SUPPLEMENTARY MATERIAL

Chemometric-assisted electrochemical sensor for simultaneous determination of neonicotinoids imidacloprid and thiamethoxam in honey samples

Matias Alberto Cardenas ^a, Macarena Vignati ^a, Gastón Darío Pierini ^{a,*}, Sebastián Noel Robledo ^{a,b}, Marcela Beatriz Moressi ^a, Fabiana D'Eramo ^{a,*}

^a Departamento de Química, Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS),
 Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto,
 Rio Cuarto 5800, Argentina

^bDepartamento de Tecnología Química, Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS), Facultad de Ingeniería, Universidad Nacional de Río Cuarto, Rio Cuarto 5800, Argentina.

Communication to: Analytical Methods

^{*}To whom correspondence should be addressed.

Email: gpierini@exa.unrc.edu.ar (G.D. Pierini); fderamo@exa.unrc.edu.ar (F. D'eramo)

Experience	c_{TM}^{*} / mg L ⁻¹	c_{IM}^{*} / mg L ⁻¹
1	5.5	22.0
2	29.0	13.4
3	15.3	13.4
4	25	4.8
5	15.3	1.3
6	5.5	4.8
7	15.3	13.4
8	15.3	25.0
9	25	22
10	15.3	13.4
11	1.4	13.4
12	22.5	19.7
13	26.3	11.8
14	13.4	11.8
15	13.4	0.5
16	4.3	3.8
17	13.4	11.8
18	13.4	23.0
19	4.3	19.7
20	0.6	11.8
21	22.5	3.8

Table S1. Concentration values of IM and TM in honey diluted 10% with pH 8 PBS used as output data in the calibration set (samples 1–11) and the validation set (samples 12–21).

Figure S1. Cyclic voltammograms obtained for A) TM $1x10^{-4}$ mol L⁻¹ and B) IM $1x10^{-4}$ mol L⁻¹ at 50 mV s⁻¹ in pH 8 PBS. Insert: Dependence between the reduction peak currents and the pH.

			Factors				Respo	onses
Experiments	Block	рН	Frequency of the SWV / Hz	Amplitude of the SWV / mV	Staircase potential of the SWV / mV	GCE activation cycles	Area / μA V	<i>Ip</i> / μA
31	1	4	30	35	7	2	3.25	18.7
1	2	5	40	45	9	1	2.06	13.6
4	2	5	40	45	5	1	0.23	1.4
5	2	5	20	25	5	1	0.75	5
10	2	5	20	25	5	3	0.63	3.6
11	2	5	40	25	5	3	2.63	20.6
12	2	5	20	45	5	3	1.03	6.09
19	2	5	20	45	5	1	1.56	10.8
22	2	5	20	25	9	1	2.67	20.5
23	2	5	40	25	9	3	2.3	15.8
26	2	5	40	45	9	3	2.23	15.7
32	2	5	20	45	9	1	2.21	16.1
33	2	5	40	25	9	1	2.79	20.3
36	2	5	20	45	9	3	1.83	11.8
38	2	5	40	25	5	1	0.97	6.6
40	2	5	20	25	9	3	2.94	22.5
44	2	5	40	45	5	3	1.13	1.09
2	3	7	30	35	7	2	0.19	2.55
3	3	7	30	35	7	1	2.5	19.4
6	3	7	30	50	7	2	3.8	27.6
7	3	7	30	35	7	2	3.5	26
9	3	7	30	35	10	2	3.71	28.8
16	3	7	45	35	7	2	4.22	31.4
20	3	7	30	35	4	2	1.77	14.8
25	3	7	15	35	7	2	2.36	17.6

 Table S2. Five-factor central composite design and corresponding responses.

30	3	7	30	20	7	2	0.21	1.9
34	3	7	30	35	7	2	2.75	23.1
42	3	7	30	35	7	3	2.91	21.4
13	4	9	40	25	5	3	1.43	10.2
14	4	9	40	25	9	1	3.27	20.8
15	4	9	20	25	9	1	2.36	17.8
17	4	9	20	45	9	3	3.64	21.9
18	4	9	40	25	9	3	3.3	21.3
21	4	9	40	25	5	1	0.64	4.7
24	4	9	40	45	9	3	1.07	15.4
27	4	9	40	45	9	1	6.46	36.9
28	4	9	20	45	5	1	2.53	17.7
29	4	9	20	45	9	1	4.33	25.6
35	4	9	40	45	5	1	3.18	21.4
37	4	9	20	25	5	1	1.42	10.6
39	4	9	20	45	5	3	2.04	13.7
41	4	9	20	25	9	3	3.3	25.2
43	4	9	20	25	5	3	1.79	11.4
45	4	9	40	45	5	3	4.89	28.7
8	5	10	30	35	7	2	2.24	19.6

Table S3.	ANOVA	obtained who	en a centra	al composite	design	was a	applied	for the	optimiza	tion
of IM and	TM respo	nse in terms	of area and	d Ip.						

ANOVA for Response Surface Reduced 2FI model								
Analysis of variance table [Response 1: Area]								
	Sum of		Mean	F	p-value			
Source	Squares	df	Square	Value	Prob > F			
Model	33.07	6	5.51	4.94	0.0008	significant		
A-pH	7.17	1	7.17	6.42	0.0155			
B- Frequency of the SWV	1.10	1	1.10	0.99	0.3270			
<i>C</i> - Amplitude of the SWV	4.36	1	4.36	3.90	0.0555			
<i>D</i> - Staircase potential of the SWV	14.27	1	14.27	12.78	0.0010			
<i>E</i> - GCE activation cycles	0.021	1	0.021	0.019	0.8923			
AC	6.15	1	6.15	5.51	0.0242			
Residual	42.44	38	1.12					
Lack of Fit	36.41	36	1.01	0.34	0.9364	not significant		
Pure Error	6.02	2	3.01					
Cor Total	75.51	44						

ANOVA for Response Surface Reduced 2FI model							
Analysis of variance table [Response 1: Ip]							
	Sum of		Mean	F	p-value		
Source	Squares	df	Square	Value	Prob > F		
Model	1558.36	6	259.73	5.74	0.0003	significant	
A-pH	350.89	1	350.89	7.76	0.0083		
B-Frequency of the SWV	33.37	1	33.37	0.74	0.3957		
<i>C</i> - Amplitude of the SWV	97.09	1	97.09	2.15	0.1511		
<i>D</i> - Staircase potential of the SWV	778.98	1	778.98	17.23	0.0002		
<i>E</i> - GCE activation cycles	0.23	1	0.23	5.173E-003	0.9430		
AC	297.80	1	297.80	6.59	0.0143		

Residual	1718.28	38	45.22			
Lack of Fit	1391.41	36	38.65	0.24	0.9776	not significant
Pure Error	326.87	2	163.44			
Cor Total	3276.64	44				

Table S4. Criteria used for the optimization.

Factors and response	Optimization criteria	Lower limit	Upper limit	Predicted SRO-ANN	Experimental values
pН	In range	5	9	8	
Amplitude of the SWV	In range	25	45	43	
Staircase potential of the SWV	In range	5	9	9	
Area	Maximize	0.2	6.4	3.7	4.1 ± 0.4
Ip	Maximize	1.1	36	26.3	27.4 ± 1.2

 Table S5. Optimized parameters and errors obtained between nominal and estimated concentrations by ANNs.

	ТМ	IM
Architecture	3-5-1	3-5-1
Number of iterations	30	25

Hidden layer transfer function	Tansing	Tansing
RMSEP ^a (mol L ⁻¹)	1.4x10 ⁻⁶	2.9x10 ⁻⁶
REP ^a (%)	2.9	6.5
\mathbb{R}^2	0.9984	0.9886

^a Errors obtained between nominal and estimated concentrations by ANNs for the calibration set.

Figure S2. Chromatographic profile of honey samples (dotted black points) taken at A) 252 nm and B) 271 nm. Samples 1 and 2 are honey samples with addition of TM and IM at different concentration.

Data availability statements

The code for surface response modelling and desirability function calculations can be found at <u>https://www.iquir-conicet.gov.ar/2022/10/03/quimiometria-analitica/</u>. The version of the code employed for this study is version [SRO_ANN MatLab toolbox].

The code for construction

of the calibration model with ANN can be found at https://www.iquir-conicet.gov.ar/2022/10/03/quimiometria-analitica/ with

[https://doi.org/10.1016/j.chemolab.2004.03.004]. The version of the code employed for this study is version [MVC1 package].

The code for Green analysis was can be found at https://mostwiedzy.pl/wojciech-wojnowski,174235-1/AGREE with [https://doi.org/10.1021/acs.analchem.0c01887]. The version of the code employed for this study is version [Analytical GREEnness Metric Approach and Software].