Supporting Information for

Impacts of Cationic Lipid-DNA Complexes on Immune Cells and Hematopoietic Cells *in Vivo*

Xiuxiu Cong^{a, b}, Huizhu Tan^{a, b}, Yue Lv^{a, b}, Kuirong Mao^{a, b, c}, Yanbao Xin^{a, b}, Jialiang

Wang^e, Xiandi Meng^{a, b}, Meng Guan^a, Haorui Wang^{a, b, c}, Yong-Guang Yang^{a, b, c}, and

Tianmeng Suna, b, c, d *

^aKey Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, Jilin, 130061, China

^bNational-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China

^cInternational Center of Future Science, Jilin University, Changchun, Jilin, 130015, China

^dState Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, 130012, China

^eDepartment of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China

Correspondence: Tianmeng Sun

The First Hospital of Jilin University 71 Xinmin St Changchun, Jilin, China 130021

E-mail: tsun41@jlu.edu.cn (T. Sun)

Fax: +86-431-88783484

Α					
		DOTAP (µg)	Cholesterol (µg)	DSPE- mPEG2K (µg)	Nucleic acid
	CLN	443	239	134	no
	CLN/siRNA	443	239	134	NC siRNA 24 µg
	CLN/mRNA	443	239	134	mRNA 24 µg
	CLN/DNA	443	239	134	pcDNA 3.1(-)GFP 24 µg

Fig. S1. Characterization of cationic lipid nanoparticles. (A) The composition of cationic lipid nanoparticles. The hydrodynamic diameter (B) and zeta potential (C) of CLN and CLN/DNA measured by dynamic light scattering (n = 2 per group).

Fig. S2. Dynamic interaction of CLN/DNA with neutrophils and monocytes over time. C57BL/6 mice were treated with *i.v.* injection of PBS or CLN/DNA, the dose of nucleic acid was 1.1 mg/kg. After 1 h, 2 h, 4 h, 6 h, 24 h and 72 h of CLN/DNA treatment, the control group being assessed 72 h following the administration of PBS. BM cells were collected and analyzed by flow cytometry. The quantity of Neutrophils (A) and Monocytes (B) in BM at different time points after CLN/DNA treatment (n=3-5 per group). Data are presented as mean \pm S.E.M. *, p < 0.05.

Fig. S3. The gating strategy of flow cytometry.

Fig. S4. The gating strategy of flow cytometry.

Fig. S5. CLN/DNA induced HSC amplification was dose-dependent. Preparation of lipids encapsulated with different doses of DNA (CLN/DNA-24 μ g, CLN/DNA-12 μ g and CLN/DNA-6 μ g). (A) The entrapment efficiency of CLN/DNA was detected by agarose gel assay. (B) C57BL/6 mice were treated with *i.v.* injection of PBS, CLN or CLN/DNA, after 24 h of nanoparticles treatment, BM cells were collected and analyzed by flow cytometry. The percentage of LSK in BM at 24 h after cationic lipid nanoparticles treatment.