Collagen / polyester-polyurethane porous scaffolds for use in meniscal repair

Gaëlle Savin ^{a,b,d}, Sylvain Caillol ^b, Audrey Bethry ^a, Eric Rondet ^c, Michel Assor ^d, Ghislain David ^b, Benjamin Nottelet ^{a,e*}

 ^a IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France gaelle.savin@enscm.fr (G.S.); audrey.bethry@umontpellier.fr (A.B.)
 ^b ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France ghislain.david@enscm.fr (G.D.); sylvain.caillol@enscm.fr (S.C.)
 ^c QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, Montpellier France eric.rondet@umontpellier.fr (E.R.)
 ^d Arthrocart Biotech, Marseille, France michel.assor@arthrocart.com (M.A.)
 ^e Department of Pharmacy, Nîmes University Hospital, 30900, Nimes, France

*Corresponding authors: E-mail address: benjamin.nottelet@umontpellier.fr_(B.N.)

Supplementary material

Fig. S1. 2D heteronuclear spectrum ¹ H- ¹ H g-edited COSY (600 MHz, CdCl ₃) of PCL-LDI 3
Fig. S2. 2D heteronuclear spectra ¹³ C- ¹ H g-edited HSQC (600 MHz, CdCl ₃) of the
prepolymer PCL-LDI 4
Fig. S3. Thermograms of PLGA-diol, PCL-LDI and the resulting PEU 4
Fig. S4. Typical pore size distribution of a PEU scaffold
Fig. S5. Typical stress/strain compression curve of HDI-based PEU scaffold5
Fig. S6. Calibration curve of the hydroxyproline content. Linear fit: y=0.1472x, r ² =0.9996 6
Fig. S7. Calibration curve of the Col-FITC content. Linear fit: y=2.2022x, r ² =0.9985
Fig. S8. Representative µCT images of A) PEU scaffold, B) PEU-Col scaffold, C) PEU-Col
scaffold with iohexol. Red line corresponds to the cross section showed in Fig 4. Scale bar
corresponds to 2 mm
Fig. S9. L929 proliferation on the different scaffolds after 2, 4, 9 and 14 days. The fibroblasts
were seeded on TCPS (n=6), Actifit® gold standard (n=4), PEU scaffold (n=6) and PEU-Col
scaffold (n=6), and cultured for 14 days. * Indicates a significant difference between groups
(*p<0.05)
Fig. S10. Evaluation of scaffolds cell proliferation: L929 fibroblasts morphology observed
under microscope
Fig. S11. pH evolution of the PBS degradation solutions containing Gold standard and PEU
scaffolds samples. The solution was refreshed when pH decreased by 5 % 10
Fig. S12. Chromatogram of gold standard Actifit® (SEC MALS-THF) 10

Table S1. IEW and HEW of the precursors of interest.	2
Table S2. dn/dc values obtained for the polymers	2
Table S3. Raw data of the absorbance values and hydroxyproline extracted from the	
calibration curve	6

 Table S1. IEW and HEW of the precursors of interest.

LDI	PCL-LDI	PCL-diol	PLGA-diol
IEW= 116.2 ± 0.4 g/eq	IEW= 1252 ± g/eq	HEW= 1 112 ± 16 g/eq	HEW= 936 ± 12 g/eq

 Table S2. dn/dc values obtained for the polymers.

	PLGA 50	PCL-LDI	PEU
dn/dc (ml/g)	0.044 ± 0.0026	0.079 ± 0.0025	0.0688 ± 0.0043
R ²	0.9894	0.9957	0.9957

Fig. S1. 2D heteronuclear spectrum ¹H-¹H g-edited COSY (600 MHz, CdCl₃) of PCL-LDI.

Fig. S2. 2D heteronuclear spectra ¹³C-¹H g-edited HSQC (600 MHz, CdCl₃) of the prepolymer PCL-LDI.

Fig. S3. Thermograms of PLGA-diol, PCL-LDI and the resulting PEU.

Fig. S4. Typical pore size distribution of a PEU scaffold.

Fig. S5. Typical stress/strain compression curve of HDI-based PEU scaffold.

Fig. S6. Calibration curve of the hydroxyproline content. Linear fit: y=0.1472x, r	^{.2} =0.9996.
--	------------------------

Table S3. Raw data of the absorbance values and hydroxyproline extracted from the calibration curve.

Sample	Absorbance	Hydroxyproline	Hydroxyproline	Collagen	Average
dilution		concentration	mass (µg)	mass	collagen
		(µg/mL)		(µg)	mass (mg)
1/1	1.422	12.5	31.2	237.4	0.262.
1/2	0.737	6.48	32.4	246.2	$0.202 \pm$
1/10	0.154	1.35	33.8	256.8	0.020

Fig. S7. Calibration curve of the Col-FITC content. Linear fit: y=2.2022x, r²=0.9985.

Fig. S8. Representative µCT images of A) PEU scaffold, B) PEU-Col scaffold, C) PEU-Col scaffold with iohexol. Red line corresponds to the cross section showed in Fig 4. Scale bar corresponds to 2 mm.

Fig. S9. L929 proliferation on the different scaffolds after 2, 4, 9 and 14 days. The fibroblasts were seeded on TCPS (n=6), Actifit® gold standard (n=4), PEU scaffold (n=6) and PEU-Col scaffold (n=6), and cultured for 14 days. * Indicates a significant difference between groups (*p<0.05).

Fig. S10. Visualization of L929 fibroblasts on scaffolds. L929 fibroblasts morphology was observed using phalloidin iFluor 488 (F-actin stained in green) and Hoechst (nucleus in blue) with a Leica Thunder microscope. Scale bars correspond to 50 μ m.

Fig. S11. pH evolution of the PBS degradation solutions containing Gold standard and PEU scaffolds samples. The solution was refreshed when pH decreased by 5 %.

Fig. S12. Chromatogram of gold standard Actifit® (SEC MALS-THF).