1 Supplementary information 2 Chemical Profiling of Surviving Cancer Cells Using TOF-SIMS and MCR Analysis 3 **Discriminates Cell Components** 4 5 Auraya Manaprasertsak^{a,b,c}, Robin Rydbergh^d, Qicheng Wu^{a,b,c}, Maria Slyusarenko^{a,b,c}, Christopher Carroll^{a,b,c}, Sarah R. Amend^e, Sofie Mohlin^{b,c,f}, Kenneth J. Pienta^e, Per Malmberg^d, 6 7 and Emma U. Hammarlund^{a,b,c} 8 9 ^aDepartment of Experimental Medical Science, Lund University, Lund, Sweden 10 ^bLund University Cancer Center, Lund University, Lund, Sweden. 11 ^cLund Stem Cell Center, Lund University, Lund, Sweden. 12 ^dDepartment of Chemistry and Chemical Engineering, Chalmers University of Technology, 13 Gothenburg, Sweden. 14 eThe Cancer Ecology Center, Brady Urological Institute, Johns Hopkins School of Medicine, 15 Baltimore, MD, USA. 16 fDivision of Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden. 17 18 **Contents:** 19 **Supplementary methods** 20 Seahorse assay 21 **Supplementary tables** 22 **Table S1.** The 20 highest loadings from 6 factors of MCR analysis from negative ion 23 image of the mixed untreated and surviving cancer cells sample. 24 25 **Supplementary Discussion** 26 Seahorse assay 27 Figure S1. The overlay spectra of untreated cancer cells (blue) and surviving cancer 28 cells (pink) in positive ion mode in the range of (A) m/z 100-225, (B) m/z 225-350, (C) 29 m/z 350-475 and (**D**) m/z 475-600. 30 31 Figure S2. The overlay spectra of untreated cancer cells (blue) and surviving cancer 32 cells (pink) in negative ion mode in the range of (A) m/z 100-225, (B) m/z 225-350, (C) m/z 350-475 and (**D**) m/z 475-600. 33 34 35 Figure S3. The loading spectra from 6 factors of PCA analysis from negative ion 36 image of the mixed untreated and surviving cancer cells sample from Figure. 6. (A) 37 factor 1 and (B) factor 2. 38 39 Figure S4. The loading spectra from 6 factors of PCA analysis from negative ion 40 image of the mixed untreated and surviving cancer cells sample from Figure. 6. (A) factor 3 and (B) factor 4. 41 42 43 Figure S5. The loading spectra from 6 factors of PCA analysis from negative ion 44 image of the mixed untreated and surviving cancer cells sample from Figure. 6. (A) 45 factor 5 and (B) factor 6. 46

50 Figure S7. The loading spectra from 6 factors of MCR analysis from negative ion 51 52 image of the mixed untreated and surviving cancer cells sample from Figure. 7. (A) 53 factor 3 and (B) factor 4. 54 55 Figure S8. The loading spectra from 6 factors of MCR analysis from negative ion 56 image of the mixed untreated and surviving cancer cells sample from Figure. 7. (A) 57 factor 5 and (B) factor 6. 58 59 Figure S9. Replicate 2. (A) Six factors (F1-F6) derived from PCA analysis of negative 60 ion images for the mixed sample of untreated and surviving cancer cells. (B) Six factors 61 (F1-F6) derived from MCR analysis of the same negative ion images. (C) PCA analysis, 62 and (D) MCR analysis illustrating the overlay of cytoplasm (red), nucleus (blue), and 63 lipid droplets (red). 64 65 Figure \$10. Replicate 2. The loading spectra from 6 factors of PCA analysis from 66 negative ion image of the mixed untreated and surviving cancer cells sample from 67 Figure S9. (A) factor 1 and (B) factor 2. 68 69 Figure \$11. Replicate 2. The loading spectra from 6 factors of PCA analysis from 70 negative ion image of the mixed untreated and surviving cancer cells sample from 71 Figure S9. (A) factor 3 and (B) factor 4. 72 73 Figure \$12. Replicate 2. The loading spectra from 6 factors of PCA analysis from 74 negative ion image of the mixed untreated and surviving cancer cells sample from 75 Figure S9. (A) factor 5 and (B) factor 6. 76 77 Figure S13. Replicate 2. The loading spectra from 6 factors of MCR analysis from 78 negative ion image of the mixed untreated and surviving cancer cells sample from 79 Figure S9. (A) factor 1 and (B) factor 2. 80 81 Figure \$14. Replicate 2. The loading spectra from 6 factors of MCR analysis from 82 negative ion image of the mixed untreated and surviving cancer cells sample from 83 Figure S9. (A) factor 3 and (B) factor 4. 84 85 Figure \$15. Replicate 2. The loading spectra from 6 factors of MCR analysis from 86 negative ion image of the mixed untreated and surviving cancer cells sample from 87 Figure S9. (A) factor 5 and (B) factor 6. 88 89 Figure S16. Replicate 3. (A) Six factors (F1-F6) derived from PCA analysis of negative 90 ion images for the mixed sample of untreated and surviving cancer cells. (B) Six factors 91 (F1–F6) derived from MCR analysis of the same negative ion images. (C) PCA analysis, 92 and (D) MCR analysis illustrating the overlay of cytoplasm (red), nucleus (blue), and 93 lipid droplets (red).

Figure S6. The loading spectra from 6 factors of MCR analysis from negative ion

image of the mixed untreated and surviving cancer cells sample from Figure. 7. (A)

47

48

49

factor 1 and (B) factor 2.

94	
95	Figure \$17. Replicate 3. The loading spectra from 6 factors of PCA analysis from
96	negative ion image of the mixed untreated and surviving cancer cells sample from
97	Figure S16. (A) factor 1 and (B) factor 2.
98	
99	Figure S18. Replicate 3. The loading spectra from 6 factors of PCA analysis from
100	negative ion image of the mixed untreated and surviving cancer cells sample from
101	Figure S16. (A) factor 3 and (B) factor 4.
102	
103	Figure \$19. Replicate 3. The loading spectra from 6 factors of PCA analysis from
104	negative ion image of the mixed untreated and surviving cancer cells sample from
105	Figure S16. (A) factor 5 and (B) factor 6.
106	
107	Figure S20. Replicate 3. The loading spectra from 6 factors of MCR analysis from
108	negative ion image of the mixed untreated and surviving cancer cells sample from
109	Figure S16. (A) factor 1 and (B) factor 2.
110	
111	Figure S21. Replicate 3. The loading spectra from 6 factors of MCR analysis from
112	negative ion image of the mixed untreated and surviving cancer cells sample from
113	Figure S16. (A) factor 3 and (B) factor 4.
114	
115	Figure S22. Replicate 3. The loading spectra from 6 factors of MCR analysis from
116	negative ion image of the mixed untreated and surviving cancer cells sample from
117	Figure S16. (A) factor 5 and (B) factor 6.
118	
119	Figure S23. The measurement of oxygen consumption rate (OCR) of untreated and
120	surviving cancer cells over time using Seahorse assay.
121	

Supplementary methods

123124 Seahorse assay

The oxygen consumption rate (OCR) of untreated and cisplatin-surviving cancer cells was measured using the Seahorse XF Analyzer (Agilent, USA). Cells were seeded in Seahorse XF 96-well plates at 20,000–30,000 cells per well, incubated overnight in growth medium, and then switched to serum-free Seahorse XF Assay Medium for 1 hour at 37°C without CO₂. Basal OCR was recorded, followed by sequential injections of oligomycin (2–5 μ M) to assess ATP-linked respiration, FCCP (2 μ M) for maximal respiratory capacity, and rotenone/antimycin A (1 μ M each) for non-mitochondrial OCR. Data were collected with Seahorse XF Wave software to calculate basal OCR, ATP-linked OCR, maximal OCR, non-mitochondrial OCR, and spare respiratory capacity (maximal OCR minus basal OCR). Statistical analyses were performed to compare untreated and surviving cells' OCR profiles.

Table S1. The 20 highest loadings from 6 factors of MCR analysis from negative ion image of the mixed untreated and surviving cancer cells sample.

	Factor 1		Factor 2		Factor 3	
No.	m/z	Loadings (a.u.)	m/z	Loadings (a.u.)	m/z	Loadings (a.u.)
1	158.9893	0.013	72.0769	0.007	45.0188	0.017
2	78.9967	0.012	141.1099	0.007	100.0768	0.015
3	62.9890	0.012	42.0166	0.007	71.0272	0.015
4	180.9790	0.011	82.1128	0.007	73.0107	0.015
5	260.9582	0.011	155.1281	0.006	87.0422	0.014
6	198.9893	0.009	101.1138	0.006	59.0514	0.014
7	97.0071	0.009	129.1533	0.006	55.0436	0.013
8	276.9321	0.009	130.0964	0.006	43.0448	0.012
9	134.1003	0.008	115.0858	0.006	69.0114	0.012
10	90.0480	0.007	26.0065	0.006	41.0072	0.010
11	182.9677	0.006	156.1238	0.006	99.0467	0.009
12	127.9952	0.006	145.1199	0.006	113.0648	0.008
13	214.9729	0.006	56.0740	0.005	85.0715	0.008
14	164.9651	0.006	167.1374	0.005	83.0463	0.008
15	117.0783	0.006	40.0394	0.005	71.0633	0.008
16	102.9953	0.006	170.1455	0.005	57.0166	0.007
17	80.9959	0.005	142.1141	0.005	115.0293	0.007
18	244.9407	0.005	44.0353	0.005	58.0233	0.007
19	95.9871	0.005	70.0596	0.005	53.0132	0.007
20	223.9682	0.005	71.0633	0.005	112.0628	0.006
	Factor 4		Factor 5		Factor 6	
No.	m/z	Loadings (a.u.)	m/z	Loadings (a.u.)	m/z	Loadings (a.u.)
1	101.9657	0.024	42.0166	0.007	15.9896	0.035
2	177.9684	0.023	26.0065	0.007	75.9933	0.031
3	114.9687	0.022	91.0235	0.006	77.0053	0.030
4	129.1081	0.022	40.0394	0.006	59.9875	0.028
5	163.9661	0.021	44.0353	0.005	136.9862	0.023
6	133.9950	0.020	41.0306	0.005	135.9761	0.023
7	156.9615	0.020	71.0274	0.005	178.9643	0.018
8	63.9772	0.020	107.0234	0.005	17.0024	0.017
9	121.9908	0.019	25.0095	0.005	60.9861	0.016
10	94.9498	0.018	65.0401	0.005	118.9819	0.015
11	92.9474	0.017	47.0181	0.005	196.9755	0.015
12	64.9571	0.017	71.0633	0.004	77.9858	0.015

13	85.9663	0.015	50.0270	0.004	137.9746	0.013
14	54.9660	0.014	98.0475	0.004	238.9548	0.009
15	55.9844	0.013	66.0745	0.004	31.9942	0.009
16	43.0189	0.011	97.0818	0.004	119.9681	0.008
17	54.0089	0.011	73.0747	0.004	58.9806	0.008
18	132.9109	0.010	54.0603	0.004	61.9717	0.007
19	46.9703	0.010	66.1011	0.004	179.9646	0.007
20	73.9871	0.008	82.0615	0.004	256.9491	0.007

Supplementary Discussion Seahorse assay

141

142

143

144

145146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

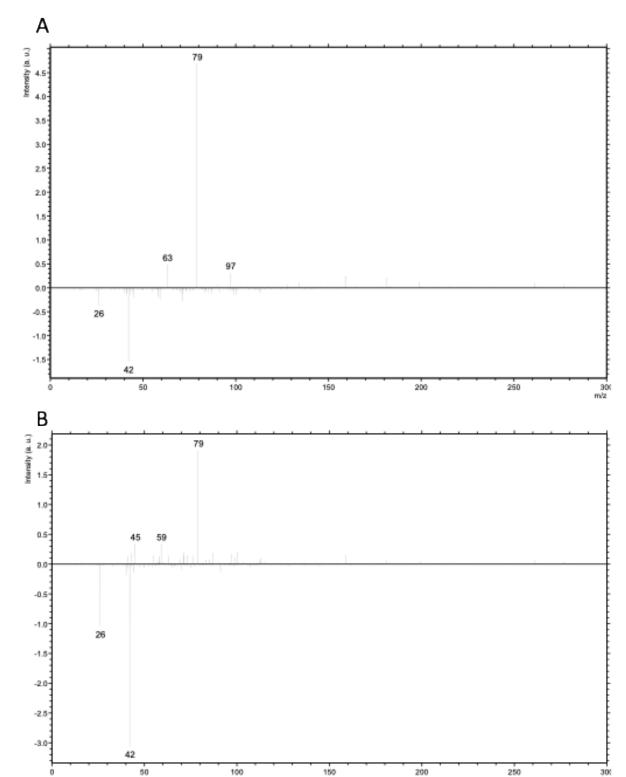
161

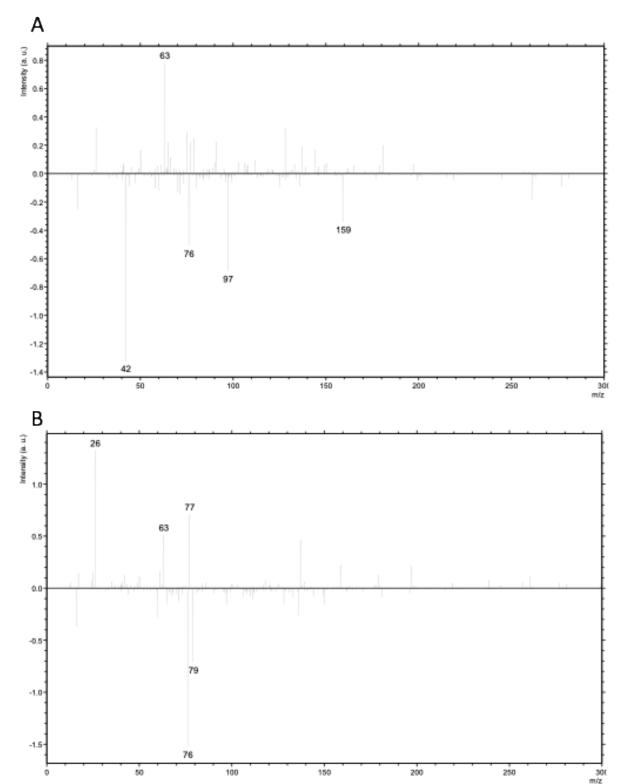
162

163

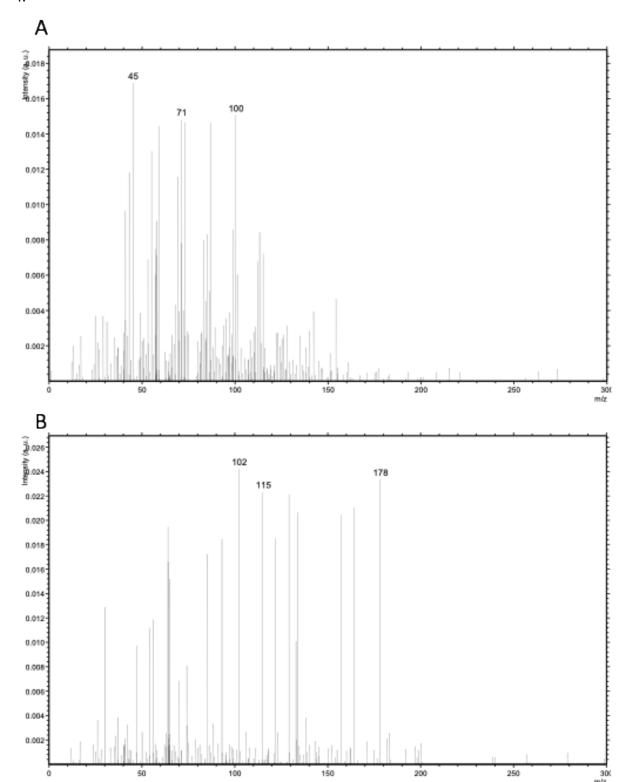
Figure S5 shows the oxygen consumption rate (OCR) of untreated and cisplatinsurviving cancer cells over time, measured by Seahorse assay. The assay includes two main conditions: baseline OCR (cells in media without inhibitors) and OCR after etomoxir treatment to inhibit fatty acid oxidation. When cells are treated with etomoxir, OCR typically decreases if the cells are relying on fatty acids as a primary fuel source. From Figure S5, untreated cells exhibited no difference between media and etomoxir condition, while the surviving cells increase OCR in the etomoxir condition. An increased OCR with etomoxir treatment could indicate that the inhibition of fatty acid oxidation could induce a stress response, activating pathways that increase mitochondrial respiration as a protective mechanism. This response might lead to a temporary boost in OCR due to cellular attempts to adapt to the metabolic restriction. The Seahorse assay consists of sequential additions of compounds to assess mitochondrial function: (A) Basal respiration measures natural OCR; (B) Oligomycin inhibits ATP synthase, with the drop in OCR reflecting ATP-linked respiration; (C) FCCP uncouples oxidative phosphorylation, with the increase in OCR indicating maximal respiratory capacity; and (D) Rotenone and Antimycin A inhibit mitochondrial respiration, with the remaining OCR representing non-mitochondrial oxygen consumption. From Figure S5, the higher oxygen consumption rate in the surviving cells compared to the untreated cells indicates a metabolic adaptation characterized by increased mitochondrial activity. This enhancement likely supports greater energy production and contributes to the cells' resistance and resilience to stress.

165

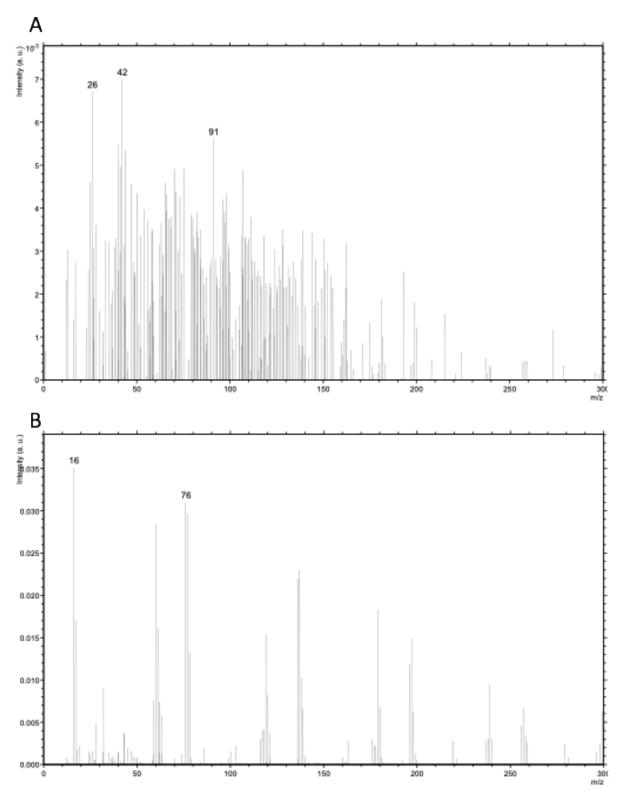

166 167

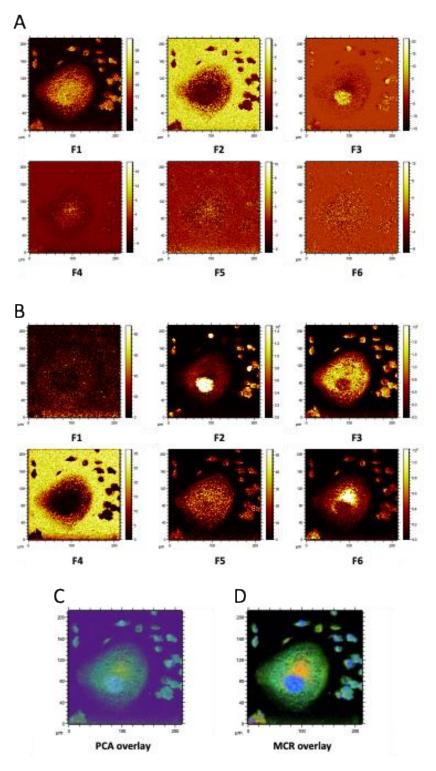

171 172

177


0.5

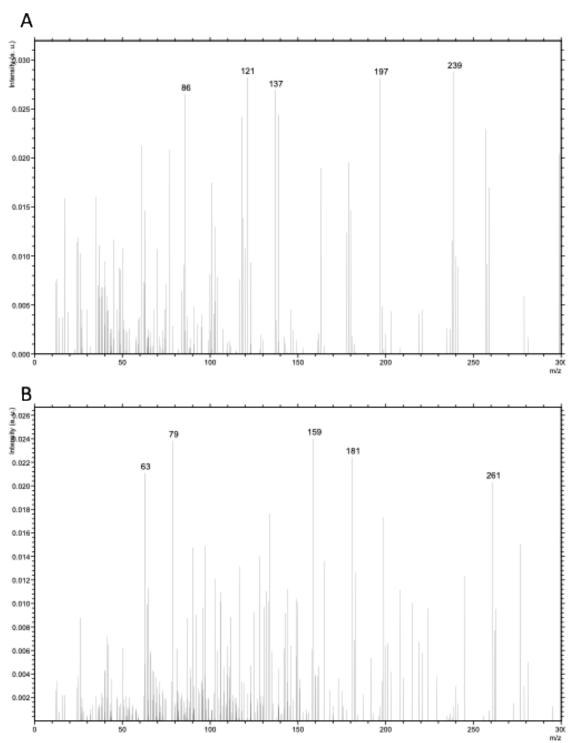
178 179 180 137



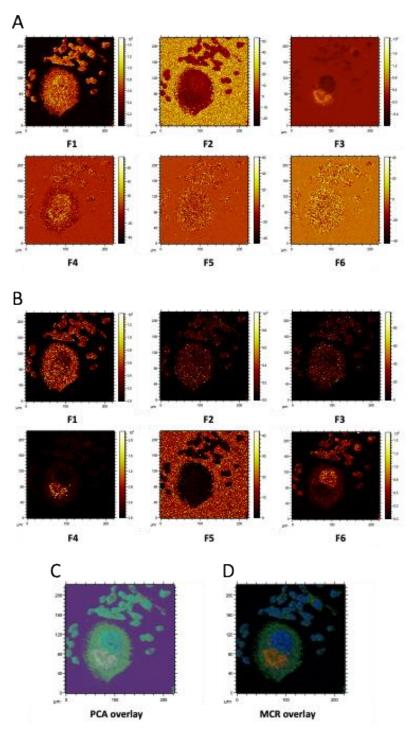


192

Figure S8. The loading spectra from 6 factors of MCR analysis from negative ion image of the mixed untreated and surviving cancer cells sample from Figure. 7. (A) factor 5 and (B) factor 6.



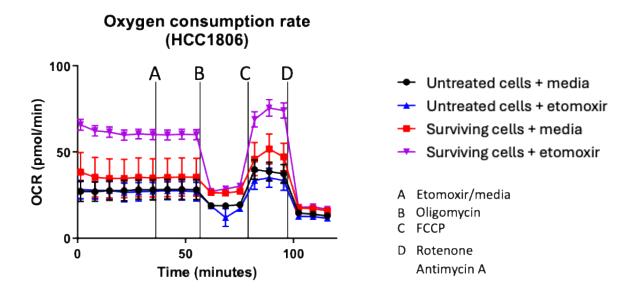
203


204

216

228

229


233

234

238

246

254

