Supporting information

Supplemented experimental section

1. Bacterial culture and DNA genome extraction

Each of the bacteria strains was steaked onto LB plates from freezer stocks held at – 80°C and grown at 37 °C for 16 h to form single colonies. Single colonies were picked and grown in tubes containing 2 mL of liquid LB medium and were shaken for 16 h at 37 °C (180 rpm). Kit-based method and heat-treated method were employed to obtain bacterial genomic DNA. As to the kit-based method, genomic DNA was extracted following the instruction of bacterial DNA extraction Kit (No. DP302, Tiangen, China). Bacterial cells were harvested by centrifugation (13400g, 1 min) of 1 mL of cell suspension. The purified DNA was eluted twice with 50 μ L deionized water. The heat-treated method was employed for crude DNA extractions from clinical samples. All swabs were first blistered into respective sterilized EP tube and gently shaken. The instrument used for heating was a metal bath, the instrument was preheated to 100 °C, then 300 μ L of nucleic-free water that partially dissolved the swab was immediately inserted into metal bath. After 8 min, the lysate containing crude genomic DNA was collected by centrifugation at 11,000g for 1 min and supernatant was used as a template for following experiments.

2. Preparation of the dCas9/sgRNA@MBs

To covalently attach an oligonucleotide (linker sequence) to the dCas9 protein, 10 μ L of the linker sequence (10 μ M) with a 5' O₆-benzylguanine (BG) group was incubated with the 2 μ L of dCas9 protein (1 mg) at 37 °C for 60 min. The dCas9/linker complex were added to 20 μ L solution containing streptavidin-coated magnetic beads (MBs) (0.4 mg). After 30 min incubation at room temperature, the solution was treated by the magnet for 10 min to enrich the dCas9 @MBs. The precipitate was washed by the PBS buffer solution for 3 times to remove the free dCas9/linker complex. We then assembled 2 μ L of sgRNA (10 μ M) and dCas9@MBs in a 1× NEBuffer 3.1 Reaction Buffer (100 mM NaCl, 50 mM Tris-HCl, 10 mM MgCl₂, 100 ug/mL of BSA, pH 7.9 at 25 °C) for 30 min to construct the dCas9/sgRNA@MBs.

3. Assembly of the sensing probe (SP)

20 μ L of the synthesized SP probe (10 μ M) in linear state was heated to 90 °C for 10 min. The mixture was then cooled to room temperature (1 °C /min) to assemble the SP. The obtained SP solution was then diluted to 500 nM before applying in the proposed method for *P. aeruginosa* detection.

Name	Sequences (5' to 3')
sgRNA	UAA UUU CUA CUA AGU GUA GAU AGC GUA GGA CAG CUU
	GCC AU
SP	AACT ATA CAA CCT ACT ACC TCA ATA TTA AAT GGC AAG CTG
	TCC TAC GCT TTT TTT TTT AGC GTA GGA CAG CTT GCC ATT

Table S1. Oligonucleotide sequences used in this work.

	TAA
FP	CG ACC TTC CAC CGA GCT AGA TCC CTG GAC GAC TTG AAA
	AAC TAT ACA ACC TAC TAC CTC A TTT CAA GTC GTC CAG TTG
	AAA
"1*"	TGA GGT AGT AGG TTG TAT AGT T

Table S2. Bacterial strains used in this study.

Bacteria species	Strain		
Listeria monocytogenes (L.	ATCC 19606		
monocytogenes)			
Klebsiella pneumonia (K. pneumoniae)	clinical strain identified by our lab		
Escherichia coli (E. coli)	ATCC 19433		
Staphylococcus aureus (S. aureus)	ATCC 25923		
Pseudomonas aeruginosa	PAO1		

 Table S3. Comparison of the method with traditional methods.

Title	Mechanism	Specificity	Cost	Thermal	Equip	Primer
				cycles	ment	design
The	dCas9/sgRNA+	High	Low	No	No	Simply
method	self-priming					change the
	mediated chain					sgRNA
	extension					
RT-	Chain	False positive	High	Yes	PCR	Complicate
PCR	extension	results from			instru	d
		non-specific			ment	
		hybridization				
		and primer				
		binding				
Colony	Dilute the	Low	Low	No	No	No primer
culture	bacteria to a	(morphologica				design
and	single colony	l observation)				
count						

RT-PCR, Reverse Transcription-Polymerase Chain Reaction.

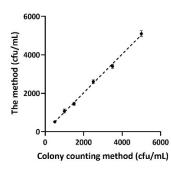


Figure S1. The correlation between the calculated *P. aeruginosa* concentrations by the method and the standard colony counting method.