Supplementary Information (SI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2025

Dual role of electrical stimulation and biomimetic matrix on neural differentiation within the microfluidic platform

Utku Devamoglu^{a,b†}, Yagmur Arslan^{a†}, Leila Sabour-Takanlou^c, Cigir Biray-Avci^c, Ozlem Yesil-Celiktas^{a,d,*}

 ^aDepartment of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
 ^bApplied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology and TechMed Centre, University of Twente, Enschede, The Netherlands
 ^cDepartment of Medical Biology, Medical Faculty, Ege University, Izmir, Turkey
 ^dODTÜ MEMS Center, Ankara, Turkey

†Contributed equally

*Corresponding Author: Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey.

E-mail: ozlem.yesil.celiktas@ege.edu.tr

Supplementary Figures

Fig. S1 Optimization of surface modification on μ -platform. (A) Design and dimensions of the μ -platform. The image was created with Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license. Cellular viability efficiency on different surface modification procedures on day 1 with (B) light microscopy and (C) Live&Dead staining (Scale bars 100 μ m). Cellular viability efficiency on different surface modification procedures on day 1 with (C) Live&Dead staining (Scale bars 100 μ m).

Fig. S2 The effect of electrical stimulation on neural differentiation of BMSC at 7 and 14 days. (A) Side view of the μ -platform, integration of electrical stimulation and followed by the generation of dynamic flow within the μ -platform. Immunofluorescence staining of (B) mesenchymal stromal cell markers (CD45 and CD90), (C) neural stem cells progenitor and mature phase cell markers (Nestin and MAP2) (Scale bars 100 μ m).

A

Fig. S3 Optimization of CDM production. (A) Immunofluorescence staining of CDMs with fibronectin (Scale bars 50 μ m). (B) Surface structure analysis with SEM imaging. (C) Hydrophilicity analysis of PDMS and SM5 coated PDMS. (D) Contact angle measurements of PDMS, SM5 and CDMs for cell adhesion.

Fig. S4 Biocompatibility of B-TDM hydrogel. Viability of BMSCs embedded in different B-TDM pre-gel concentrations on day 1 (ns:non-significant p>0.05, *p<0.05).

Supplementary Tables

Antibody	Host	Supplier/cat. no	IF dilution	Region	Cellular localization
CD45	Rabbit	Abcam, ab10558	1:1000	Hematopoietic myeloid cells	Nucleus
CD90	Mouse	SantaCruz sc53116	1:500	Cluster of differentiation	Cytoplasm
Nestin	Mouse	SantaCruz, sc23927	1:500	CNC progenitor cells	Intermediate filament
MAP2	Chk	Abcam, ab5392	1:1000	Mature neurons	Cytoplasm, cytoskeleton
Fibronectin	Mouse	Biosciences, 610077BD	1:500	Extracellular matrix	Cytoskeleton organization

Table S1. Antibody list for immunofluorescence dyes

 Table S2. Primer list for qRT-PCR analysis

Gene	5' forward 3'	5'reverse 3'		
SOX2	TTGCTGCCTCTTTAAGACTAGGA	TAAGCCTGGGGGCTCAAACT		
TUJ1 (TUBB3)	GACCGGACGGTGAGTCAG	CACGAGGGAAGAAGTTTTGC		
CDH2 (Ncad)	CTCCATGTGCCGGATAGC	CGATTTCACCAGAAGCCTCTAC		
SOX1	TCTTTTGGGTTGGTTTGTTAATTT	AATATAACTCCGCCGTCTGAAG		
PSD95	GACGGCCTACTTTACTCACAGC	CTCCAGGATTGGAGTTGAGC		
TBR1	TAGCAGCGCTAACATCAGCA	CCGAGCCCTAAGCCTTAAA		
CTIP2	GCTTTCCACCTACCAGACCC	ATCACGGATGAGTGAGGGTG		
MAP2	ATGACCCCCTCATCCAAAG	CATGTGGCCAGACTCAACAC		
NESTIN	ACCTGTGCCAGCCTTTCTTA	GCCAAGGTAGGGGTACGG		
NEUN (RBFOX3)	CCCAACAGAAAGGGCTGAC	CTGGGCTTCCTTCGTCCT		
IBA1	CTCCAGCTTGGAGGAAAAGC	TGGAGGGCAGATCCTCATCA		
GFAP	CTTGCTTCAGCGGTCAGG	TGCATGAGGCAGGTGGTA		
S100B	TGTAGACCCTAACCCGGAGG	TGCATGGATGAGGAACGCAT		
OLIG2	TCGCATCCAGATTTTCGGGT	TCCATGGCGATGTTGAGGTC		
MBP	CCCTGCACCTGTCAGTCC	GGCAGCTTTCTCACATACCG		
CTNNB1	TGTTAAATTCTTGGCTATTACGACA	CCACCACTAGCCAGTATGATGA		

Genes	(Comparing to BMSC Control)					
	BMSC Static ES-		BMSC Static ES+		BMSC Dynamic ES+	
	Fold Change	Log2 Fold Regulation	Fold Change	Log2 Fold Regulation	Fold Change	Log2 Fold Regulation
PAX6	4.63	2,21	370	8,53	14.49	3,86
CTIP2	0,003	-8,38	3.32	13,52	0.05	-4,32
SOX1	0.02	-5,64	0,03	-5,06	0.03	-5,06
SOX2	1.75	0,81	0,14	-2,84	1.82	0,86
NESTIN	0.04	-4,64	1.39	13,80	0.14	-2,84
NEUN	4.82	2,27	9.74	14,74	11.37	3,51
MAP2	0.01	-6,64	0,17	-2,56	0.45	-1,15
OLIG2	308.69	8,27	1392	10,44	536	9,07
MBP	0.26	-1,94	1.50	14,16	21.66	4,44
GFAP	4.99	2,32	1272	10,31	1495	10,55

Table S3. Fold change and fold regulation data of BMSCs in 3D B-TDM in absence and presence of ES under static and dynamic conditions compared to BMSC control.

S100B	6.15	2,62	18,29	4,19	8.26	3,05
IBA1	0,003	-8,38	4.67	14,58	0.07	-3,84

Genes	(Comparing to iPSC Control)				
	iPSC Dynamic ES-		iPSC Dynamic ES+		
	Fold Change	Log2 Fold Regulation	Fold Change	Log2 Fold Regulation	
CDH2	0.01	-6,644	9.51	3,249	
PAX6	0.25	-2,000	4.03	2,011	
TBR1	0.12	-3,059	3.32	1,731	
CTNNB1	0.13	-2,943	37.79	5,240	
TUJ1	4.85	2,278	15.56	3,960	
PSD95	3.55	1,828	3.32	1,731	
CTIP2	8.32	3,057	183.55	7,520	
SOX1	2.18	1,124	23.26	4,540	
SOX2	29.58	4,887	44.63	5,480	
Nestin	1.52	0,604	7.36	2,880	

Table S4. Fold change and fold regulation data of *iPSCs* in 3D B-TDM in the absence and presence of ES under dynamic conditions compared to wild-type *iPSC*.

NEUN	0.20	-2,322	1.21	0,275
МАР2	0.28	-1,837	0.71	-0,494
Olig2	1.55	0,632	8.57	3,099
МВР	14.19	3,827	34.06	5,090
GFAP	0.75	-0,415	4.38	2,131
S100B	2.44	1,287	13.83	3,790
IBA1	0.78	-0,358	0.97	-0,044