Supporting Information

Identification of catechin species using a colorimetric and fluorescence dual-

mode sensor array based on peroxidase-like PtNi bunched nanoparticles

Yunfan She,^{1‡} Chenxin Dong,^{1‡} Yumin Leng,^{2,3*} and Zhengbo Chen^{1,3*}

¹Department of Chemistry, Capital Normal University, Beijing, 100048, China

²Key Laboratory of Intelligent Quality Monitoring and Soil Fertility Improvement for

Farmland, School of Mathematics and Physics, Anqing Normal University, Anqing

246133, China

³Anhui Provincial Key Laboratory of Advanced Catalysis and Energy Materials,

College of Chemistry and Chemical Engineering, Anqing Normal University,

Anqing 246133, China

* Corresponding authors E-mail: yumin_leng@126.com, czb979216@sina.com [‡]Y. F. She and C. X. Dong contributed equally to the work.

Table S1 The Zeta potential results of PtNi-BNPs, PtNi-BNPs+OPD+ H_2O_2 , and PtNi-BNPs+OPD+ H_2O_2 +catechin.

System	Zeta potential (mV)
PtNi-BNPs	-13.5
PtNi-BNPs+OPD+H ₂ O ₂	-5.20
PtNi-BNPs+OPD+H ₂ O ₂ +catechin	-8.81

Fig. S1 The effect of pH values on the fluorescence intensity of PtNi-BNPs-OPD- H_2O_2 at 548 nm.

Fig. S2 The effect of pH values on the absorbance of PtNi-BNPs-OPD- H_2O_2 at 448 nm.

Fig. S3 The effect of H_2O_2 concentrations on the fluorescence intensity of PtNi-BNPs-OPD- H_2O_2 at about 548 nm.

Fig. S4 (A) UV-vis absorption spectra of PtNi-BNPs-OPD- H_2O_2 in presence of different concentrations of H_2O_2 . (B) The effect of H_2O_2 concentrations on the absorbance of PtNi-BNPs-OPD- H_2O_2 at 448 nm.

Fig.S5 Time-dependent fluorescence intensity changes of PtNi-BNPs-OPD-H₂O₂ solution at 548 nm.

Fig. S6 (A) UV-vis absorption spectra of PtNi-BNPs-OPD- H_2O_2 at different time. (B) Time-dependent absorbance changes of PtNi-BNPs-OPD- H_2O_2 solution at 448 nm.

Fig. S7 (A) UV-vis absorption spectra and the corresponding colors of $PtNi+OPD+H_2O_2$, PtNi+OPD, $OPD+H_2O_2$, and OPD solutions. (B) Fluorescence spectra and the corresponding colors of $PtNi+OPD+H_2O_2$, PtNi+OPD, $OPD+H_2O_2$, and OPD solutions.

Fig. S8 •OH generated by PtNi-BNPs and DMPO system.

Fig. S9 LDA score plot of the dual-channel sensor array to identify six catechins at 10 μ M.

Fig. S10 LDA score plot of the dual-channel sensor array to identify six catechins at 50 μ M.

Fig. S11 LDA score plot of the dual-channel sensor array to identify six catechins at $100 \ \mu M$.

Fig. S12 LDA plots for the sensor array against the six target catechins and the interfering substances, each at 100μ M.

Fig. S13 Curve of the peroxidase-like activity stability of PtNi-BNPs within one month.