	126297-16-3	Yes	
		2)-cyclohexanol ²	126297-15-2		
3		1,7,7-trimethyl-2,6-dichloro norbornane ²	3212-36-0	Yes	
4		2-chloro-N,N-dimethyl-ethanamine	107-99-3	Yes	
5			1331-29-9	No	
		2,2-dichloroethyldenzene	4412-39-9		
6		2,2-dichloroacetamide	683-72-7	Yes	
7		3-chloro-4-hydroxy-benzaldehyde ⁴	56962-11-9	Yes	
8		2,4,6-trichlorophenol	88-06-2	Yes	
9		3-chlorophenol ⁵	108-43-0	Yes	
10	EI	Unknown 1245 ⁶	NA	No	

Table 1 Condensed Table of Unknowns from Chlorine Gas-Exposed Pine & Ivy Sample Extracts

1. Based on retention time, the unknown compound is likely 2-chloro or 3-chloroaniline; ion ratio suggests 3-chloroaniline

2. Not commercially available; synthesized for confirmation

3. Not commercially available; not synthesized for confirmation

4. Based on ion ratios and retention time, this unknown compound is likely 3-chloro-4-hydroxy-benzaldehyde; NIST library match was initially 2-chloro-4-hydroxy-benzaldehyde

5. Levels are not consistently 3x the blank across all replicates; possible isomers include 3-chlorophenol and 4-chlorophenol; observed retention times and ion ratios suggest this is likely 3-chlorophenol

6. Unknown did not confirm against a standard of cyclohexane carbonyl chloride; tentative identification is incorrect and identity remains unknown

7. EI = English Ivy (Hedera helix), PN = pine needles (Pinus strobus)

Figure 1 GCxGC-TOFMS contour plot chromatogram examples of an extracted pine needle (A) and ivy (B) sample

Figure 2 Mass spectra for 4-chloroaniline standard (top) and pine sample detection of Compound 1 (bottom)

Figure 3 Mass spectra for 1-chloromethyl-2-chloro-4-(2-hydroxypropyl-2)-cyclohexanol standard (top) and pine sample detection of Compound 2 (bottom)

Figure 4 Mass spectra for 1,7,7-trimethyl-2,6-dichloro norbornane standard (top) and pine sample detection of Compound 3 (bottom)

Figure 5 Mass spectra for 2-chloro-N,N-dimethyl-ethanamine standard and pine sample detection of Compound 4 (bottom)

Figure 6 Mass spectra for pine sample detection of 2,2-dichloroethylbenzene (Compound 5)

Figure 7 Reference mass spectra (NIST) for dichloroethylbenzene isomers

Figure 8 Mass spectra for 2,2-dichloro-acetamide standard (top) and pine sample detection of Compound 6 (bottom)

Figure 9 Mass spectra for 2-chloro-3-hydroxy- (top) and 3-chloro-4-hydroxy-benzaldehyde (middle) standards and pine sample detection of Compound 7 (bottom)

Figure 10 Mass spectra for 2,4,6-trichlorophenol standard (top) and pine sample detection of Compound 8 (bottom)

Figure 11 Mass spectra for 3-chlorophenol (top) and 4-chlorophenol (top) standard and pine sample detection of Compound 9 (bottom)

Figure 12 Mass spectra for ivy sample detection of Compound 10

Additional Mass Spectra from Unknowns

Figure 13 Precursor and product ion scans for m/z 677 in extracts from bleach-treated ivy

Figure 14 Precursor and product ion scans for m/z 661 in extracts from bleach-treated ivy

Figure 15 Precursor and product ion scans for m/z 663 in extracts from bleach-treated ivy

Figure 16 Precursor and product ion scans for m/z 407 in extracts from bleach-treated pine needles

Figure 17 Precursor and product ion scans for m/z 355 in extracts from bleach-treated pine needles

Figure 18 Sirius proposed structure for m/z 407 (CASRN 1350227-80-3, PubChemCID 90843716)

Figure 19 Sirius proposed structure for m/z 355 (PubChemCID 54318964)

Synthesis. Treatment of α -pinene with dry chlorine in the presence of base provided a collection of chlorinated products including compounds with the mass spectrum matching that of dichlorobornanes. Isolation of Compound 3 (1,7,7-trimethyl-2,6-dichloro norbornane, which is also referred to as 2,6-dichlorocamphene) was attained by vacuum distillation, where the compound separated as a solid from the high boiling point fractions. The ¹H NMR of the compound (Figure 20) was consistent with that reported in the literature.¹

Figure 20. 1H NMR spectrum of 1,7,7-trimethyl-2,6-dichloro norbornane (2,6-dichlorocamphene) Standard

The chlorinated alpha-pinene reaction product contained a complex mixture of products as indicated by the GC-MS analysis of the high boiling point fractions (Figure 21). A product with a mass spectrum similar to Compound 3 (Figure 22) eluted at approximately 9.7 minutes in the chromatogram., however we note that multiple peaks in the chromatogram contained similar spectra.

¹ Parlar, Harun, Siegfried Nitz, Siegmar Gaeb, and Friedhelm Korte. "A contribution to the structure of the toxaphene components. Spectroscopic studies on chlorinated bornane derivatives." *Journal of Agricultural and Food Chemistry* 25, no. 1 (1977): 68-72.

Figure 21. GC-MS Total Ion Chromatogram of the α -Pinene Chlorination High Boiling Point Fractions

Figure 22. Mass Spectrum of 2,6-Dichlorocamphene

Compound 2 (1-chloromethyl-2-chloro-4-(2-hydroxypropyl-2)-cyclohexanol) is a ring opened product derived from the reaction of β -pinene with chlorine in the presence of water under acidic conditions. The treatment of β -pinene with trichlorisocyanuric acid and water replicated these conditions and produced a collection of dichlorinated species. GC-MS analysis of this mixture identified a compound that eluted at ~11 minutes with a mass spectrum consistent with those of Compound 2. The crude standard (unpurified) was utilized for confirmation analysis.

Figure 23. GC-MS Total Ion Chromatogram of the β -Pinene Chlorination Products

Figure 24. Mass Spectrum of a Dichlorinated Product from the Chlorination of β -Pinene

	Pronase Extract (Bound)		Methanol Extract (Free)		
Sample ID	Cl-TYR	Cl ₂ -TYR	Cl-TYR	Cl ₂ -TYR	
	Nanograms per mL extract				
Lettuce Unexposed Replicate 1	ND	ND	0.404	ND	
Lettuce Unexposed Replicate 2	ND	ND	ND	ND	
Lettuce Bleach-treated Replicate 1	3.7	1.2	ND	ND	
Lettuce Bleach-treated Replicate 2	2.3	0.27	ND	ND	
Lettuce Unexposed Replicate 2-PS ¹	0.78	1.0	0.98	0.96	
Ivy Unexposed Replicate 1	ND	ND	<lloq<sup>3,4</lloq<sup>	ND	
Ivy Unexposed Replicate 2	ND	ND	<lloq<sup>3,4</lloq<sup>	ND	
Ivy Unexposed Replicate 3	ND	ND	<lloq<sup>3,4</lloq<sup>	ND	
Ivy Unexposed Replicate 4	ND	ND	<lloq<sup>3,4</lloq<sup>	ND	
Ivy Bleach-treated Replicate 1	0.54	0.56	1.7	0.84	
Ivy Bleach-treated Replicate 2	0.27	0.27	<lloq<sup>3,4</lloq<sup>	0.35	
Ivy Bleach-treated Replicate 3	0.69	1.1	1.5	1.1	
Ivy Bleach-treated Replicate 4	0.60	0.76	<lloq<sup>3,4</lloq<sup>	0.62	
Ivy Chlorine gas treated Replicate 1	0.454	ND	ND	ND	
Ivy Chlorine gas treated Replicate 2	ND	ND	ND	ND	
Ivy Chlorine gas treated Replicate 3	0.564	ND	ND	ND	
Ivy Chlorine gas treated Replicate 4	0.344	ND	ND	ND	
Ivy Unexposed Replicate 3-PS ¹	<lloq<sup>3,4</lloq<sup>	<lloq<sup>3</lloq<sup>	<lloq<sup>3,4</lloq<sup>	< <lloq<sup>5</lloq<sup>	
Ivy Chlorine gas treated Replicate 1-PS ²	5.1	3.2	ND	1.7	
Pine Unexposed Replicate 1	<lloq<sup>3,4</lloq<sup>	ND	ND	ND	
Pine Unexposed Replicate 2	ND	ND	ND	ND	
Pine Unexposed Replicate 3	ND	ND	ND	ND	
Pine Unexposed Replicate 4	ND	ND	ND	ND	
Pine Bleach-treated Replicate 1	2.2	2.1	0.604	0.66	
Pine Bleach-treated Replicate 2	0.60	0.74	0.254	0.63	
Pine Bleach-treated Replicate 3	7.7	7.5	0.524	0.35	
Pine Bleach-treated Replicate 4	3.6	3.9	0.774	1.1	
Pine Chlorine gas treated Replicate 1	<lloq<sup>3</lloq<sup>	ND	ND	< <lloq<sup>5</lloq<sup>	
Pine Chlorine gas treated Replicate 2	<lloq<sup>3,4</lloq<sup>	ND	0.36	< <lloq<sup>5</lloq<sup>	
Pine Chlorine gas treated Replicate 3	<lloq<sup>3,4</lloq<sup>	ND	ND	ND	
Pine Chlorine gas treated Replicate 4	<lloq<sup>3,4</lloq<sup>	ND	ND	ND	
Pine Unexposed Replicate 3-PS ¹	0.254	0.40	<lloq<sup>3,4</lloq<sup>	<lloq<sup>3</lloq<sup>	
Pine Chlorine gas treated Replicate 3-PS ²	4.1	3.9	3.0	1.4	

Table 2. Chlorotyrosine Detection Summary

ND = not detected

¹ Samples post-spiked at 5 ng/mL ² Samples post-spiked at 50 ng/mL ³ Detected below the lower limit of quantification ⁴ Ion ratio failure occurs due to interferences ⁵ Single ion observed

File	m/z 92 Abundance	m/z 100 Abundance	lon Ratio	RT (s)	RRT
2-Chloroaniline NIST Library	151	65	2.32	1094	0.919
3-Chloroaniline NIST Library	206	116	1.78	1157	0.972
4-Chloroaniline NIST Library	155	107	1.45	1160	0.975
4-Chloroaniline analytical standard*	454	392	1.16	1299	0.993
Unknown*	281	152	1.85	1203	0.871

Table 3. Chloroaniline Ion Ratio and Relative Retention Time Summary

*Values in the table correspond to observed values; those populated for the NIST library entries for chloroaniline derive from the reference spectra for ion ratio and aggregate non-polar retention indices for analyte and aggregate semi-standard non-polar for naphthalene d8 (1190)

Table 4. Chlorophenol Ion Ratio and Relative Retention Time Summary

File	m/z 65 Abundance	m/z 100 Abundance	lon Ratio	RT (s)	RRT
2-Chlorophenol NIST Library	NA**	NA**	NA**	979	0.823
3-Chlorophenol analytical standard	662	282	2.35	1290	0.986
4-Chlorophenol analytical standard*	776	282	2.75	1311	1.005
Unknown*	638	287	2.22	1341	0.972

*Values in the table correspond to observed values; those populated for the NIST library entries for chlorophenol derive from the reference spectra for ion ratio and aggregate non-polar retention indices for analyte and aggregate semi-standard non-polar for naphthalene d8 (1190) for retention time

**NA = not applicable; ion ratio of m/z 92 and 100 ruled out the possibility of 2-chloroaniline; NIST RRT values shown for completion