SUPPORTING INFO ## **Title** ## Dual-pore protocells with multitasking capacities for simultaneous delivery of therapeutic enzymes and drugs in macrophage depletion therapy Jorge Parra-Nieto,^a Alicia Arroyo-Nogales, ^a Diana Marcos-Fernández ^a, Sandra Jimenez-Falcao, ^a Carmen Arribas, ^a Diego Megias, ^b África Gonzalez-Murillo, ^c Manuel Ramirez, ^c and Alejandro Baeza,* ^a Figure S1. Hydrodynamic size measurements by Dynamic Light Scattering (DLS) and Zeta potential. ARTICLE Journal Name Figure S2. a) Synthetic scheme of carboxy-Man. a) ¹H-NMR spectra of carboxy-Man. **Figure S3.** a) In vitro protocell uptake evaluation in RAW 264.7 cells treated with PC_{dp} and non carboxylated manose modified protocells ($PC_{dp}@Man[nonc]$) at different dosages. All experiments were performed in triplicate and Student t-tests were carried out with *= p < 0.05, **= p < 0.01. b) Flow cytometry of RAW 264.7 cells treated Journal Name ARTICLE $$Loading \ Efficiency = \frac{Mass \ of \ cargo \ in \ nanoparticle}{Mass \ of \ cargo \ used \ in \ formulation} x100$$ $$Loading \ Capacity = \frac{Mass \ of \ cargo \ in \ nanoparticle}{Mass \ of \ nanoparticle} x100$$ Figure S4. Loading efficiency (LE) and loading capacity (LC) equations. **Figure S5**. ZA and Dox release pattern of $PC_{dp}@AZ$ and $PC_{dp}@DOX$ suspended in PBS and treated with CTAB. ARTICLE Journal Name **Figure S6**. Gox release pattern of PC_{dp}@Gox suspended in PBS and treated with CTAB. **Figure S7**. Cell viability evaluation of RAW 264.7 cells incubated with 150 μ g/mL of protocells loaded with zoledronic acid (PC_{dp}@ZA), chlorogenic acid (PC_{dp}@CA) and doxorubicin (PC_{dp}@Dox). All experiments were performed in triplicate, and Student t-tests were carried out with ** = p < 0.01; *** = p < 0.001. Journal Name ARTICLE Videos S1 and S2 show protocell uptake by macrophages under flow conditions.