Supporting Information

Sequence-Function Space of Radical SAM Cyclophane Synthases Reveal Conserved Active Site Residues that Influence Substrate Specificity

Chin-Soon Phan,^{1,2} and Brandon I. Morinaka*,¹

¹Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore. ²Latvian Institute of Organic Synthesis, Aizkraukles street 21, LV-1006 Riga, Latvia.

Correspondence: Brandon I. Morinaka, phambi@nus.edu.sg

Table of Contents

		Pages
	Experimental section	S2-6
Figure S1	Characterized 3-CyFEs and structures of modified products	S6
Figure S2	¹ H NMR spectrum of 1 in D ₂ O	S7
Figure S3	HSQC spectrum of 1 in D ₂ O	S7
Figure S4	HMBC spectrum of 1 in D ₂ O	S8
Figure S5	COSY spectrum of 1 in D ₂ O	S8
Figure S6	TOCSY spectrum of 1 in D ₂ O	S9
Figure S7	¹ H NMR spectrum of 1 in DMSO- <i>d</i> ₆ with 0.15% TFA- <i>d</i>	S9
Figure S8	HSQC spectrum of 1 in DMSO- <i>d</i> ₆ with 0.15% TFA- <i>d</i>	S10
Figure S9	HMBC spectrum of 1 in DMSO- <i>d</i> ₆ with 0.15% TFA- <i>d</i>	S10
Figure S10	COSY spectrum of 1 in DMSO- <i>d</i> ₆ with 0.15% TFA- <i>d</i>	S11
Figure S11	TOCSY spectrum of 1 in DMSO- <i>d</i> ₆ with 0.15% TFA- <i>d</i>	S11
Figure S12	NOESY spectrum of 1 in DMSO- <i>d</i> ₆ with 0.15% TFA- <i>d</i>	S12
Figure S13	NOESY spectrum (His1-H5) of 1 in DMSO- <i>d</i> ₆	S13
Figure S14	NOESY spectrum (His1-NH τ and NH π) of 1 in DMSO- d_6	S13
Figure S15	In vivo coexpression of His ₆ -HtkA H1F+ HtkB	S14
Figure S16	<i>In vivo</i> coexpression of His ₆ -HtkA H1W+ HtkB	S14
Figure S17	¹ H NMR spectrum of S1a in DMSO- <i>d</i> ₆ with 0.15% TFA- <i>d</i>	S15
Figure S18	HSQC spectrum of S1a in DMSO- <i>d</i> ₆ with 0.3% TFA- <i>d</i>	S15
Figure S19	HMBC spectrum of S1a in DMSO- <i>d</i> ₆ with 0.3% TFA- <i>d</i>	S16
Figure S20	COSY spectrum of S1a in DMSO- <i>d</i> ₆ with 0.3% TFA- <i>d</i>	S16
Figure S21	TOCSY spectrum of S1a in DMSO- <i>d</i> ₆ with 0.3% TFA- <i>d</i>	S17
Figure S22	NOESY spectrum of S1a in DMSO- <i>d</i> ₆ with 0.3% TFA- <i>d</i>	S17
Figure S23	NOESY spectrum (Phe1-H2 and H3) of S1a in DMSO- <i>d</i> ₆	S18
Figure S24	NOESY spectrum (Phe1-H5 and H6) of S1a in DMSO- d_6	S18
Figure S25	2D NMR correlations and structure of fragment S1a	S19
Figure S26	In vivo coexpression of His ₆ -HtkA H1F/K3R + HtkB	S19
Figure S27	Protein structure and sequence alignment of HtkB and HaaB	S20
Figure S28	Protein structure of enzyme-substrate complex	S20
Figure S29	<i>In vivo</i> coexpression of His ₆ -HtkA K3A + HtkB/HtkB D214H	S21
Figure S30	In vivo coexpression of His6-HtkA + HtkB/HtkB D214H	S21
Figure S31	<i>In vivo</i> coexpression of His ₆ -HaaAA3R + HaaB H204D	S22
Figure S32	<i>In vivo</i> coexpression of His ₆ -HaaA A3K + HaaB H204D	S23
Figure S33	<i>In vivo</i> coexpression of His ₆ -HaaA H1F, A3R + HaaB H204D	S24
Figure S34	<i>In vivo</i> coexpression of His ₆ -HaaA + HaaB H204D	S24
Figure S35	Functional study of HtkC	S25
Figure S36	SDS-PAGE of recombinant HtkA/B/C	S26
Table S1	Gene sequences used in this study.	S27-30
Table S2	Primers used in this study.	S31
Table S3	Plasmids constructed in this study.	S31
Table S4	Strains used in this study.	S32
Table S5	Precursor peptides used in this study.	S33
Table S6	NMR spectroscopic data (400 MHz, D ₂ O) of 1 .	S34-36
Table S7	NMR spectroscopic data (400 MHz, DMSO- <i>d</i> ₆ , 0.15% TFA- <i>d</i>)	S36-38
	of 1 .	
Table S8	Advanced Marfey's analysis of product 1 .	S39
Table S9	NMR spectroscopic data (400 MHz, DMSO- <i>d</i> ₆ , 0.3% TFA- <i>d</i>) of	S40-42
	S1a.	
References		S43

EXPERIMENTAL SECTION

General. Chemicals and reagents were purchased from either Merck or Bio Basic unless otherwise specified. Synthetic genes inserted into expression vectors were obtained from Twist Bioscience. Gene sequences used in this study are listed in Table S1. Trypsin protease was purchased from Merck. Antibiotics (kanamycin and spectinomycin) were purchased from GoldBio. Escherichia coli NiCo21(DE3) and DH5 α strains purchased from NEB were used for protein expression and plasmid preparation, respectively. Electroporation was carried out using a Bio-Rad MicroPulser. E. coli cells were lysed using a Fisherbrand Model 505 Sonic Dismembrator fitted with an FB4208 ³/₄" probe or FB4220 1/2" probe equipped with either an FB4420 1/4" Microtip or FB4418 1/8" Microtip. LC-MS experiments were performed on a Waters Acquity UPLC System coupled to Xevo G1 QToF Mass Spectrometer. Preparative HPLC was carried out on a Shimadzu Nexera Prep System. Sample solutions were concentrated using a centrifugal evaporator (Genevac EZ-2 Elite) or freeze dryer (LaboGene ScanVac CoolSafe). NMR spectra were acquired at 298K using a Bruker 400 MHz Avance Neo Nanobay with Bruker iProbe 5 mm SmartProbe. NMR solvents were purchased from Cambridge Isotope Labs. 1D/2D NMR data were processed and analyzed with Bruker Topspin software. Chemical shift values were referenced using the signals of residual sodium trimethylsilylpropanesulfonate (δ_{H} 0.00 ppm; δ_{C} 0.00 ppm) when using D₂O as NMR solvent and DMSO- d_6 (δ_{H} 2.50 ppm; δ_{C} 39.50 ppm).

Bioinformatic analysis to search for triceptide precursors. Our previous bioinformatic mapping of the sequence-function space for the 3-residue cyclophane forming enzymes (3-CyFEs) has constructed a sequence similarity network (SSN, Figure 1) and has identified a total of 34 putative precursor sequences associated with C09 (Figure 2).¹ The SSN for triceptide precursors (extracted from C09) using RODEO² were constructed using Enzyme Function Initiative–Enzyme Similarity Tool (EFI-EST)³ and visualized in Cytoscape 3.5.1.

Transformation of plasmids into *E. coli* NiCo21 (DE3). Plasmids containing precursor and rSAM enzyme genes were obtained from Twist Bioscience or Gene Universal and dissolved in MilliQ grade water to a final concentration of 5-10 ng/µL. 70 µL of *E. coli* NiCo21(DE3) electrocompetent cells were transformed in a 2 mm electroporation cuvette with either 1 µL of plasmid DNA containing the precursor gene for the precursor-only expression or 1 µL of plasmid DNA containing the precursor gene + 1 µL of plasmid DNA containing the rSAM enzyme gene for the coexpression of the precursor and the rSAM enzyme. The transformed cells were then grown overnight at 37 °C on lysogeny broth (LB) agar supplemented with appropriate antibiotics at a final concentration of 50 µg/mL.

Protein expression and purification of NHis₆-precursor. A colony from the transformation above was picked up by a toothpick and added to 10 mL Terrific Broth (TB) medium supplemented with appropriate antibiotics in a 50 mL falcon tube. The 10 mL culture was grown overnight at 37 °C and shaken at 250 rpm. The overnight culture was used to inoculate either 250 mL of antibioticsupplemented TB media in a 500 mL Ultra Yield[™] flask or 1 L of antibiotic-supplemented TB medium in a 2.5 L Ultra Yield[™] flask in a 1:100 (v:v) ratio. The cells were then grown at 37 °C, 250 rpm until OD_{600 nm} reached 1.6-3.0. The culture was then placed on ice water for 30 min and protein expression was induced by addition of IPTG at a 0.8-1 mM final concentration for precursor only and precursor + rSAM coexpression. After induction, the culture was shaken at 16 °C, 250 rpm for 16 h. The cells were collected by centrifugation at 4000 rpm for 15 min. For precursor only and precursor and rSAM coexpression, either denaturing lysis buffer (100 mM NaH₂PO₄, 10 mM Tris, 6.5 M guanidine hydrochloride or 9 M Urea, 10 mM imidazole, pH 8) or NPI-10 buffer (50 mM NaH₂PO₄, 300 mM NaCl, 10 mM imidazole) was added to cell pellets in a ratio of 3:1 (v:w). The cell pellets were reconstituted and lysed by sonication with a 3/4" inch solid probe (10 sec on and 10 sec off for 30 cycles at 25% amplitude). After sonication, the cell debris was removed by centrifugation at 15,000 rpm for 15 min. HisPur Ni-NTA resin (0.7 mL) was added to ~15-20 mL of supernatant in a 50 mL falcon tube and gently shaken for 1 h to allow binding of the precursor peptide to the Ni-NTA resin. Peptide-bound Ni-NTA resin was then washed with denaturing lysis buffer (2 x 1 mL for 0.7 mL resin if this buffer was used to resuspend the cell pellet), NPI-20 (50 mM NaH₂PO₄, 300 mM NaCl, 20 mM imidazole, pH 8, 5 x 1 mL for 0.7 mL resin) and eluted with NPI-250 (50 mM NaH₂PO₄, 300 mM NaCl, 250 mM imidazole, pH 8, 2.5 mL for 0.7 mL resin). Elution fractions were desalted into 50 mM Tris buffer (pH 8.0) using PD Minitrap G-10 columns, and then digested with 1 mg/mL trypsin (1:100, trypsin/eluant v:v) at 37 °C for 16 h.

Mobile phases used for LC-MS methods. A: MeCN + 0.1% formic acid (FA); B: MeCN:Isopropanol (1:1, v:v) + 0.5% FA; C: H₂O + 0.1% FA; D: H₂O + 0.5% FA, E: MeCN:Isopropanol (1:1 v:v) + 0.1% FA.

LC-MS conditions. Data acquisition was performed using MassLynx 4.1 (Waters) at the following conditions.

Figures 3, 4, S14-S15, S25-S32 and S35. LC: column = Phenomenex Kinetex XB-C18, 5 μ m, 150 x 4.6 mm; mobile phase/gradient = solvent A: H₂O (0.1% formic acid, FA), solvent B: CH₃CN (0.1% FA), isocratic 4% B for 2 min, followed by a linear gradient to 60% B over 10 min; flow rate = 0.5 mL/min; column temp. = 50 °C.

Figure S33. LC: column = Phenomenex Kinetex XB-C8, 5 μ m, 150 x 4.6 mm; mobile phase/gradient = solvent A: H₂O (0.1% FA), solvent B: mixture of CH₃CN:IPA (1:1 v:v and 0.1% FA), isocratic 4% B for 2 min, followed by a linear gradient to 60% B over 10 min; flow rate = 0.5 mL/min; column temp. = 50 °C.

MS: polarity = positive; capillary voltage = +0.6 kV; cone voltage = 30.0 V; source temperature = 120 °C; desolvation temperature = 600 °C; cone gas flow = 30 L/h; desolvation gas flow = 800 L/h; collision energy = 4 V; mass range = m/z 250–2000; scan duration = 0.5 s; interscan delay = 0.025 s; data acquisition = continuum mode; Lockspray (Leucine enkephalin); scan duration = 1.0 s; interval = 10 scans.

MS/MS: polarity = positive; scan duration = 1.0 s; inter-scan delay = 0.025 s; data acquisition = continuum mode; mass range and collision energy are specified in the respective figure legends.

Purification of products 1 and S1a. The concentrated trypsin digests were dissolved in deionized water and subjected to preparative reversed phase HPLC using a Phenomenex Kinetex XB-C18 column (5 μ m, 100 x 30 mm). Fractions containing the product of interest were combined and concentrated using a centrifugal evaporator followed by lyophilization.

Product **1**. The purification was carried out using a gradient condition: mobile phase = 10-23% CH₃CN (0.1% FA) in H₂O (0.1% FA) at 0-20 min, flow rate = 15 mL/min, λ = 220 nm. Product **1** with a yield of 0.45 mg/L.

Product **S1a**. The purification was carried out using an isocratic condition: mobile phase = 16% CH₃CN (0.1% FA) in H₂O (0.1% FA) at 0-20 min, flow rate = 15 mL/min, λ = 220 nm. Product **2a** with a yield of 0.34 mg/L.

The trypsin digest prepared from 8 L of culture was subjected to preparative reversed phase HPLC to give ~3 mg of the product **S1a**. The FTK macrocycle of **S1a** was determined by 2D NMR which is also assigned in a similar manner as HTK motif (Figure S25 and Table S9). COSY/TOCSY correlation at the doublet signals of Phe1-H2 (δ_{H} 6.79, d, ${}^{3}J_{HH}$ = 7.0 Hz) to Phe1-H3 (δ_{H} 6.98) and Phe1-H5 (δ_{H} 7.06, d, ${}^{3}J_{HH}$ = 7.0 Hz) to Phe1-H6 (δ_{H} 7.19) supported a para-substituted Phe and existence of planar chirality. This was further confirmed by NOESY correlations (Figures S23-S24).

For NMR analysis, the dried materials of products **1** and **S1a** were dissolved in DMSO- d_6 , moreover product **1** also measured in D₂O.

Advanced Marfey's analysis. 100 μ g of **1** was hydrolyzed in 6 M HCl (1 mL) at 110 °C for 18 h. The hydrolysate was concentrated using a centrifugal evaporator and reconstituted in water (100 μ L), followed by addition of 1 M NaHCO₃ (40 μ L) and 1% w/v L-FDVA in acetone (200 μ L). The mixture was incubated at 42°C for 1 h and quenched with 2 M HCl (20 μ L). Both L-amino acids and L-*allo*-Thr standards were derivatized in the same manner using L- and D-FDVA. The reaction mixtures were diluted with CH₃CN/H₂O (1:1 v/v) and analyzed by LC-MS using negative ion mode. Retention times of the derivatized samples and standards are summarized in Table S8 with detailed LC conditions.

Figure S1. Characterized cyclophane synthases and structures of modified products.

Figure S4. HMBC spectrum (400 MHz) of 1 in D₂O

Figure S9. HMBC spectrum (400 MHz) of 1 in DMSO-*d*₆ with 0.15% TFA-*d*

S11

Figure S12. NOESY spectrum (400 MHz) of 1 in DMSO-d₆ with 0.15% TFA-d

Figure S13. NOESY spectrum (His1-H5) of 1 in DMSO-d₆ with 0.15% TFA-d

Figure S14. NOESY spectrum (His1-NH τ and NH π) of **1** in DMSO-*d*₆ with 0.15% TFA-*d*

His₆-HtkAH1F: MTASELFFPVGSLDLSEAQSAEIKSAFGHEMAAVPLYRVVPVSSSDRYVALEGVPGLPGILVH YRDEDPAQGGKIIASVRAEMARGPDDSAVFAA**FK**LMAPRAESESAKSGPPAAGKRK

Figure S15. *In vivo* coexpression of His_6 -HtkA H1F + HtkB followed by Ni-affinity purification and trypsin digestion yielded fragment **S1a**/b. The EIC, MS and MS/MS spectra of **S1a**/b.

His₆-HtkA H1W: MTASELFFPVGSLDLSEAQSAEIKSAFGHEMAAVPLYRVVPVSSSDRYVALEGVPGLPGILVH YRDEDPAQGGKIIASVRAEMARGPDDSAVFAA**WTK**LMAPRAESESAKSGPPAAGKRK

Figure S16. *In vivo* coexpression of His₆-HtkA H1W+ HtkB followed by Ni-affinity purification and trypsin digestion yielded fragment **S2**. The EIC, MS and MS/MS spectra of **S2**.

S15

Figure S20. COSY spectrum (400 MHz) of S1a in DMSO-d₆ with 0.3% TFA-d

Figure S22. NOESY spectrum (400 MHz) of S1a in DMSO-d₆ with 0.3% TFA-d

Figure S23. NOESY spectrum (Phe1-H2 and H3) of S1a in DMSO-d₆ with 0.3% TFA-d

Figure S24. NOESY spectrum (Phe1-H5 and H6) of S1a in DMSO-d₆ with 0.3% TFA-d

Figure S25. (A) 2D NMR correlations of the FTK macrocycle in fragment S1a. (B) Structure of fragment S1a.

His₆-HtkA: MTASELFFPVGSLDLSEAQSAEIKSAFGHEMAAVPLYRVVPVSSSDRYVALEGVPGLPGILVH YRDEDPAQGGKIIASVRAEMARGPDDSAVFAA**FTR**LMAPRAESESAKSGPPAAGKRK

Figure S26. *In vivo* coexpression of His_6 -HtkA H1F/K3R + HtkB followed by Ni-affinity purification and trypsin digestion yielded fragment **S3**. The EIC, MS and MS/MS spectra of **S3**.

Figure S27. Protein structure and sequence alignment of HtkB and HaaB. (A) HTK and HAA motifs catalyzed by HtkB and HaaB, respectively. (B) Predicted protein structure of HtkB and HaaB by ColabFold⁵ showed D214 in HtkB and H204 in HaaB are sticking inward to the CX₃CX₂C motif. (C) AlphaFold2 confidence measure of PAE for modeling of HtkB and HaaB. (D) Primary sequences alignment identified D214 in HtkB is aligned to H204 in HaaB.

Figure S28. Protein structure of enzyme-substrate complex. (A) Predicted protein complex structures of HtkA-HtkB and HaaA-HaaB by ColabFold⁵ showed Asp214 in HtkB and His204 in HaaB are sticking towards to the X3 position of substrates. Structure for anSMEcpe (PDB: 4K39). (B) AlphaFold2 confidence measure of PAE for modeling the complexes of HtkA-HtkB and HaaA-HaaB. (D) Primary sequences alignment identified D214 in HtkB and H204 in HaaB is aligned to D196 in anSMEcpe.

His₆-HtkA K3A: MTASELFFPVGSLDLSEAQSAEIKSAFGHEMAAVPLYRVVPVSSSDRYVALEGVPGLPGILVH YRDEDPAQGGKIIASVRAEMARGPDDSAVFAA**HTA**LMAPRAESESAKSGPPAAGKRK

Figure S29. *In vivo* coexpression of His_6 -HtkA K3A + HtkB D214H followed by Ni-affinity purification and trypsin digestion yielded fragment **2**. The EIC, MS and MS/MS spectra of **2**.

$\label{eq:his_bar} His_b-HtkA: MTASELFFPVGSLDLSEAQSAEIKSAFGHEMAAVPLYRVVPVSSSDRYVALEGVPGLPGILVH YRDEDPAQGGKIIASVRAEMARGPDDSAVFAAHTKLMAPRAESESAKSGPPAAGKRK$

Figure S30. *In vivo* coexpression of His₆-HtkA + HtkB D214H followed by Ni-affinity purification and trypsin digestion yielded fragment **1**. The UV 220 nm chromatogram and MS spectra of **1**.

Figure S31. *In vivo* coexpression of His₆-HaaAA3R + HaaB H204D followed by Ni-affinity purification and trypsin digestion yielded fragment **3**. The EIC, MS and MS/MS spectra of **3**.

His₆-HaaA A3K: MPSRTSVPAPHDEATTGHEPAQGNLVLERVAARVRQRKAAEQAATSRVGDGA**HAK**SLIWPWPL

Figure S32. *In vivo* coexpression of His_6 -HaaAA3K + HaaB H204D followed by Ni-affinity purification and trypsin digestion yielded fragment **S4**. The UV 220 nm chromatogram, MS and MS/MS spectra of **S4**.

His₆-HaaA H1F/A3R:

MPSRTSVPAPHDEATTGHEPAQGNLVLERVAARVRQRKAAEQAATSRVGDGAFARSLIWPWPL

Figure S33. *In vivo* coexpression of His_6 -HaaA H1F/A3R + HaaB H204D followed by Ni-affinity purification and trypsin digestion yielded fragment **S5**. The EIC, MS and MS/MS spectra of **S5**.

His₆-HaaA: MPSRTSVPAPHDEATTGHEPAQGNLVLERVAARVRQRKAAEQAATSRVGDGA**HAA**SLIWPWPL

Figure S34. *In vivo* coexpression of His₆-HaaA + HaaB H204D followed by Ni-affinity purification and trypsin digestion yielded fragment **S6**. The UV 220 nm chromatogram and MS spectrum of **S6**.

A His₆-HtkA : ...MARGPDDSAVFAA**HTK**LMAPRAESESAKSGPPAAGKRK

Figure S35. Functional study of HtkC. (A) *In vivo* coexpression of His₆-HtkA + HtkB and His₆-HtkA + HtkBC followed by Ni-affinity purification and trypsin digestion yielded fragment **1**. The MS spectra and EIC of **1**. (B) *In vivo* coexpression of His₆-HtkA, His₆-HtkA + HtkB and His₆-HtkA + HtkBC followed by Ni-affinity purification yielded full-length precursor peptides. TIC of full-length precursor peptides. (C) MS spectra of full-length precursor peptides.

Figure S36. SDS-PAGE of recombinant HtkA/B/C. M: molecular weight marker. 1: *in vivo* coexpression of His_6 -HtkA + HtkB in *E. coli* NiCo21 (DE3) and HtkB is pulled down with His_6 -HtkA via Ni-affinity purification. 2: *in vivo* coexpression of His_6 -HtkA + HtkB + HtkC in *E. coli* NiCo21 (DE3) and both HtkB/C are pulled down with His_6 -HtkA via Ni-affinity purification. 3: supernatant from 2. 4: precipitate from 2. Theoretical molecular weight of recombinant His_6 -HtkA, HtkB and HtkC are 14.7, 43.3 and 21.4 kDa, respectively.

Table S1.	Gene sequences	used	in	this	studv.
	Cono coquenece	aooa		uno	oraay.

Gene	Vector (Restriction Sites)	Insert Sequence ^a
HtkA ^b WP_13002618 0	pET28a(+) (Ndel_Xhol)	ACAGCATCAGAGTTATTCTTCCCTGTTGGGTCTCTGGATTT ATCAGAAGCACAGTCCGCGGAAATTAAGAGTGCATTTGGC CACGAAATGGCAGCGGTCCCTCTGTACCGTGTTGTACCAG TCAGTAGTTCCGATAGATATGTCGCATTAGAAGGTGTTCCA GGCCTGCCAGGGATCTTAGTACATTATCGAGATGAGGACC CAGCGCAGGGCGGTAAAATTATAGCCTCAGTGCGAGCTGA GATGGCTCGAGGGCCTGATGATAGTGCAGTGTTTGCTGCG CATACAAAATTGATGGCGCCCCGTGCGGAATCGGAAAGCG CAAAGTCCGGTCCACCCGCAGCTGGGAAACGTAAATA
HtkB ^b WP_13002617 9	pCDFDuet-1 (Ndel_Xhol) pET28a(+) (Ndel_Xhol)	CTTTCCTCTCCTGGTGCCACAGCCCACGGTAATGCCAATG CCCATGGTGACCTTCTGGTTATGGTAAAAGTTGCAGAAAG ATGTAACATAGATTGCTCGTACTGTTATATGTACCATGGGGT AGACCAAGGATGGAGAGAAAGAACCAAAACGCTTGCATGC CTCTCATCTGGACGCTTTGGTTACACGTCTTGTAGAGCAC CGGAGCGCATACCCAACCGCAAGAATGACTCTTGAAGTCC ATGGCGGCGAACCCTTATTACTGGGAAAGAGCCATACAGA ACGATTCTTTAGTAATTTACGCCGCAGATGCCCGCATCAG ATTTGGCTATAATAACACAATCGAATGGTGTATTAATTGATGA CGATTGGCTCGACATATATGCTCGCTATGATGCTTCATTAG GAATTAGTTGTGACGGTCCGCCAGATATGCACGATCGCCA CCGTTACGATTTTGCACGGAAGGGAACCGGAGAACGGGT TGAACAGGCTATATTACGGTGCCTGGCACACCGTGCGAGC CAACGTGTATTTAACGGAGTACTTGCTGTTATTGACCCAAA CCACGATCCCGTCCGTATGCTTGGCACACCGTGCGAGC CAACGTGTATTTACGGAGTACTTGCTGTTATTGACCCAAA CCACGATCCCGTCCGTATGCTTGGCTGTATTCACCCAAA CCACGATCCCGTCCGTATGCTTGGCACACCGTGCGAGC GTTTAACCGCTATAGATTTCTTCTGCCAGACGCAAACTTT GCTGCTCCCCCGCGGCATATACAAGCGTATACCCATGCGC GTTTACTTTCATTTCTTTGGCCGCGCTTGGCACACGTGGCC GCTATTGATGACCCTGGCTTTGGCTCGTATATTTGAGAC CTTTACTTCATTCTTGGCCCGCACGTAGCGAGCTGGAC GCATTCGGCGGCGCCTTGGCACCAATGTTGTAGTTGAGAC CTTTACGCGGGCGCCTTGGCACCAATTGTTGTAGTTGAAA GTGACGGTTCCTACCGTCTTTAGGCTTGACGATTGGAGC GCATTCGGCGGCGCCTTGGCACCAATTGTTGTAGTTGAAA GTGACGGTTCCTACCGTCTTTAGCTATATTGAGAA GTGACGGTTCCTACCGTCTTTGACCTTTAACCTCACAT CCTCTCCAGGCGGCTATCGACTTTGCCCGGACACGATATC CGGAACCGCATGCAACCTGTTTGCACTTGCACTATCGC CCGCTTGTGGAGGAGGCTATGTTGCACATCGCTTGGAGCGTCG CCGCTTGTGGAGGAGGCTATGTTCGCACGCTTGGCACCGATTC GCGTTCTACCGTCATGGCCACCAATGCCAAGGTTCG CCGCTTGTGGAGGAGGCTATGTTCACGCCAGCTTGGC CCGCTTGTGAAGCGTGCACCATTGTTCAACGCAAGGTTCG CCGCTTGTGAAGCGTACCTTCCACGTTTGCACTGCCATGCCTTGCT TGGGTTCTACCGTCATGTGCCACGACGTGTTCAAGGAGTC ACCCCACCAATTAGCCTTACAGCCAATGCCAAGGTTAA
HtkC ^b WP_13002618 1.1	pACYCDuet- 1 (Ncol(- G)/EcoRI)	CACGACAGTATAATTGTGACCGACGATTTCTACCGTGATCC TGCCGACGTGCGCGACTTCGCACTGAGACAGACCTTTGC CGTGAAAGGCAATTATCCAGGGGCCCGGACGGAGGCATT TGTCCATGACGGCGTCACTTCTGCCATCCAGGATATTGTCA AATCTCCGATAACCTACTGGCCTGTGGACACCTACAATGGT GCATTTCAGTATTCGGTTCAGCGTGACATAACTTGGGTCCA TGCAGACCATACGACGGTTTGGTCCGGTGTTGTTTACTTAA CACCGGATGCGCCCCCGACGGCCGGTACTGCTTTTTCC AACATATTGAAACAGGATTTGATCTCTACCCAGATGATGATG ATCAGCGCCAACGTTGTGACGCTGATGCAGCGGCGTGGG AGCGTTGGGAGATGACGGATCGCATCGC

		TCGTCTTATCCTGTTCCGTGGTCGTCGTCGTTTTCACGCTAGTC AGGGTCATTTTGGTGATTGCAAGGAGAACGGGCGTTTGTT TCAGACGTTCTTTTTAATACTCAGTATTAA
HtkA K3A	pET28a(+) (Ndel_Xhol)	ACAGCATCAGAGTTATTCTTCCCTGTTGGGTCTCTGGATTT ATCAGAAGCACAGTCCGCGGAAATTAAGAGTGCATTTGGC CACGAAATGGCAGCGGTCCCTCTGTACCGTGTTGTACCAG TCAGTAGTTCCGATAGATATGTCGCATTAGAAGGTGTTCCA GGCCTGCCAGGGATCTTAGTACATTATCGAGATGAGGACC CAGCGCAGGGCGGTAAAATTATAGCCTCAGTGCGAGGTGA GATGGCTCGAGGGCCTGATGATAGTGCAGTGTTTGCTGCG ttcACAAAATTGATGGCGCCCCGTGCGGAATCGGAAAGCGC AAAGTCCGGTCCACCCGCAGCTGGGAAACGTAAATAA
HtkA H1F	pET28a(+) (Ndel_Xhol)	ACAGCATCAGAGTTATTCTTCCCTGTTGGGTCTCTGGATTT ATCAGAAGCACAGTCCGCGGAAATTAAGAGTGCATTTGGC CACGAAATGGCAGCGGTCCCTCTGTACCGTGTTGTACCAG TCAGTAGTTCCGATAGATATGTCGCATTAGAAGGTGTTCCA GGCCTGCCAGGGATCTTAGTACATTATCGAGATGAGGACC CAGCGCAGGGCGGTAAAATTATAGCCTCAGTGCGAGCTGA GATGGCTCGAGGGCCTGATGATAGTGCAGTGTTTGCTGCG tggACAAAATTGATGGCGCCCCGTGCGGAATCGGAAAGCG CAAAGTCCGGTCCACCCGCAGCTGGGAAACGTAAATAA
HtkA H1W	pET28a(+) (Ndel_Xhol)	ACAGCATCAGAGTTATTCTTCCCTGTTGGGTCTCTGGATTT ATCAGAAGCACAGTCCGCGGAAATTAAGAGTGCATTTGGC CACGAAATGGCAGCGGTCCCTCTGTACCGTGTTGTACCAG TCAGTAGTTCCGATAGATATGTCGCATTAGAAGGTGTTCCA GGCCTGCCAGGGATCTTAGTACATTATCGAGATGAGGACC CAGCGCAGGGCGGTAAAATTATAGCCTCAGTGCGAGGTGA GATGGCTCGAGGGCCTGATGATAGTGCAGTGTTTGCTGCG CATACAgctTTGATGGCGCCCCGTGCGGAATCGGAAAGCGC AAAGTCCGGTCCACCCGCAGCTGGGAAACGTAAATAA
HtkB D214H	pCDFDuet-1 (Ndel_Xhol)	CTTTCCTCTCCTGGTGCCACAGCCCACGGTAATGCCAATG CCCATGGTGACCTTCTGGTTATGGTAAAAGTTGCAGAAAG ATGTAACATAGATTGCTCGTACTGTTATATGTACCATGGGGT AGACCAAGGATGGAGAGAAAGACCAAAACGCTTGCATGC CTCTCATCTGGACGCTTTGGTTACACGTCTTGTAGAGCAC CGGAGCGCATACCCAACCGCAAGAATGACTCTTGAAGTCC ATGGCGGCGAACCCTTATTACTGGGAAAGAGCCATACAGA ACGATTCTTTAGTAATTTACGCCGCAGATTGCCCGCATCAG ATTTGGCTATAATAACACAATCGAATGGTGTATTAATTGATGA CGATTGGCTCGACATATATGCTCGCTATGATGCTTCATTAG GAATTAGTTGTGACGGTCCGCCAGATATGCACGATCGCCA CCGTTACGATTTTGCACGGAAGGGAACCGGAGAACGGGT TGAACAGGCTATATTACGGTGCCTGGCACACCGTGCGAGC CAACGTGTATTTAACGGAGTACTTGCTGTTATTGACCCAAA CCACGATCCCGTCCGTATGATGCTTCATTG GTTTAACCGCTATAGATTTTCTTCTGCCACatGCAACCTTG GTTTAACCGCTATAGATTTTCTTCTGCCACCATGCCGCG TTTACTTTCATTTCTTTGCCGCGGCTTTGACGCTTGGCTGG CTATTGATGACCCTGGCTTTGGCTTGACGTTGGCTGG CTATTGATGACCCTGGCTTTGGCTTGACGTTGGCTGG CTATTGACGCGGCCTTGGCCGCGCTTGGCAGCC TTTACTTCCTTCTGCCCGCGCTTGGCAGCCGGC CTATTGATGACCCTGGCTTTGGCTTGACGCTTGGCTGG CTATTGAGGGAGTTCTGGCCTGGC

HaaA ^b WP_13393132 7.1	pET28a(+) (Ndel_Xhol)	AAGAAGGGGCCACACATACAGGTTTTAATTTAACCTCACAT CCTCTCCAGGCGTGTTCTGACTTTGCCCGGACACGATATC CGGAACCGCATGCAACCTGTTTGCAGTGTGAAGCGTTCG CCGCTTGTGGAGGAGGCTATGTTGCACATCGCTTTGATGG ACGTTCGTATGATAATCCTTCATTCTACTGCCATGCTTTGCT TGGGTTCTACCGTCATGTGCGTGCACGTGTTCAAGGAGTC ACCCCACCAATTAGCCTTACAGCCAATGCCAAAGGTTAA CCGTCTCGTACCTCTGTTCCGGCGCCGCACGACGAAGCG ACCACCGGTCACGAACCGGCGCGCGCGCGCACGACGAAGCG GAACGTGTTGCGGCGCGCGTGTTCGTCAGCGTAAAGCGGCG GAACAGGCGGCGACCTCTCGTGTTGGTGACGGTGCGCAC GCGGCGTCTCTGATCTGGCCGTGGCCGCTGTAATGAAATT ACTTAGAAATGTAGCTAGATTTTACCCACGCACCACACATTA TCCACGTTTGGTTTTTACAACCCGATGATCTTCAAAACATTA TAAGATTCTCAACTTGCTTT
HaaB ^b WP_13393132 6.1	pCDFDuet-1 (Ndel_Xhol)	ACGCTTCTGGAAGAGATTGCGCCGTTTCGTACTTTATTCT TAAAGTGGCGAATCGTTGTAATATTGATTGCGATTACTGTTT CGTGTTTAATTCTAAAGATCAAACCGCACGTCGTCTTCCGG CGCGCATGAGTCTGGATGTGGCACGCGCAGCGGCACGCC GCATTGGTGTCATGGATGTGACGGCACATGGGTTACCAGCGGT TCATGTGGTCTTGCACGGCGGCGAGCCGTTACTGGCGGG ATTACGTCACATGGCTAATTTACTGGATACGATCCGTGATC GTATTCCCGATGATGCAGAGACTGCGTTTGAGTTGCAAACA AATGCGACACTGCTGAGCGAGGCCTGGTTGGATTTATTTG AACGCTATGAAGTTGCGGTTGGTGTATCCATTGATGGGCC CCCAGCTGCCAACGATTTACATCGTTTGACCCATGCGGGT CGCAGTTCTGCAGCAAGCACAGTTCGTGGTATTGAGTTGC TTCGTAGCCGTCCGCATTGTTGCTGGCTTACTGGCTGTA GTAGATCTTGCAAATGATCCTGTAGAAGTACATGATTATTTG GCGAGCTTTGCAGCAAGCACACTCGTCGTGATTGAGTTGC TTCGTAGCCGTCCGCATGATCACCACACACTGCTGAGTCCCGC ATGGTACGCACGATGATCCACCACACTCGTCATGATCCCGG GGTTCCGGAATATGGGAAGTGGATGTCTCGTGTTTATGATG CGTGGCTGGCTCGCCGCATTGGCTTACACACTCGTCGTAT GTAGAAGATATTGTTGCCCGTCCGCCCACCTCAGTT GTAAATGAAAGCATGGTACGATGAAGTACATGATCCCGG AGCGTCGAAACCTTGGGCCTCGCCCACCTCAGTT GTAATTGAAAGCGATGGTACGATGAAGGTGCCGATACATT GTTAGAAGATATTGTTGCCCGTCCGGCCACCTCCACACT AATTGAACGCATCGTTGGAGGAGCTGGCTTGGCT
HaaA A3R	pET28a(+) (Ndel_Xhol)	CCGTCTCGTACCTCTGTTCCGGCGCCGCACGACGAAGCG ACCACCGGTCACGAACCGGCGCAGGGTAACCTGGTTCTG GAACGTGTTGCGGCGCGTGTTCGTCAGCGTAAAGCGGCG GAACAGGCGGCGACCTCTCGTGTTGGTGACGGTGCGGCA GCGcgtTCTCTGATCTGGCCGTGGCCGCTGTAATGAAATTA CTTAGAAATGTAGCTAGATTTTTACCCACGCACCTAATTAGT CCACGTTTGGTTTTTAGAACCCGATGATCTTCAAAACATTAT AAGATTCTCAACTTGCTTT
HaaA	pET28a(+)	CCGTCTCGTACCTCTGTTCCGGCGCCGCACGACGAAGCG

H1F/A3R	(Ndel_Xhol)	ACCACCGGTCACGAACCGGCGCAGGGTAACCTGGTTCTG GAACGTGTTGCGGCGCGTGTTCGTCAGCGTAAAGCGGCG GAACAGGCGGCGACCTCTCGTGTTGGTGACGGTGCGttcG CGcgtTCTCTGATCTGGCCGTGGCCGCTGTAATGAAATTACT TAGAAATGTAGCTAGATTTTTACCCACGCACCTAATTAGTCC ACGTTTGGTTTTTAGAACCCGATGATCTTCAAAACATTATAA GATTCTCAACTTGCTTT
HaaA A3K	pET28a(+) (Ndel_Xhol)	CCGTCTCGTACCTCTGTTCCGGCGCCGCACGACGAAGCG ACCACCGGTCACGAACCGGCGCAGGGTAACCTGGTTCTG GAACGTGTTGCGGCGCGTGTTCGTCAGCGTAAAGCGGCG GAACAGGCGGCGACCTCTCGTGTTGGTGACGGTGCGCAC GCGaaaTCTCTGATCTGGCCGTGGCCGCTGTAATGAAATTA CTTAGAAATGTAGCTAGATTTTTACCCACGCACCTAATTAGT CCACGTTTGGTTTTTAGAACCCGATGATCTTCAAAACATTAT AAGATTCTCAACTTGCTTT
HaaB H204D	pCDFDuet-1 (Ndel_Xhol)	ACGCTTCTGGAAGAGATTGCGCCGTTTCGTACTTTATTCT TAAAGTGGCGAATCGTTGTAATATTGATTGCGATTACTGTTT CGTGTTTAATTCTAAAGATCAAACCGCACGTCGTCTTCCGG CGCGCATGAGTCTGGATGTGGCACGCGCACGCCGCACGCCGCATTGGTGATCATGTTACGGCACGGCGCGAGCCGTACTGGCGGGG ATTACGTCACATGGCTAATTTACTGGATACGATCCGTGATC GTATTCCCGATGATGCAGAACTGCGTTTGAGTTGCAAACA AATGCGACACTGCTGAGCGAGGCCTGGTTGGATTTATTTG AACGCTATGAAGTTGCGGTTGGTGTATCCATTGATGGGCC CCCAGCTGCCAACGATTTACATCGTTTGACCCATGCGGGT CGCAGTTCTGCAGCAAGCACAGTTCGTGGTATTGAGTTGC TTCGTAGCCGTCCGCATTTGTTTGCTGGCTTACTGGCGTG GTAGATCTTGCAACAGACCCCTCTGATGAGTACCATGAGTGC TTCGTAGCCGTCCGCATTTGTTGCTGGCTTACTGGCTGTA GTAGATCTTGCAAATGATCCTGTAGAAGTACATGATTATTTG GCGAGCTTTGAACCCCCTCTGATTGATTTGGTCTCCCGGa tGGTACGCACGATGATCCACCACATCGTCATGATCCCGGG GTTCCGGAATATGGGAAGTGGATGTCTCGTGTTTATGATGC GTGGCTGGCTCGTCCGGGAATATCAACATTCTGTCCGTGTT TAGAAGATATTGTGCCCTGTCTAGCGGGGGTTCGCGGGAG CGTCGAAACCTTGGGCCTCGCTCGCCCCCCCCCC

^aRed color letters indicate engineered sequences. ^bCodons were optimized for heterologous expression in *E. coli*.

 Table S2. Primers used in this study.

Primer	Sequence ^a
HtkA K3A-F	ttcACAAAATTGATGGCGCC
HtkA K3A-R	CGCAGCAAACACTGCACTAT
HtkA H1F-F	tggACAAAATTGATGGCGCCC
HtkA H1F-R	CGCAGCAAACACTGCACTAT
HtkA H1W-F	gctTTGATGGCGCCCCGT
HtkA H1W-R	TGTATGCGCAGCAAACACTG
HtkB D214H-F	catGCAAACTTTGCGGCTCC
HtkB D214H-R	TGGCAGAAGAAAATCTATAGCGG
HaaA A3R-F	ttcGCGCGTTCTCTGATCTGG
HaaA A3R-R	CGCACCGTCACCAACAC
HaaA A3K-F	aaaTCTCTGATCTGGCCGTGGCC
HaaA A3K-R	CGCGTGCGCACCGTCAC
HaaA H1F-F	ttcGCGcgtTCTCTGATCTGGC
HaaA H1F-F	CGCACCGTCACCAACACG
HaaB H204D-F	gatGGTACGCACGATGATCC
HaaB H204D-R	CGGGAGACCAAAATCAATCA

^aSmall letters indicate engineered sequences.

 Table S3. Plasmids constructed in this study.

Plasmids	Description
HtkA K3A-pET28a(+)	Plasmid for expression of HtkA K3A
HtkA H1F-pET28a(+)	Plasmid for expression of HtkA H1F
HtkA H1W-pET28a(+)	Plasmid for expression of HtkA H1W
HtkB D214H-pCDFDuet-1	Plasmid for expression of HtkB D214H
HaaAA3R-pET28a(+)	Plasmid for expression of HaaA A3R
HaaAA3K-pET28a(+)	Plasmid for expression of HaaA A3K
HaaA H1F/A3R-pET28a(+)	Plasmid for expression of HaaA H1F/A3R
HaaB H204D-pCDFDuet-1	Plasmid for expression of HaaB H204D

 $\label{eq:table_stable_stable_trans} \textbf{Table S4}. Strains used in this study.$

Strains	Description
<i>E. coli</i> HtkA	<i>E. coli</i> NiCo (DE3) harboring HtkA-pET28a(+)
<i>E. coli</i> HtkA + HtkB	<i>E. coli</i> NiCo (DE3) harboring HtkA-pET28a(+) and HtkB-
	pCDFDuet-1
<i>E. coli</i> HtkA + HtkB + HtkC	<i>E. coli</i> NiCo (DE3) harboring HtkA-pET28a(+), HtkB-
	pCDFDuet-1 and HtkC-pACYCDuet-1.
<i>E. coli</i> HtkA + HtkB D214H	<i>E. coli</i> NiCo (DE3) harboring HtkA-pET28a(+) and HtkB
	D214H-pCDFDuet-1
<i>E. coli</i> HtkA H1F + HtkB	<i>E. coli</i> NiCo (DE3) harboring HtkA H1F-pET28a(+) and HtkB-
	pCDFDuet-1
<i>E. coli</i> HtkA H1W + HtkB	<i>E. coli</i> NiCo (DE3) harboring HtkA H1W-pET28a(+) and HtkB-
	pCDFDuet-1
<i>E. coli</i> HtkA K3A + HtkB	<i>E. coli</i> NiCo (DE3) harboring HtkA K3A-pET28a(+) and HtkB-
	pCDFDuet-1
<i>E. coli</i> HtkA K3A + HtkB	<i>E. coli</i> NiCo (DE3) harboring HtkA K3A-pET28a(+) and HtkB
D214H	D214H-pCDFDuet-1
<i>E. coli</i> HaaA A3R + HaaB	<i>E. coli</i> NiCo (DE3) harboring HaaA A3R-pET28a(+) and
	HaaB-pCDFDuet-1
<i>E. coli</i> HaaA A3K + HaaB	<i>E. coli</i> NiCo (DE3) harboring HaaA A3K-pET28a(+) and
	HaaB-pCDFDuet-1
<i>E. coli</i> HaaA H1F/A3R +	<i>E. coli</i> NiCo (DE3) harboring HaaA H1F/A3R-pET28a(+) and
HaaB	HaaB-pCDFDuet-1
<i>E. coli</i> HaaA A3R + HaaB	<i>E. coli</i> NiCo (DE3) harboring HaaAA3R-pET28a(+) and HaaB
H204D	H204D-pCDFDuet-1
<i>E. coli</i> HaaA A3K + HaaB	<i>E. coli</i> NiCo (DE3) harboring HaaA A3K-pET28a(+) and HaaB
H204D	H204D-pCDFDuet-1
<i>E. coli</i> HaaA H1F/A3R +	<i>E. coli</i> NiCo (DE3) harboring HaaA H1F/A3R-pET28a(+) and
HaaB H204D	HaaB H204D-pCDFDuet-1
<i>E. coli</i> HaaA + HaaB H204D	<i>E. coli</i> NiCo (DE3) harboring HaaA-pET28a(+) and HaaB
	H204D-pCDFDuet-1

Table S5. Precursor peptides used in this study.

Precursor Peptides	Amino Acids Sequence ^a
HtkA	MTASELFFPVGSLDLSEAQSAEIKSAFGHEMAAVPLYRVVPVSS
	SDRYVALEGVPGLPGILVHYRDEDPAQGGKIIASVRAEMARGPD
	DSAVFAAHTKLMAPRAESESAKSGPPAAGKRK
HtkA H1F	MTASELFFPVGSLDLSEAQSAEIKSAFGHEMAAVPLYRVVPVSS
	SDRYVALEGVPGLPGILVHYRDEDPAQGGKIIASVRAEMARGPD
	DSAVFAAFTKLMAPRAESESAKSGPPAAGKRK
HtkA H1W	MTASELFFPVGSLDLSEAQSAEIKSAFGHEMAAVPLYRVVPVSS
	SDRYVALEGVPGLPGILVHYRDEDPAQGGKIIASVRAEMARGPD
	DSAVFAAWTKLMAPRAESESAKSGPPAAGKRK
HtkA K3A	MTASELFFPVGSLDLSEAQSAEIKSAFGHEMAAVPLYRVVPVSS
	SDRYVALEGVPGLPGILVHYRDEDPAQGGKIIASVRAEMARGPD
	DSAVFAAHTALMAPRAESESAKSGPPAAGKRK
HaaA	MPSRTSVPAPHDEATTGHEPAQGNLVLERVAARVRQRKAAEQA
	ATSRVGDGAHAASLIWPWPL
HaaA A3R	MPSRTSVPAPHDEATTGHEPAQGNLVLERVAARVRQRKAAEQA
	ATSRVGDGAHA <mark>R</mark> SLIWPWPL
HaaA H1F/A3R	MPSRTSVPAPHDEATTGHEPAQGNLVLERVAARVRQRKAAEQA
	ATSRVGDGA <mark>F</mark> ARSLIWPWPL
HaaA A3K	MPSRTSVPAPHDEATTGHEPAQGNLVLERVAARVRQRKAAEQA
	ATSRVGDGAHA <mark>K</mark> SLIWPWPL

^aRed color residues indicate mutated residues.

Residue	Position	¹ H	¹³ C ^a
Gly(-10)	C=0		169.2
	α	4.01	43.4
Pro(-9)	C=O		176.2
	α	4.45	63.5
	β	2.31	32.1
		1.98	
	γ	2.04	27.3
	δ	3.81	50.5
		3.69	
Asp(-8)	C=0		178.9
	α	4.69	54.0
	β	2.75-2.83	39.7
Asp(-7)	C=O		176.0
	α	4.70	53.7
	β	2.75-2.83	39.7
Ser(-6)	C=O		174.6
	α	4.38	58.9
	β	3.90	63.6
Ala(-5)	C=O		177.8
	α	4.31	52.6
	β	1.36	19.1
			470.4
val(-4)	C=0	4.04	176.1
	α	4.01	62.5
	β	1.96	32.8
	γ-Me1	0.87	20.6
	γ-Me2	0.80	21.0
Phe(-3)	C=O		175.5
· ·	α	4.63	57.6
	β	3.15	39.6
		3.02	
	1		138.9
	2/6	7.27	131.9
	3/5	7.35	131.5
	4	7.30	129.9
Ala(-2)	C=O		175.3
	α	4.29	52.3
	β	1.39	19.0
Ala(-1)	C=O		176.3
	α	4.63	50.4
	β	1.34	19.0
			1

His(1) C=O 174.5 α 4.44 56.9 β 3.40 29.8 2 147.1 4 130.4 5 7.39 121.5 Thr(2) C=O 173.0 α 4.24 61.7 α 4.24 61.7 α 4.24 61.7 α 4.24 61.7 β 3.87 68.6 γ 1.07 21.0 Lys(3) C=O 171.5 α 4.76 57.3 β 3.50 43.4 γ 2.04 27.8 α 4.40 55.4 β 1.60 27.2 ε 2.99 41.5 α 4.40 55.4 β 1.60 27.1 ε 2.99 41.5 δ 1.60 27.1 δ 1.60				
α 4.44 56.9 β 3.40 29.8 2 147.1 4 130.4 5 7.39 Thr(2) C=O α 4.24 β 3.87 α 4.24 β 3.87 α 4.24 γ 1.07 α 4.76 β 3.50 α 4.76 β 3.50 α 4.76 γ 2.04 γ 2.04 γ 1.60 α 4.40 δ 1.60 ϵ 2.99 α 4.40 γ 1.60 α 4.40 γ 1.60 α 4.40 γ 1.60 α 4.40 γ 1.60 β 1.08	His(1)	C=O		174.5
β 3.40 29.8 2 147.1 4 130.4 5 7.39 121.5 Thr(2) C=O 173.0 α 4.24 61.7 β 3.87 68.6 γ 1.07 21.0 Lys(3) C=O 171.5 α 4.76 57.3 β 3.50 43.4 γ 2.04 27.8 1.79 1.79 δ 1.60 27.2 ε 2.99 41.5 Leu(4) C=O 176.2 α 4.40 55.4 β 1.60 27.1 δ -Me1 0.87 23.2 ϕ -Me2 0.91 24.8 γ 1.60 27.1 δ -Me2 0.91 24.8 γ 2.62 31.9 γ 2.62 31.9 β 1.36 19.0		α	4.44	56.9
2 147.1 4 130.4 5 7.39 121.5 Thr(2) C=O 173.0 α 4.24 61.7 β 3.87 68.6 γ 1.07 21.0 Lys(3) C=O 171.5 α 4.76 57.3 β 3.50 43.4 γ 2.04 27.8 γ 2.04 27.2 ε 2.99 41.5 α 4.40 55.4 β 1.60 27.2 ε 2.99 41.5 Leu(4) C=O 176.2 α 4.40 55.4 β 1.60 27.1 δ -Me1 0.87 23.2 δ -Me1 0.87 23.2 δ -Me1 0.87 23.2 δ -Me2 0.91 24.8 Met(5) C=O 175.4 α 4.52		β	3.40	29.8
2 147.1 4 130.4 5 7.39 Thr(2) C=O α 4.24 β 3.87 β 3.50 β 3.50 β 3.50 β 3.50 β 3.50 β 3.50 β 3.60 γ 2.04 27.2 ϵ 2.99 1.60 27.2 ϵ 2.99 1.60 27.1 α 4.40 β 1.60 γ 1.60 γ 1.60 γ 1.60 γ 2.62			2.91	
4 130.4 5 7.39 121.5 Thr(2) C=O 173.0 α 4.24 61.7 β 3.87 68.6 γ 1.07 21.0 Lys(3) C=O 171.5 α 4.76 57.3 β 3.50 43.4 γ 2.04 27.8 1.79 1.60 27.2 ε 2.99 41.5 ϵ 2.99 41.5 Leu(4) C=O 176.2 α 4.40 55.4 β 1.60 42.3 γ 1.60 27.1 δ -Me1 0.87 23.2 δ -Me1 0.87 23.2 δ -Me2 0.91 24.8 γ 1.60 27.1 δ -Me2 0.91 24.8 γ 1.60 27.1 δ -Me2 0.91 24.8 ϕ 1.60 177.2 α 4.52 55.0		2		147.1
5 7.39 121.5 Thr(2) C=O 173.0 α 4.24 61.7 β 3.87 68.6 γ 1.07 21.0 Lys(3) C=O 171.5 α 4.76 57.3 β 3.50 43.4 γ 2.04 27.8 γ 2.04 27.8 γ 2.04 27.2 ε 2.99 41.5 Leu(4) C=O 176.2 α 4.40 55.4 β 1.60 27.1 ε 2.99 41.5 ω 4.40 55.4 β 1.60 27.1 ε 0.91 24.8 γ 1.60 27.1 δ -Me2 0.91 24.8 γ 2.62 31.9 β 2.08 33.0 γ 2.62 31.9		4		130.4
Thr(2) C=O 173.0 α 4.24 61.7 β 3.87 68.6 γ 1.07 21.0 γ 1.07 21.0 Lys(3) C=O 171.5 α 4.76 57.3 β 3.50 43.4 γ 2.04 27.8 α 4.76 57.3 β 3.50 43.4 γ 2.04 27.8 α 4.40 55.4 β 1.60 27.2 ϵ 2.99 41.5 Leu(4) C=O 176.2 α 4.40 55.4 β 1.60 42.3 γ 1.60 27.1 δ -Me1 0.87 23.2 δ -Me2 0.91 24.8 Met(5) C=O 175.4 α 4.52 55.0 β 2.08 33.0 <t< td=""><td></td><td>5</td><td>7.39</td><td>121.5</td></t<>		5	7.39	121.5
Thr(2) C=O 173.0 α 4.24 61.7 β 3.87 68.6 γ 1.07 21.0 Lys(3) C=O 171.5 α 4.76 57.3 β 3.50 43.4 γ 2.04 27.8 γ 2.04 27.8 γ 2.09 41.5 α 4.40 55.4 α 4.40 55.4 α 4.40 55.4 β 1.60 42.3 γ 1.60 27.1 α 4.40 55.4 β 1.60 42.3 γ 1.60 27.1 δ -Me1 0.87 23.2 δ -Me2 0.91 24.8 γ 1.60 27.1 δ -Me2 0.91 24.8 γ 2.08 33.0 γ 2.62 31.9				
α 4.24 61.7 β 3.87 68.6 γ 1.07 21.0 γ 1.07 21.0 Lys(3) C=O 171.5 α 4.76 57.3 β 3.50 43.4 γ 2.04 27.8 γ 2.04 27.2 δ 1.60 27.2 ϵ 2.99 41.5 α 4.40 55.4 β 1.60 42.3 γ 1.60 27.1 α 4.40 55.4 β 1.60 27.1 α 4.40 55.4 β 1.60 27.1 δ -Me1 0.87 23.2 δ -Me1 0.87 23.2 δ -Me2 0.91 24.8 Met(5) C=O 175.4 α 4.52 55.0 β 2.08 33.0	Thr(2)	C=0		173.0
β 3.87 68.6 γ 1.07 21.0 Lys(3) C=O 171.5 α 4.76 57.3 β 3.50 43.4 γ 2.04 27.8 γ 1.79 1.60 27.2 ε 2.99 41.5 ε 2.99 41.5 Leu(4) C=O 176.2 α 4.40 55.4 β 1.60 27.1 α 4.40 55.4 β 1.60 27.1 α 4.40 55.4 β 1.60 27.1 α 4.52 55.0 β 2.08 33.0 γ 2.62 31.9		α	4.24	61.7
γ 1.07 21.0 Lys(3) C=O 171.5 $α$ 4.76 57.3 $β$ 3.50 43.4 $γ$ 2.04 27.8 $γ$ 2.04 27.8 $γ$ 2.04 27.2 $ε$ 2.99 41.5 $ε$ 2.99 41.5 Leu(4) C=O 176.2 $α$ 4.40 55.4 $β$ 1.60 27.1 $δ$ -Me1 0.87 23.2 $β$ 1.60 27.1 $α$ 4.52 55.0 $β$ 2.08 33.0 $γ$ 2.62 31.9 $β$ 1.36 19.0		β	3.87	68.6
Lys(3) C=O 171.5 α 4.76 57.3 β 3.50 43.4 γ 2.04 27.8 1.79 1.60 27.2 ε 2.99 41.5 Leu(4) C=O 176.2 α 4.40 55.4 β 1.60 27.1 α 4.40 55.4 β 1.60 27.1 α 4.40 55.4 β 1.60 27.1 δ -Me1 0.87 23.2 δ -Me2 0.91 24.8 Met(5) C=O 175.4 α 4.52 55.0 β 2.08 33.0 γ 2.62 31.9 S-Me 2.12 16.7 α 4.27 52.1 β 1.36 19.0 Pro(7) C=O 177.2 α 4.45 63.5		γ	1.07	21.0
Lys(3) C=O 171.5 α 4.76 57.3 β 3.50 43.4 γ 2.04 27.8 γ 2.04 27.8 α 1.79 α δ 1.60 27.2 ε 2.99 41.5 Leu(4) C=O 176.2 α 4.40 55.4 β 1.60 27.1 α 4.40 55.4 β 1.60 27.1 δ -Me1 0.87 23.2 δ -Me2 0.91 24.8 Met(5) C=O 175.4 α 4.52 55.0 β 2.08 33.0 γ 2.62 31.9 S-Me 2.12 16.7 α 4.27 52.1 β 1.36 19.0 Pro(7) C=O 176.2 β 2.31 32.1 <t< td=""><td></td><td></td><td></td><td></td></t<>				
α 4.76 57.3 β 3.50 43.4 γ 2.04 27.8 1.79 1.79 δ 1.60 27.2 ϵ 2.99 41.5 α 4.40 55.4 β 1.60 42.3 γ 1.60 27.1 α 4.40 55.4 β 1.60 27.1 δ -Me1 0.87 23.2 δ -Me2 0.91 24.8 Met(5) C=O 175.4 α 4.52 55.0 β 2.08 33.0 γ 2.62 31.9 S-Me 2.12 16.7 α 4.27 52.1 β 1.36 19.0 γ 2.62 31.9 γ 2.62 31.9 γ 2.62 31.9 γ 2.62 31.9 β 1.36 19.0 γ 2.62 31.3	Lys(3)	C=0		171.5
β 3.50 43.4 γ 2.04 27.8 1.79 1.79 δ 1.60 27.2 ε 2.99 41.5 Leu(4) C=O 176.2 α 4.40 55.4 β 1.60 42.3 γ 1.60 27.1 δ -Me1 0.87 23.2 δ -Me2 0.91 24.8 Met(5) C=O 175.4 α 4.52 55.0 β 2.08 33.0 γ 2.62 31.9 S-Me 2.12 16.7 α 4.27 52.1 β 1.36 19.0 Pro(7) C=O 176.2 α 4.45 63.5 β 1.36 19.0 Pro(7) C=O 176.2 α 4.27 52.1 β 1.36 19.0 γ		α	4.76	57.3
$γ$ 2.04 27.8 δ 1.79		β	3.50	43.4
δ 1.79 δ 1.60 27.2 ϵ 2.99 41.5 ϵ 2.99 41.5 Leu(4) C=O 176.2 α 4.40 55.4 β 1.60 42.3 γ 1.60 27.1 δ -Me1 0.87 23.2 δ -Me2 0.91 24.8 Met(5) C=O 175.4 α 4.52 55.0 β 2.08 33.0 γ 2.62 31.9 S-Me 2.12 16.7 α 4.27 52.1 β 1.36 19.0 α 4.45 63.5 β 1.36 19.0 γ 2.04 27.3 δ 3.63 49.7 β 3.57 1.86 γ 2.04 27.3 δ 3.63 49.7 β		γ	2.04	27.8
δ 1.60 27.2 ε 2.99 41.5 ϵ 2.99 41.5 α 4.40 55.4 β 1.60 42.3 γ 1.60 27.1 δ -Me1 0.87 23.2 δ -Me2 0.91 24.8 Met(5) C=O 175.4 α 4.52 55.0 β 2.08 33.0 γ 2.62 31.9 S-Me 2.12 16.7 α 4.27 52.1 β 1.36 19.0 γ 2.62 31.9 S-Me 2.12 16.7 α 4.27 52.1 β 1.36 19.0 α 4.45 63.5 β 1.36 19.0 γ 2.04 27.3 δ 3.63 49.7 δ 3.63 49.7			1.79	
ε 2.99 41.5 Leu(4) C=O 176.2 α 4.40 55.4 β 1.60 42.3 γ 1.60 27.1 δ -Me1 0.87 23.2 δ -Me2 0.91 24.8 Met(5) C=O 175.4 α 4.52 55.0 β 2.08 33.0 γ 2.62 31.9 S-Me 2.12 16.7 α 4.27 52.1 β 1.36 19.0 γ 2.62 31.9 S-Me 2.12 16.7 α 4.27 52.1 β 1.36 19.0 γ 2.04 27.3 α 4.45 63.5 β 2.31 32.1 γ 2.04 27.3 δ 3.63 49.7 δ 3.63 49.7		δ	1.60	27.2
Leu(4) C=O 176.2 α 4.40 55.4 β 1.60 42.3 γ 1.60 27.1 δ -Me1 0.87 23.2 δ -Me2 0.91 24.8 Met(5) C=O 175.4 α 4.52 55.0 β 2.08 33.0 γ 2.62 31.9 γ 2.62 177.2 α 4.27 52.1		3	2.99	41.5
Leu(4) C=O 176.2 α 4.40 55.4 β 1.60 42.3 γ 1.60 27.1 δ -Me1 0.87 23.2 δ -Me2 0.91 24.8 Met(5) C=O 175.4 α 4.52 55.0 β 2.08 33.0 γ 2.62 31.9 S-Me 2.12 16.7 β 1.36 19.0 γ 2.62 31.9 S-Me 2.12 16.7 α 4.27 52.1 β 1.36 19.0 α 4.45 63.5 β 1.36 19.0 γ 2.04 27.3 β 2.31 32.1 β 1.98				
α 4.40 55.4 β 1.60 42.3 γ 1.60 27.1 δ-Me1 0.87 23.2 δ-Me2 0.91 24.8 Met(5) C=O 175.4 α 4.52 55.0 β 2.08 33.0 γ 2.62 31.9 S-Me 2.12 16.7 β 1.36 19.0 γ 2.62 31.9 S-Me 2.12 16.7 α 4.27 52.1 β 1.36 19.0 α 4.45 63.5 β 1.36 19.0 α 4.45 63.5 β 2.31 32.1 α 4.45 63.5 β 2.04 27.3 δ 3.63 49.7 α 4.20 57.0 α 4.20 57.0	Leu(4)	C=0		176.2
β 1.60 42.3 γ 1.60 27.1 δ -Me1 0.87 23.2 δ -Me2 0.91 24.8 Met(5) C=O 175.4 α 4.52 55.0 β 2.08 33.0 γ 2.62 31.9 S-Me 2.12 16.7 α 4.27 52.1 β 1.36 19.0 Pro(7) C=O 176.2 α 4.45 63.5 β 2.31 32.1 γ 2.04 27.3 δ 3.63 49.7		α	4.40	55.4
γ 1.60 27.1 δ -Me1 0.87 23.2 δ -Me2 0.91 24.8 Met(5) C=O 175.4 α 4.52 55.0 β 2.08 33.0 γ 2.62 31.9 S-Me 2.12 16.7 Ala(6) C=O 177.2 α 4.27 52.1 β 1.36 19.0 Pro(7) C=O 176.2 α 4.45 63.5 β 2.31 32.1 α 4.45 63.5 β 2.31 32.1 γ 2.04 27.3 δ 3.63 49.7 γ 2.04 27.3 δ 3.63 49.7 δ 1.86 31.3 <td></td> <td>β</td> <td>1.60</td> <td>42.3</td>		β	1.60	42.3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		γ	1.60	27.1
δ-Me2 0.91 24.8 Met(5) C=O 175.4 α 4.52 55.0 β 2.08 33.0 γ 2.62 31.9 S-Me 2.12 16.7 Ala(6) C=O 177.2 α 4.27 52.1 β 1.36 19.0 α 4.45 63.5 β 2.31 32.1 ρ 1.98 1.98 γ 2.04 27.3 δ 3.63 49.7 β 3.57 180.6 α 4.20 57.0 β 1.86 31.3 γ 1.63 27.2		δ-Me1	0.87	23.2
Met(5) C=O 175.4 α 4.52 55.0 β 2.08 33.0 γ 2.62 31.9 γ 2.62 31.9 S-Me 2.12 16.7 Ala(6) C=O 177.2 α 4.27 52.1 β 1.36 19.0 α 4.45 63.5 β 2.31 32.1 ρ 2.31 32.1 γ 2.04 27.3 δ 3.63 49.7 γ 2.04 27.3 δ 3.63 49.7 β 1.86 31.3 γ 2.04 27.3 δ 3.63 49.7 β 1.86 31.3 γ 1.86 31.3 γ 1.63 27.2		δ-Me2	0.91	24.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mat/E	0-0		17E A
α 4.32 55.0 β 2.08 33.0 γ 2.62 31.9 S-Me 2.12 16.7 Ala(6) C=O 177.2 α 4.27 52.1 β 1.36 19.0 α 4.45 63.5 β 2.31 32.1 Pro(7) C=O 176.2 α 4.45 63.5 β 2.31 32.1 γ 2.04 27.3 δ 3.63 49.7 3.57 $ -$ Arg(8) C=O 180.6 α 4.20 57.0 β 1.86 31.3 γ 1.63 27.2	Met(5)	C=0	4.50	175.4 55.0
β 2.08 33.0 γ 2.62 31.9 S-Me 2.12 16.7 Ala(6) C=O 177.2 α 4.27 52.1 β 1.36 19.0 Pro(7) C=O 176.2 α 4.45 63.5 β 2.31 32.1 Pro(7) C=O 1.98 γ 2.04 27.3 δ 3.63 49.7 λ 3.57 180.6 α 4.20 57.0 β 1.86 31.3 γ 1.63 27.2		α	4.52	22.0
γ 2.62 31.9 S-Me 2.12 16.7 Ala(6) C=O 177.2 α 4.27 52.1 β 1.36 19.0 Pro(7) C=O 176.2 α 4.45 63.5 β 2.31 32.1 α 4.45 63.5 β 2.31 32.1 γ 2.04 27.3 δ 3.63 49.7 λ 3.63 49.7 β 1.86 31.3 α 4.20 57.0 β 1.86 31.3 γ 1.63 27.2		þ	2.00	33.0
S-IME 2.12 16.7 Ala(6) C=O 177.2 α 4.27 52.1 β 1.36 19.0 β 1.36 19.0 Pro(7) C=O 176.2 α 4.45 63.5 β 2.31 32.1 β 2.31 32.1 γ 2.04 27.3 δ 3.63 49.7 δ 3.57 Image: C=O 180.6 α 4.20 57.0 1.86 31.3 β 1.86 31.3 1.75 1.63 27.2		γ	2.02	31.9
Ala(6) C=O 177.2 α 4.27 52.1 β 1.36 19.0 Pro(7) C=O 176.2 α 4.45 63.5 β 2.31 32.1 α 4.45 63.5 β 2.31 32.1 γ 2.04 27.3 δ 3.63 49.7 δ 3.63 49.7 $\Lambda rg(8)$ C=O 180.6 α 4.20 57.0 β 1.86 31.3 γ 1.63 27.2		S-IVIE	2.12	10.7
α 4.27 52.1 β 1.36 19.0 Pro(7) C=O 176.2 α 4.45 63.5 β 2.31 32.1 β 2.04 27.3 γ 2.04 27.3 δ 3.63 49.7 δ 3.63 49.7 λ 3.57 $-$ Arg(8) C=O 180.6 α 4.20 57.0 β 1.86 31.3 γ 1.63 27.2	Ala(6)	C=0		177.2
α 1.27 02.17 β 1.36 19.0 Pro(7) C=O 176.2 α 4.45 63.5 β 2.31 32.1 β 2.31 32.1 β 2.31 32.1 β 2.31 32.1 γ 2.04 27.3 δ 3.63 49.7 λ 3.57 $-$ Arg(8) C=O 180.6 α 4.20 57.0 β 1.86 31.3 γ 1.63 27.2		0-0	4 27	52.1
p1.3013.3Pro(7)C=O176.2 α 4.4563.5 β 2.3132.1 β 2.3132.1 γ 2.0427.3 δ 3.6349.7 δ 3.57Arg(8)C=O180.6 α 4.2057.0 β 1.8631.3 γ 1.6327.2		ß	1.27	19.0
Pro(7) C=O 176.2 α 4.45 63.5 β 2.31 32.1 1.98 1.98 γ 2.04 27.3 δ 3.63 49.7 δ 3.57 180.6 α 4.20 57.0 β 1.86 31.3 γ 1.63 27.2		р	1.00	10.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pro(7)	C=O		176.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		α.	4.45	63.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		β	2.31	32.1
γ 2.0427.3 δ 3.6349.7 δ 3.57 180.6 α 4.2057.0 β 1.8631.3 1.75 1.63 27.2			1.98	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ŷ	2.04	27.3
σ 3.57 Arg(8) C=O 180.6 α 4.20 57.0 β 1.86 31.3 γ 1.63 27.2		δ	3.63	49.7
Arg(8) C=O 180.6 α 4.20 57.0 β 1.86 31.3 γ 1.63 27.2			3.57	
Arg(8) C=O 180.6 α 4.20 57.0 β 1.86 31.3 1.75 1.63 27.2				
α 4.20 57.0 β 1.86 31.3 1.75 1.63 27.2	Arg(8)	C=O		180.6
β 1.86 31.3 1.75 1.63 27.2		α	4.20	57.0
γ 1.75 γ 1.63 27.2		β	1.86	31.3
γ 1.63 27.2			1.75	
		γ	1.63	27.2

C (quanidine) 159.5	δ	3.22	43.4
	C (guanidine)		159.5

^aAssigned by HSQC and HMBC.

Fable S7 . NMR spectroscopic data	(400 MHz, DMSO- <i>d</i> ₆ , 0.15% TFA- <i>d</i>) of 1 .
--	---

Residue	Position	¹ H	¹³ C ^a
Gly(-10)	C=0		n.d. ^b
	NH	8.07	
	α	3.81	39.7
Pro(-9)	C=O		n.d. ^b
	α	4.42	58.6
	β	2.18	31.4
		2.03	
	γ	1.78	21.6
	δ	3.57	46.4
		3.43	
$\Lambda_{en}(8)$	<u> </u>		171 /
Asp(-0)		Q 27	1/1.4
		0.37	10.3
	α 	4.33	35.6
	р	2.72	55.0
		2.34	
Asp(-7)	C=O		171.4
1, ,	NH	8.01	
	α	4.53	49.3
	β	2.74-271	38.0
Ser(-6)	C=0		170.2
	NH	7 76	170.2
	α	4.25	54.8
	ß	3.56	61.3
	р	0.00	01.0
Ala(-5)	C=O		171.6
/(C)	NH	8.02	
	α	4.27	48.0
	β	1.19	17.7
	P		
Val(-4)	C=O		170.7
X 7	NH	7.64	
	α	4.06	57.6
	β	1.89	30.2
	γ-Me1	0.73	18.9
	γ-Me2	0.73	17.8
Phe(-3)	C=0		170.5
	NH	7.95	
	α	4.53	53.3

	0	3.03	37.0
	þ	0.00	57.0
		2.70	
	1		137.5
	2/6	7.23	128.9
	3/5	7.23	127.7
	4	7.16	125.9
Ala(-2)	C=O		171.6
	NH	8.02	
	α	4.27	48.0
	β	1.20	17.8
			474.0
Ala(-1)	C=O		171.6
	NH	8.02	
	α	4.48	46.0
	β	1.20	16.6
	0-0		400.0
ris(1)		0.00	0.601
	NH	8.00	50.0
	α	4.50	52.8
	β	3.15	28.3
		2.55	
	2		144.4
	4		126.9
	5	7.45	118.1
	NHτ	14.40	
	ΝΗπ	13.79	
Thr(2)	C=O		170.5
	NH	8.09	
	α	4,19	58.1
	ß	3.63	65.3
	р	0.00	10.3
	Ŷ	0.54	10.0
1,10(2)			171 0
Lys(3)		0.00	1/1.0
		0.08	54.0
	α	4.53	54.0
	β	3.36	40.1
	γ	2.02	23.9
		1.73	
	δ	1.88	24.1
	3	3.48	45.7
Leu(4)	C=O		171.6
\ /	NH	8.02	-
	α	4.27	51.5
	ß	1 47	39.9
<u> </u>		1 50	24 0
	S Mad	0.96	27.0
		0.00	22.1
	o-Me2	0.84	21.2
Met(5)			171 5
	0-0		171.0

	NH	8.12	
	α	4.36	51.3
	β	1.89	31.9
		1.77	
	γ	2.45	29.0
	S-Me	2.04	14.4
Ala(6)	C=O		170.3
	NH	8.02	
	α	4.27	48.0
	β	1.19	17.7
Pro(7)	C=O		n.d. ^b
	α	4.42	58.6
	β	2.18	31.4
		2.03	
	γ	1.78	21.6
	δ	3.57	46.4
		3.43	
Arg(8)	C=O		173.3
	NH	8.11	
	α	4.15	51.3
	β	1.52	24.8
		1.34	
	γ	1.74	27.9
		1.57	
	δ	3.11	40.1
	N ^δ H	7.64	
	C (guanidine)		156.6

^aAssigned by HSQC and HMBC. ^bNot detected.

Table S8. Advanced Marfey's analysis of product 1.

Amino acid	Retention time (min)			
	L-FDVA-standard	D-FDVA-standard	Hydrolysate of 1 ^b	
L-Pro	9.14	10.23	9.14	
L-Asp	8.01	8.51	8.01	
L-Ser	7.31	7.72	7.31	
L-Ala	9.14	10.67	9.14	
L-Val	10.71	13.22	10.71	
L-Phe	12.03	13.99	12.03	
∟-Thr	7.45	9.17	7.45	
∟- <i>allo</i> -Thr	8.49	7.74	-	
L-Leu	11.78	14.48	11.78	
L-Met	10.62	12.59	10.62	
L-Arg	4.61	4.20	4.61	

^aAnalytical condition: MS polarity = negative; column: Kinetex XB-C18, 2.6 μ m, 150 x 4.6 mm; flow rate: 0.50 mL/min; column temperature: 50°C; mobile phase/gradient: 30% H₂O/CH₃CN + 0.1% FA isocratic for 2 min followed by linear gradient to 77% H₂O/CH₃CN + 0.1% FA over 17 min. ^bDerivatized with L-FDVA.

Residue	Position	¹ H	¹³ C ^a
Gly(-10)	C=O		169.6
	NH	8.08	
	α	3.81	39.7
Pro(-9)	C=O		n.d. ^b
	α	4.43	58.7
	β	2.20	31.4
		2.04	
	γ	1.79	21.6
	δ	3.57	46.4
		3.46	
Asp(-8)	C=O		171.8
	NH	8.38	
	α	4.53	49.4
	ß	2.74	38.6
		2.50	
		2.00	
Asp(-7)	C=O		171.8
	NH	8.01	
	α	4.53	49.4
	ß	2.74	35.6
	F	2.55	
Ser(-6)	C=O		169.7
	NH	7.78	
	α	4.27	54.8
	ß	3.56	61.4
	P		
Ala(-5)	C=O		171.7
	NH	8.09	
	α	4.29	47.9
	β	1.19	17.8
Val(-4)	C=O		170.9
	NH	7.64	
	α	4.08	57.4
	β	1.89	30.1
	γ-Me1	0.74	18.9
	γ-Me2	0.74	17.7
	/		
Phe(-3)	C=O		169.9
	NH	8.00	
	α	4.54	53.3
	β	3.04	37.1
	'	2.79	
	1		137.7
	2/6	7.24	129.9
	3/5	7.24	127.7

Table S9. NMR spectroscopic data	(400 MHz, DMSO-d ₆	, 0.3% TFA- <i>d</i>) of S1a .

	4	7.17	126.0
Ala(-2)	C=0		171.7
	NH	8.09	
	α	4.29	47.9
	ß	1.19	17.8
	P		
Ala(-1)	C=O		171.7
	NH	8.08	
	α	4.49	46.0
	ß	1.20	16.6
Phe(1)	C=O		169.4
1 1.6(1)	NH	7.88	
	α	4.54	54.5
	ß	3.22	38.7
	P	2 4 1	
	1	2.11	135.3
	2	$6.79 (d_{1}/=7.0 Hz)$	129.1
	3	$6.98 (d_1/=7.0 Hz)$	132.1
	4	0.00 (0, 0 = 7.0 112)	138.1
	5	$7.06 (d_1/=7.1 Hz)$	125.4
	6	7.00 (d, 0 = 7.1 Hz)	128.8
	0	<u> </u>	120.0
Thr(2)	C=0		168.6
1111(2)	NH	6.65	100.0
	α	3 50	58.0
	ß	3.41	67.0
	p	0.82	18.8
	γ	0.02	10.0
lve(3)	C-0		170.3
Ly3(0)		7.74	170.5
		<u> </u>	57 1
	0 0	2.82	18 1
	р	2.02	20.0
	γ	2.05	29.0
		1.07	
	ð	1.45	20.0
	3	3.49	45.6
			474 5
Leu(4)			1/1.5
		<u>δ.U2</u>	51.0
	α	4.30	31.0
	β	1.47	40.4
	γ	1.59	23.9
	<u>δ-Me1</u>	0.88	22.7
	δ-Me2	0.83	21.3
Met(5)	C=0		173.6
	NH	8.05	
	α	4.36	51.2
	β	1.89	31.9
		1.77	

	γ	2.46	29.0
	S-Me	2.05	14.4
Ala(6)	C=O		170.4
	NH	8.09	
	α	4.29	47.9
	β	1.19	17.8
Pro(7)	C=0		171.6
	α	4.43	58.7
	β	2.20	31.4
		2.04	
	γ	1.79	21.6
	δ	3.57	46.4
		3.46	
Arg(8)	C=0		173.4
	NH	8.12	
	α	4.15	51.2
	β	1.53	24.8
	γ	1.75	27.9
		1.58	
	δ	3.11	40.0
	Ν ^δ Η	7.61	
	C (guanidine)		156.6

^aAssigned by HSQC and HMBC. ^bNot detected.

References

(1) Sugiyama, R.; Suarez, A. F. L.; Morishita, Y.; Nguyen, T. Q. N.; Tooh, Y. W.; Roslan, M. N. H. B.; Lo Choy, J.; Su, Q.; Goh, W. Y.; Gunawan, G. A.; et al. The Biosynthetic Landscape of Triceptides Reveals Radical SAM Enzymes That Catalyze Cyclophane Formation on Tyr- and His-Containing Motifs. *J. Am. Chem. Soc.* **2022**, *144* (26), 11580-11593.

(2) Tietz, J. I.; Schwalen, C. J.; Patel, P. S.; Maxson, T.; Blair, P. M.; Tai, H.-C., Zakai, U. I.; Mitchell, D. A. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. *Nat. Chem. Biol.* **2017**, *13* (5), 470-479.

(3) Gerlt, J. A.; Bouvier, J. T.; Davidson, D. B.; Imker, H. J.; Sadkhin, B.; Slater, D. R.; Whalen, K. L. Enzyme Function InitiativeEnzyme Similarity Tool (EFI-EST): A Web Tool for Generating Protein Sequence Similarity Networks. *Biochim. Biophys. Acta* **2015**, *1854* (8), 1019–1037.

(4) Sinner, E. K.; Li, R.; Marous, D. R.; Townsend, C. A. ThnL, a B12-dependent radical S-adenosylmethionine enzyme, catalyzes thioether bond formation in carbapenem biosynthesis. *Proc. Natl. Acad. Sci. U. S. A.* **2022**, *119* (34), e2206494119.

(5) Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: making protein folding accessible to all. *Nat. Methods* **2022**, *19* (6), 679-82.

(6) Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic. Acids Res.* **2004**, *32* (5), 1792-1797.