SUPPLEMENTARY INFORMATION

Metallic Radionuclide-labeled Tetrameric 2,6Diisopropylphenyl Azides for Cancer Treatment

Yudai Ode, ${ }^{a}$ Ambara R. Pradipta, ${ }^{* a}$ Akihiro Ishiwata, ${ }^{b}$ Akihiro Nambu, ${ }^{c}$ Kazunobu Ohnuki, ${ }^{d}$ Hiroshi Mizuma, ${ }^{\text {e,f }}$ Hiromitsu Haba ${ }^{\text {c }}$ and Katsunori Tanaka *a,b
a Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan.
b Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
c Nuclear Chemistry Group, RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
d Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan.
e Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan.
${ }^{f}$ Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan

[^0]Keywords: acrolein; aryl azide; [3+2] cycloaddition; in vivo synthesis; radiometal

Table of Contents

pp.
Previous study 3
Fig. S1 3
Chemical synthesis 4
Synthesis of compound 9 4-5
Synthesis of compound $\mathbf{S 7}$ 6-8
Synthesis of compound 10 9
Synthesis of compound $\mathbf{S 8}$ 10
Synthesis of compound 11 11
Radiolabeling. 12-13
Synthesis of compound 4 14
Fig. S2 14
Synthesis of compound S1. 15
Fig. S3 15
Synthesis of compound 5a 16
Fig. S4 16
Synthesis of compound 5b 17
Fig. S5 17
Animal experiments. 18-19
SPECT studies 20
Table S1 21
Table S2 21
Fig. S6 22
Fig. S7. 22
Fig. S8. 23
Table S3 23
Biodistribution studies 24
Table S4 25
Table S5 26
Fig. S9. 27
Fig. S10 27
Table S6 28
Cancer treatment studies 29
Table S7 30
Table S8 30
Table S9. 31
Table S10 31
Table S11 32
Table S12 32
NMR and HRMS spectra 33-62

Previous study

(b)

CTS probe $1^{\text {st }}$ generation $(R=-H)$
CTS probe $2^{\text {nd }}$ generation ($\mathrm{R}=-\mathrm{P} \mathrm{Pr}$)

Fig. S1 Our previous work: (a) Phenyl azide reacts selectively towards acrolein under physiological conditions. No noticeable products were found when it was reacted with other α, β-unsaturated aldehydes (e.g., methacrolein, crotonaldehyde, trans-2-octenal) or reactive olefin (e.g., cis-2heptanol, styrene). We found that phenyl azide is stable toward the in vivo oxidating and reducing agents, such as $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{~S}$, and GSH. (b) Acrolein levels in various human cells were determined using a CTS probe. The fluorescence intensity corresponds to the level of acrolein in cells.

Chemical synthesis

All commercially available reagents were used without further purification. The ${ }^{111} \mathrm{InCl}_{3}$ solution was produced by Nihon Medi-Physics Co., Ltd. The ${ }^{90} \mathrm{YCl}_{3}$ solution was obtained from Eckert \& Ziegler Radiopharma GmbH. Both [$\left.{ }^{111} \mathrm{In}\right] \mathrm{Cl}_{3}$ and $\left[{ }^{90} \mathrm{Y}\right] \mathrm{Cl}_{3}$ solutions were dried and diluted with hydrochloric acid to the appropriate concentration before being used in the experiments. The preparative separation was performed by column chromatography on Merck Silica gel 60 (230-400 mesh). High-resolution mass spectrometry (HRMS) was recorded on micrOTOF-QIII. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on the Bruker Ascend 400 NMR spectrometer. Unless otherwise mentioned, CDCl_{3} was used as a solvent, and chemical shifts were represented as δ-values relative to the internal standard TMS.

Caution: Azide-containing compounds are presumed to be potentially explosive. Although we have never experienced such an explosion with the azide compounds used in this study, all manipulations should be carefully carried out in a hood.

Synthesis of bis(4-azido-3,5-diisopropylbenzyl)amine 9

Synthesis of 4-amino-3,5-diisopropylbenzaldehyde 7: Hexamethylenetetramine (8.5 g , $61 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added to a solution of 2,6-diisopropylaniline $6(5.3 \mathrm{~g}, 30 \mathrm{mmol}, 1.0$ eq) in AcOH and $\mathrm{H}_{2} \mathrm{O}(3: 1)(100 \mathrm{~mL}$, [2,6-diisopropylaniline 6] $=0.30 \mathrm{M})$. The mixture was refluxed with stirring for 30 minutes, cooled to ambient temperature, and evaporated. $20 \mathrm{wt} \% \mathrm{KOHaq}$ was added until the suspension achieved a pH of 8 . The mixture was extracted with EtOAc. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was concentrated to dryness under reduced pressure. The residue was purified by Yamazen smart flash column chromatography on silica gel using a gradient of eluents [n-hexane/EtOAc (85:15 to 67:33)] to give the desired 4-amino-3,5-diisopropylbenzaldehyde 7 as a white solid ($1.9 \mathrm{~g}, 32 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 2.88$ (hept, J = $6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.31 (d, J $=6.8 \mathrm{~Hz}, 12 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.6, 146.9, 131.7, 127.4, 125.9, 28.0, 22.3; ESI-HRMS m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NNaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$228.1359, found 228.1359.

Synthesis of 4-azido-3,5-diisopropylbenzaldehyde 8: sodium azide ($750 \mathrm{mg}, 12 \mathrm{mmol}, 2.4$ eq) was slowly added to a mixture of compound $7(980 \mathrm{mg}, 4.8 \mathrm{mmol}, 1.0 \mathrm{eq})$ and Sodium nitrite ($790 \mathrm{mg}, 12 \mathrm{mmol}, 2.5 \mathrm{eq}$) dissolved in AcOH and $\mathrm{H}_{2} \mathrm{O}(5: 1)(48 \mathrm{~mL},[7]=$ 0.10 M) at $0^{\circ} \mathrm{C}$. After stirring for 1 hour at $0^{\circ} \mathrm{C}$, a saturated aqueous solution of NaHCO_{3} was added until the mixture achieved a pH of 7 . The mixture was extracted with EtOAc. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was concentrated to dryness under reduced pressure. The residue was purified by Yamazen smart flash column chromatography on silica gel using a gradient of eluents [n-hexane/EtOAc (100:0 to 95:5)] to give the desired 4-azido-3,5diisopropylbenzaldehyde 8 as a colorless oil ($1.1 \mathrm{~g}, 98 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 9.96$ (s, 1H), 7.66 (s, 2H), 3.40 (hept, J = $6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.31 (d, J = $6.8 \mathrm{~Hz}, 12 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 191.9, 144.2, 140.9, 134.6, 125.8, 28.9, 23.5.; ESI-HRMS m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{NaO}_{2}\left([\mathrm{M}+\mathrm{MeOH}+\mathrm{Na}]^{+}\right)$286.1526, found 286.1524.

Synthesis of bis(4-azido-3,5-diisopropylbenzyl)amine 9: Compound 8 ($500 \mathrm{mg}, 2.1 \mathrm{mmol}$, 1.0 eq) was dissolved in saturated solution of $\mathrm{NH}_{4} \mathrm{OAc}$ in $\mathrm{EtOH} 16 \mathrm{~mL}, 28 \%$ aqueous NH_{3} $5.6 \mathrm{~mL}, \mathrm{AcOH} 14 \mathrm{~mL}$ and THF $3 \mathrm{~mL} . \mathrm{NaBH}_{3} \mathrm{CN}$ was dissolved in a saturated solution of $\mathrm{NH}_{4} \mathrm{OAc}$ in EtOH 5 mL . Compound 8 solution was added dropwise to the $\mathrm{NaBH}_{3} \mathrm{CN}$ solution over $7 \mathrm{~min}([8]=0.050 \mathrm{M})$. After stirring for 5 hours at ambient temperature, a saturated aqueous solution of NaHCO_{3} was added until the mixture achieved a pH of 8 . The mixture was extracted with EtOAc. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was concentrated to dryness under reduced pressure. The residue was purified by Yamazen smart flash column chromatography on silica gel using eluent [n-hexane/EtOAc (9:1)] to give the desired bis(4-azido-3,5-diisopropylbenzyl)amine 9 as a yellow solid ($120 \mathrm{mg}, 26 \%$ yield). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{~s}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 4 \mathrm{H}), 3.35$ (hept, $\left.J=6.9 \mathrm{~Hz}, 4 \mathrm{H}\right), 1.27(\mathrm{~d}, \mathrm{~J}=6.8$ $\mathrm{Hz}, 24 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.3,138.9,134.2,123.8,53.2,29.0,23.7 . ;$ ESIHRMS m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 448.3183$, found 448.3183 .

Synthesis of bis(3,5-diisopropylbenzyl)amine S7

Synthesis of 3,5-diisopropylbenzaldehyde S2 ${ }^{1}$: ${ }^{\text {BuONO }}(980 \mu \mathrm{~L}, 8.4 \mathrm{mmol}, 1.5 \mathrm{eq})$ and salicylic acid ($100 \mathrm{mg}, 0.73 \mathrm{mmol}, 0.13 \mathrm{eq}$) were added to compound $7(1.4 \mathrm{~g}, 5.8 \mathrm{mmol}$, 1.0 eq) in dry THF ($24 \mathrm{~mL},[7]=0.24 \mathrm{M}$). The reaction mixture was stirred under an argon atmosphere at ambient temperature for 3 hours. The resulting mixture was extracted with EtOAc. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was concentrated to dryness under reduced pressure. The residue was purified by Yamazen smart flash column chromatography on silica gel using n hexane as eluent to give the desired 3,5-diisopropyl benzaldehyde $\mathbf{S 2}$ as a yellow oil (280 $\mathrm{mg}, 26 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.99(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}$, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.98 (hept, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), $1.29(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 193.1, 150.0, 136.9, 131.7, 125.5, 34.2, 24.0; ESI-HRMS m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NaO}_{2}\left([\mathrm{M}+\mathrm{MeOH}+\mathrm{Na}]^{+}\right) 245.1512$, found 245.1509.

Synthesis of 4-iodo-2,6-diisopropylaniline S3 2: According to the literature, 4-iodo-2,6diisopropylaniline S3 was obtained as a red-black oil ($9.3 \mathrm{~g}, 86 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 7.27(\mathrm{~s}, 2 \mathrm{H}), 3.73\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right.$), 2.84 (hept, $\mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 1.24 (d, $J=6.8 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl $3,25^{\circ} \mathrm{C}$) $\delta 140.2,135.2,131.9,81.3,28.0,22.4$; ESI-HRMS m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{IN}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$304.0557, found 304.0558.

Synthesis of 4-amino-3,5-diisopropylbenzonitrile S4 ${ }^{2}$: According to the literature, 4-amino-3,5-diisopropylbenzonitrile $S 4$ was obtained as a yellow solid ($3.0 \mathrm{~g}, 82 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$) $\delta 7.29(\mathrm{~s}, 2 \mathrm{H}), 4.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.85$ (hept, J=6.7 Hz, $2 \mathrm{H}), 1.27(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.9,132.3,127.5,121.3$, 100.3, 27.8, 22.0.; ESI-HRMS m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$225.1362, found 225.1362.

Synthesis of 3,5-diisopropylbenzonitrile S5 ${ }^{1}$: ${ }^{\text {t }}$ BuONO ($741 \mu \mathrm{~L}, 6.4 \mathrm{mmol}, 1.2 \mathrm{eq}$) and salicylic acid ($760 \mathrm{mg}, 5.5 \mathrm{mmol}, 1.0 \mathrm{eq}$) were added to compound $\mathbf{S 4}(1.1 \mathrm{~g}, 5.3 \mathrm{mmol}$, 1.0 eq) in dry THF ($18 \mathrm{~mL},[\mathrm{~S} 4]=0.30 \mathrm{M}$). The reaction mixture was stirred under an argon atmosphere at ambient temperature for 5.5 hours. The resulting mixture was extracted with EtOAc. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was concentrated to dryness under reduced pressure. The residue was purified by Yamazen smart flash column chromatography on silica gel using a gradient of eluents [n-hexane/EtOAc (100:0 to 97:3)] to give the desired 3,5diisopropyl benzonitrile $\mathbf{S 5}$ as a colorless oil ($740 \mathrm{mg}, 74 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{hept}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.25$ ($d, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.2,129.9,127.7,119.7,112.3,34.1$, 23.9.; ESI-HRMS m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$210.1253, found 210.1257.

Synthesis of (3,5-diisopropylphenyl)methanamine S6: LiAlH_{4} ($360 \mathrm{mg}, 9.4 \mathrm{mmol}, 6.2 \mathrm{eq}$) was slowly added to a solution of 3,5-diisopropylbenzonitrile $\mathbf{S 5}$ ($280 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.0$ eq) in dry THF $15 \mathrm{~mL}\left([\mathbf{S 5}]=0.30 \mathrm{M}\right.$) at $0^{\circ} \mathrm{C}$. After stirring the reaction mixture under an argon atmosphere at ambient temperature for 3 hours, a saturated aqueous solution of Rochelle salt was added dropwise to the reaction mixture at $0^{\circ} \mathrm{C}$. EtOAc was then added and stirred for 30 minutes. The mixture was extracted with EtOAc. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was concentrated to dryness under reduced pressure. The residue was purified by Yamazen smart flash column chromatography on silica gel using a gradient of eluents [n hexane/EtOAc ($90: 10$ to $84: 16$)] to give the desired (3,5-diisopropylphenyl) methanamine $\mathbf{S 6}$ as a yellow oil ($280 \mathrm{mg}, 98 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.00$ (d, J = $1.7 \mathrm{~Hz}, 2 \mathrm{H}$), $6.97(\mathrm{t}, \mathrm{J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.84(\mathrm{~s}, 2 \mathrm{H}), 2.89$ (hept, J = $6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 1.26 (d, $J=6.9 \mathrm{~Hz}, 12 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.4,143.3,123.4,122.8,46.9,34.4,24.2$; ESI-HRMS m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$214.1566, found 214.1566.

References: (1) D. Felipe-Blanco, F. Alonso and J. C. Gonzalez-Gomez, Adv. Synth. Catal., 2017, 359, 2857-2863; (2) A. R. Pradipta, H. Michiba, A. Kubo, M. Fujii, T. Tanei, K. Morimoto, K. Shimazu and K. Tanaka, Bull. Chem. Soc. Jpn., 2022, 95, 421-426.

Synthesis of bis(3,5-diisopropylbenzyl)amine S7: Compound S6 (180 mg, $0.92 \mathrm{mmol}, 1.3$ eq), $\mathrm{AcOH} 410 \mu \mathrm{~L}$, and $\mathrm{NaBH}_{3}(\mathrm{CN})(90 \mathrm{mg}, 1.4 \mathrm{mmol}, 2.1 \mathrm{eq})$ were added to compound $\mathbf{S 2}(130 \mathrm{mg}, 0.69 \mathrm{mmol}, 1.0 \mathrm{eq})$ in EtOH ($6.9 \mathrm{~mL},[\mathbf{S 2}]=0.10 \mathrm{M}$). After stirring for 22 hours at ambient temperature, the reaction mixture was evaporated and extracted with EtOAc. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. The filtrate was concentrated to dryness under reduced pressure. The residue was purified by Yamazen smart flash column chromatography on silica gel using eluent [n-hexane/EtOAc (4:1)] to give the desired bis(3,5-diisopropyl benzyl)amine $\mathbf{S 7}$ as a colorless oil ($250 \mathrm{mg}, 98 \%$ yield). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.03$ (d, J = $1.7 \mathrm{~Hz}, 4 \mathrm{H}$), 6.98 ($\mathrm{t}, \mathrm{J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}$), $3.80(\mathrm{~s}, 4 \mathrm{H}), 2.89$ (hept, $J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.25(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 24 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 149.1,140.4,123.8,123.5,53.7,34.3,24.2 . ;$ ESI-HRMS m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~N}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 366.3155$, found 366.3154 .

Synthesis of DOTA-2PhN $\mathbf{N}_{3} \underline{10}$

DOTA-NHS-ester

Synthesis of 2,2',2'-(10-(2-(bis(4-azido-3,5-diisopropylbenzyl)amino)-2-oxoethyl)-1,4, 7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid 10 (DOTA-2PhN 10): DOTA-NHSester ($170 \mathrm{mg}, 0.23 \mathrm{mmol}, 2.0 \mathrm{eq}$) and DIPEA ($120 \mu \mathrm{~L}, 0.69 \mathrm{mmol}, 6.0 \mathrm{eq}$) were added to compound 9 ($51 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0 \mathrm{eq}$) in dry DMF ($1.2 \mathrm{~mL},[9]=0.10 \mathrm{M}$). The reaction mixture was stirred under an argon atmosphere at ambient temperature for 20 hours. The mixture was purified by reversed-phase (RP)-HPLC (mobile phase A, 0.1% TFA in $\mathrm{H}_{2} \mathrm{O} ; \mathrm{B}, 0.1 \%$ TFA in $\mathrm{CH}_{3} \mathrm{CN}$) to give the DOTA- $2 \mathrm{PhN}_{3} 10$ (in TFA salt form) as a white solid ($49 \mathrm{mg}, 45 \%$). Conditions of RP-HPLC(Shimadzu): Column, Cosmosil 5C ${ }_{18}$-AR-300 (Nacalai Tesque, Inc.) $20 \times 250 \mathrm{~mm}$; Gradient elution, $0-3 \mathrm{~min}$ at $50 \% \mathrm{~B}, 3-14 \mathrm{~min}$ at $50-100 \%$ B, $14-18 \mathrm{~min}$ at 100% B; Flow rate: $10 \mathrm{~mL} / \mathrm{min}$ (Pump LC-20AP); UV detection at 254 nm (UV/vis detector SPD-20AV).
The desired DOTA- $2 \mathrm{PhN}_{3} 10$ was eluted at 14 minutes. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 6.98$ $(\mathrm{s}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 4 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 3.43$ -2.97 ($\mathrm{m}, 2 \mathrm{H}$), 1.13 (dd, J = 9.0, $6.9 \mathrm{~Hz}, 24 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 161.0,160.7$, $160.3,160.0,144.4,144.2,136.5,135.6,135.1,125.8,123.9,121.4,118.5,115.6,112.7$, 54.3, 51.8, 49.7, 29.7, 29.7, 23.7, 23.7; ESI-HRMS m/z calcd for $\mathrm{C}_{42} \mathrm{H}_{64} \mathrm{~N}_{11} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 834.4985, found 834.4987.

Synthesis of DOTA-2PhH S8

Synthesis of 2,2',2'-(10-(2-(bis(3,5-diisopropylbenzyl)amino)-2-oxoethyl)-1,4,7,10-tetra-azacyclododecane-1,4,7-triyl)triacetic acid S8 (DOTA-2PhH S8): DOTA-NHS-ester(98 mg, $0.13 \mathrm{mmol}, 1.5 \mathrm{eq}$) and DIPEA ($86 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 6.0 \mathrm{eq}$) were added to compound S7 ($31 \mathrm{mg}, 0.084 \mathrm{mmol}, 1.0 \mathrm{eq}$) in dry DMF ($0.85 \mathrm{~mL},[\mathrm{~S} 7]=0.10 \mathrm{M}$). The reaction mixture was stirred under an argon atmosphere at ambient temperature for 3.5 days. The mixture was purified by reversed-phase (RP)-HPLC (mobile phase A, 0.1% TFA in $\mathrm{H}_{2} \mathrm{O}$; B, 0.1% TFA in $\mathrm{CH}_{3} \mathrm{CN}$) to give the DOTA-2PhH S8 (in TFA salt form) as a white solid (24 mg , 33\%). Conditions of RP-HPLC(Shimadzu): Column, Cosmosil 5C $\mathrm{C}_{18}-$ AR-300 (Nacalai Tesque, Inc.) $20 \times 250 \mathrm{~mm}$; Gradient elution, $0-3 \mathrm{~min}$ at $50 \% \mathrm{~B}, 3-14 \mathrm{~min}$ at $50-100 \%$ B, $14-23 \mathrm{~min}$ at 100% B; Flow rate: $10 \mathrm{~mL} / \mathrm{min}$ (Pump LC-20AP); UV detection at 254 nm (UV/vis detector SPD-20AV).

The desired DOTA-2PhH S8 was eluted at 13 minutes. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}: \mathrm{D}_{2} \mathrm{O}=\right.$ 1:1) $\delta 7.04(\mathrm{~s}, 2 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.37(\mathrm{~s}$, $2 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 4 \mathrm{H}), 3.29(\mathrm{~s}, 8 \mathrm{H}), 2.86-2.78(\mathrm{~m}, 4 \mathrm{H}), 1.15(\mathrm{dd}, \mathrm{J}=$ 6.9, 3.5 Hz, 24H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CD ${ }_{3} \mathrm{CN}$) $\delta 161.5,161.1,150.6,150.3,143.9,137.6$, 136.6, 125.3, 124.7, 124.6, 123.8, 116.3, 34.8, 24.4; ESI-HRMS m/z calcd for $\mathrm{C}_{42} \mathrm{H}_{65} \mathrm{~N}_{5} \mathrm{NaO}_{7}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 774.4776$, found 774.4771.

Synthesis of DTPA-4Ph $\mathrm{N}_{3} 11$

Synthesis of 2-(4-azido-3,5-diisopropylbenzyl)-1-(4-azido-3,5-diisopropylphenyl)-11-(2-(bis(4-azido-3,5-diisopropylbenzyl)amino)-2-oxoethyl)-5,8-bis(carboxymethyl)-3-oxo-2,5,8,11-tetraazatridecan-13-oic acid 11 (DTPA-4PhN 11): DTPA-dianhydride(19 mg, $0.052 \mathrm{mmol}, 1.0 \mathrm{eq}$) was added to compound 9 ($55 \mathrm{mg}, 0.12 \mathrm{mmol}, 2.3 \mathrm{eq}$) in dry-DMF (0.50 mL , [DTPA-dianhydride] $=0.10 \mathrm{M}$). The reaction mixture was stirred under an argon atmosphere at ambient temperature for 20 hours. The mixture was purified by reversed-phase (RP)-HPLC (mobile phase $\mathrm{A}, 0.1 \%$ TFA in $\mathrm{H}_{2} \mathrm{O} ; \mathrm{B}, 0.1 \%$ TFA in $\mathrm{CH}_{3} \mathrm{CN}$) to give the DTPA-4PhN 11 (in TFA salt form) as a yellow solid ($66 \mathrm{mg}, 95 \%$). Conditions of RP-HPLC(Shimadzu): Column, Cosmosil 5C 18 -AR-300 (Nacalai Tesque, Inc.) $20 \times 250 \mathrm{~mm}$; Gradient elution, $0-5 \mathrm{~min}$ at $80 \% \mathrm{~B}, 5-10 \mathrm{~min}$ at $80-100 \% \mathrm{~B}, 10-20 \mathrm{~min}$ at $100 \% \mathrm{~B}$; Flow rate: $10 \mathrm{~mL} / \mathrm{min}$ (Pump LC-20AP); UV detection at 254 nm (UV/vis detector SPD20AV).

The desired DTPA-4PhN 311 was eluted at 15 minutes. ${ }^{1} \mathrm{H} N M R\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 6.95$ ($\mathrm{s}, 4 \mathrm{H}$) , $6.82(\mathrm{~s}, 4 \mathrm{H}), 4.52(\mathrm{~s}, 4 \mathrm{H}), 4.41(\mathrm{~s}, 4 \mathrm{H}), 4.28(\mathrm{~s}, 4 \mathrm{H}), 4.08(\mathrm{~s}, 4 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 3.44$ ($\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 4 \mathrm{H}$), $3.29-3.21(\mathrm{~m}, 8 \mathrm{H}), 3.15(\mathrm{t}, J=5.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.13(\mathrm{dd}, J=6.9,1.8 \mathrm{~Hz}$, $48 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) δ 172.1, 168.9, 167.4, 160.6, 160.2, 144.6, 144.2, 136.1, 135.7, 135.6, 134.8, 125.4, 124.1, 115.5, 58.0, 56.5, 54.6, 54.2, 51.5, 51.4, 50.9, 29.7, 29.6, 23.7, 23.7; ESI-HRMS m/z calcd for $\mathrm{C}_{66} \mathrm{H}_{94} \mathrm{~N}_{17} \mathrm{O}_{8}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 1252.7466$, found 1252.7462.

Radiolabeling

Procedure A (${ }^{111}$ In labeling for DOTA compound): $10 \mu \mathrm{~L}$ of 1 M KOAc aqueous solution and $106.5 \mu \mathrm{~L}$ of 4 mM DOTA compound in MeCN were added to $100 \mu \mathrm{~L}$ of [$\left.{ }^{111} \mathrm{I} \mathrm{n}\right] \mathrm{Cl}_{3}$ in $5 \times 10^{-2} \mathrm{M} \mathrm{HCl}$ aqueous solution. After thorough mixing by pipetting the solution $(\mathrm{pH} 4)$, it was heated at $85^{\circ} \mathrm{C}$ for 20 minutes and then cooled at room temperature for 5 minutes. In advance, the SPE Cartridge (Waters Sep-Pak tC18 Plus Short Cartridge, WAT036810) was activated with 3 mL of distilled water, and the reaction solution was injected into the cartridge. The syringe was rinsed twice with $50 \% \mathrm{MeCN}$ distilled water ($100 \mu \mathrm{~L}$ each time), and the rinsed solution was injected into the cartridge. After flushing the cartridge with 10 mL of distilled water, $99.5 \% \mathrm{EtOH}(500 \mu \mathrm{~L})$ was passed through the cartridge four times to elute the ${ }^{111} \mathrm{In}$-labeled DOTA compound. The radioactivity fraction among the four fractions was collected, heated, and dried at $70^{\circ} \mathrm{C}$. The resulting product was redissolved in an appropriate amount of $10 \% \mathrm{EtOH}$ saline for animal experiments.

Procedure B (${ }^{111}$ In labeling for DTPA compound): $100 \mu \mathrm{~L}$ of 0.3 M KOAc aqueous solution and $10 \mu \mathrm{~L}$ of 1 mM DTPA compound in MeCN were added to $100 \mu \mathrm{~L}$ of $\left[{ }^{[11} \mathrm{In}\right] \mathrm{Cl}_{3}$ in 5×10^{-2} M HCl aqueous solution. After thorough mixing by pipetting the solution, it was left at room temperature for 15 minutes. In advance, the SPE Cartridge (Waters Sep-Pak tC18 Plus Short Cartridge, WAT036810) was activated with 3 mL of distilled water, and the reaction solution was injected into the cartridge. The syringe was rinsed twice with 50% MeCN distilled water ($100 \mu \mathrm{~L}$ each time), and the rinsed solution was injected into the cartridge. After flushing the cartridge with 10 mL of distilled water, $99.5 \% \mathrm{EtOH}(500 \mu \mathrm{~L})$ was passed through the cartridge four times to elute the ${ }^{111}$ In-labeled DTPA compound. The radioactivity fraction among the four fractions was collected, heated, and dried at $70{ }^{\circ} \mathrm{C}$. The resulting product was redissolved in an appropriate amount of $10 \% \mathrm{EtOH}$ saline for animal experiments.

Procedure C (${ }^{90}$ Y labeling for DTPA compound): $100 \mu \mathrm{~L}$ of 0.3 M KOAc aqueous solution and $5 \mu \mathrm{~L}$ of 1 mM DTPA compound in MeCN were added to $10 \mu \mathrm{~L}$ of $\left[{ }^{[0} \mathrm{Y}\right] \mathrm{Cl}_{3}$ in $5 \times 10^{-2} \mathrm{M}$ HCl aqueous solution. After thorough mixing by pipetting the solution, it was left at room temperature for 15 minutes. In advance, the SPE Cartridge(waters Sep-Pak tC18 Plus Short Cartridge, WATO36810) was activated with 3 mL of distilled water, and the reaction solution was injected into the cartridge. The syringe was rinsed twice with 50% MeCN distilled water ($100 \mu \mathrm{~L}$ each time), and the rinsed solution was injected into the cartridge. After flushing the cartridge with 10 mL of distilled water, $99.5 \% \mathrm{EtOH}(500 \mu \mathrm{~L})$ was passed through the cartridge four times to elute the ${ }^{90} \mathrm{Y}$-labeled DTPA compound. The radioactivity fraction among the four fractions was collected, heated, and dried at $70{ }^{\circ} \mathrm{C}$. The resulting product was redissolved in an appropriate amount of $10 \% \mathrm{EtOH}$ saline for animal experiments.

Radio-thin layer chromatography (Radio-TLC) is a technique that separates radiolabeled compounds for analytical work. It is often used to analyze radiolabeled compounds' purity and determine reaction conversion when optimizing radiosynthesis processes. A radio-TLC scanner is used to examine a TLC plate (spotted with a small amount of the sample and then developed with a mobile phase), which moves a radiation detector along the plate to obtain measurements of generated radiation as a function of distance. See Figs. S2-S4.

Synthesis of ${ }^{111} I n-D O T A-2 P^{2} N_{3} 4$: This reaction was carried out following Procedure A. Upon reaction and purification with 66.9 MBq of ${ }^{111} \mathrm{In}, 56.8 \mathrm{MBq}$ of ${ }^{111} \mathrm{In}-$ DOTA-2PhN 34 was obtained. Radiochemical yield $(R C Y)=85 \%$ (Uncorrected for half-life). Radiochemical purity $(R C P)=100 \%(100 \%$, after 28 h).

Fig. S2 Radio-TLC chromatogram of the purified compound 4 obtained with the radio-TLC scanner. The horizontal axis represents the distance (mm) along the TLC plate between the observed peak (at 100 mm) and the original start line (at 20 mm) before elution. The vertical axis represents the intensity of radioactivity (counts/minutes). (a) Measurement immediately after purification (RCP $100 \%)$. (b) Measurement at 28 hours after purification (RCP 100\%). TLC eluent: $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (1:1).

Synthesis of ${ }^{111}$ In-DOTA-2PhH S1: This reaction was carried out following Procedure A. Upon reaction and purification with 172 MBq of ${ }^{111} \mathrm{In}, 160 \mathrm{MBq}$ of ${ }^{111} \mathrm{In}$-DOTA-2PhH S1 was obtained. $\mathrm{RCY}=93 \%$ (Uncorrected for half-life). $\mathrm{RCP}=100 \%$ (97%, after 24 h).

Fig. S3 Radio-TLC chromatogram of the purified compound S1 obtained with the radio-TLC scanner. The horizontal axis represents the distance (mm) along the TLC plate between the observed peak (at 90 mm) and the original start line (at 20 mm) before elution. The vertical axis represents the intensity of radioactivity (counts/minutes). (a) Measurement immediately after purification (RCP 100\%). (b) Measurement at 24 hours after purification (RCP 97\%). TLC eluent: $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (1:1).

Synthesis of ${ }^{111} / n-D T P A-4 P h N_{3} 5 a$: This reaction followed Procedure B. Upon reacting and purifying with 170 MBq of ${ }^{111} \mathrm{I} \mathrm{n}, 127 \mathrm{MBq}$ of ${ }^{111} \mathrm{In}$-DTPA-4PhN $\mathrm{S}_{3} 5$ a was obtained. RCY = 75\% (Uncorrected for half-life). RCP = 97\% (97\%, after 24 h).

Fig. S4 Radio-TLC chromatogram of the purified compound 5a obtained with the radio-TLC scanner. The horizontal axis represents the distance (mm) along the TLC plate between the observed peak (at 85 mm) and the original start line (at 20 mm) before elution. The vertical axis represents the intensity of radioactivity (counts/minutes). (a) Measurement immediately after purification (RCP 97\%). (b) Measurement at 24 hours after purification (RCP 97\%). TLC eluent: $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (1:1).

Synthesis of ${ }^{90} \mathrm{Y}-\mathrm{DTPA}-4 P h N_{3} \mathbf{5 b}$: This reaction followed Procedure C. Upon reacting and purifying with 117 MBq of ${ }^{90} \mathrm{Y}, 110 \mathrm{MBq}$ of ${ }^{90} \mathrm{Y}$-DTPA- $4 \mathrm{PhN} \mathrm{P}_{3} \mathbf{5 b}$ was obtained. $\mathrm{RCY}=94 \%$ (uncorrected for half-life). RCP $=99 \%$.

Fig. S5 Radio-TLC chromatogram of the purified compound $\mathbf{5 b}$ obtained with the radio-TLC scanner. The horizontal axis represents the distance (mm) along the TLC plate between the observed peak (at 95 mm) and the original start line (at 20 mm) before elution. The vertical axis represents the intensity of radioactivity (counts/minutes). Measurement immediately after purification (RCP 99\%). TLC eluent: $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}(1: 1)$.

Animal experiments

The study involving the use of animals was conducted in compliance with the relevant regulations and standards after the experimental plan was designed following the Regulations on Safety Management of Biological Experiments of the study institution, Nihon Medi-Physics Co., Ltd. Research Center, and was reviewed and approved by the Biological Experiment Committee. For all injections and tumor measurements, mice were anesthetized with $1-4 \%$ isoflurane in oxygen at a $2.5-3.0 \mathrm{~L} /$ minute flow rate.

Statistics: All quantitative results are expressed as mean and standard deviation. Indicators of statistical significance were unpaired two-tailed Student's t-test or twoway analysis of variance (ANOVA) with Tukey's or Šidák correction for multiple comparisons analyses. All statistical analyses were performed using a GraphPad PRISM (version 9.5.1, GraphPad Software, Inc., California, USA). Statistical significance was defined as a P-value <0.05.

Cell lines and reagents: A549 cells were purchased from the European collection of Authenticated Cell Cultures. They were cultured in an F-12K Nutrient mixture (Gibco) supplemented with 10% fetal bovine serum (FBS) (ATCC) and 1% penicillin-streptomycin (Gibco). The cells were then incubated at $37^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO}_{2}$ humidified atmosphere.

A549-bearing mice xenograft models for SPECT studies: The A549 (human lung) cancer xenograft tumors were established in 4 -week-old female nude mice (BALB/c$\mathrm{nu} / \mathrm{nu}$, The Jackson Laboratory Japan, Inc.) by subcutaneous injection of 7.66×10^{6} cells in $100 \mu \mathrm{~L}$ of cold 50% Matrigel in PBS into the right shoulder subcutaneous. Tumor growth was then monitored. The mice were kept in a controlled temperature ($18-28^{\circ} \mathrm{C}$), salinity, and aeration room with sufficient food and water for 12 hours a day and 12 hours a night. After the tumor reached $200-350 \mathrm{~mm}^{3}$ (25 days), the A549 tumor-bearing mice were ready for treatment studies.

A549-bearing mice xenograft models for Treatment studies: The A549 (human lung) cancer xenograft tumors were established in 4 -week-old female nude mice (BALB/c$\mathrm{nu} / \mathrm{nu}$, The Jackson Laboratory Japan, Inc.) by subcutaneous injection of 7.66×10^{6} cells in $100 \mu \mathrm{~L}$ of cold 50% Matrigel in PBS into the right shoulder subcutaneous. Tumor growth was then monitored. The mice were kept in a controlled temperature $\left(18-28^{\circ} \mathrm{C}\right)$, salinity, and aeration room with sufficient food and water for 12 hours a day and 12 hours a night. After the tumor reached $50-150 \mathrm{~mm}^{3}$ (10 days), the A549 tumor-bearing mice were ready for treatment studies.

SPECT studies

The mice selected for Single Photon Emission Computed Tomography (SPECT) imaging were divided into groups ($n=3$ for each group) based on visual observation, ensuring no specific abnormalities and minimizing the differences in tumor volume and body weight averages among the groups. The mice were anesthetized, and ${ }^{111} \mathrm{In}$-labeled compounds ($10 \mathrm{MBq} / 10 \mu \mathrm{~L}$ of $10 \% \mathrm{EtOH} /$ saline) were administered into the tumor under 1-4\% isoflurane anesthesia. SPECT and Computed Tomography (CT) imaging, each lasting approximately 30 minutes, were conducted at $1,6,24,48$, and 72 hours post-administration under $1-2 \%$ isoflurane anesthesia. SPECT and CT imaging were performed using the small-animal SPECT/CT system FX-3000 (Trifoil Imaging). From the composite images of SPECT and CT, the accumulation of ${ }^{111}$ In-labeled compounds in the tumor and trunk was obtained in axial and coronal images using PMOD software (PMOD Technologies). Subsequently, image analysis was performed using AMIDE (AMIDE Development Team). The image analysis identified the positions of the tumor, muscles, heart, liver, and kidneys from the SPECT and CT composite images. Three-dimensional regions of interest [volume of interest (VOI)] were defined for each time point and tissue. Standardized uptake value (SUV) was calculated from the VOIs set at each time point and for each tissue. SUV is calculated as [radioactivity concentration in the volume of interest (VOI) (MBq/mL) / (administered radioactivity (MBq) / mouse body weight (g))].

Table S1 SPECT imaging and image reconstruction conditions.

Parameters	Conditions
Isotope/Energy	Indium-111/High-energy (220-270 keV)
Detector	Cadmium Zinc Telluride, 4-head
Collimator	MMP 952
Radius of rotation	50 mm
Field of view	60 mm
Scan-mode/degree	Tomography/180 degrees
Scan-time	32 minutes (240 seconds/projection, 8-projection)
Reconstruction-algorithm	dimensional - ordered subset expectation maximization method
Reconstruction-parameter	Iteration 4, Subsets 8

Table S2 CT imaging conditions.

Parameters	Conditions
Current/Voltage	$450 \mu \mathrm{~A} / 50 \mathrm{kV}$
Exposure time	230 mS
Magnification	1.5
Field of view	78.9 mm
Projection count	128 views
Frame averaged	1 frames/view

Fig. S6 (a) SPECT images were taken at various time points of mice administered with ${ }^{111} \mathrm{In}$-DOTA$2 \mathrm{PhN}_{3} 4$. Images were captured in both coronal and axial sections. Additionally, signal intensity thresholds were adjusted to depict the trunk or tumor in each section, resulting in four images in the figure. (b) The standardized uptake value (SUV) was calculated from SPECT images taken at each time point for 5 organs $(n=3)$. SUV is calculated as [radioactivity concentration in the volume of interest(VOI)) (MBq/mL) / (administered radioactivity (MBq) / mouse body weight (g))].

Fig. $\mathbf{S 7}$ (a) SPECT images were taken at various time points of mice administered with ${ }^{111}$ In-DOTA2PhH S1. Images were captured in both coronal and axial sections. Additionally, signal intensity thresholds were adjusted to depict the trunk or tumor in each section, resulting in four images in the figure. (b) The standardized uptake value (SUV) was calculated from SPECT images taken at each time point for 5 organs ($n=3$). SUV is calculated as [radioactivity concentration in the volume of interest(VOI)) (MBq/mL) / (administered radioactivity (MBq) / mouse body weight (g))].

Fig. S8 (a) SPECT images were taken at various time points of mice administered with ${ }^{111} \mathrm{In}$-DTPA$4 \mathrm{PhN}_{3} 5$ a. Images were captured in both coronal and axial sections. Additionally, signal intensity thresholds were adjusted to depict the trunk or tumor in each section, resulting in four images in the figure. (b) The standardized uptake value (SUV) was calculated from SPECT images taken at each time point for 5 organs $(n=3)$. SUV is calculated as [radioactivity concentration in the volume of interest(VOI) (MBq/mL) / (administered radioactivity (MBq) / mouse body weight (g))].

Table S3 Two-way ANOVA with Šidák correction was conducted to test the differences in tumor standardized uptake value (SUV) between the two groups ($n=3$ for each group). The difference between the ${ }^{111} \ln$-DOTA- $2 \mathrm{PhN}_{3}$ 4-treated group and the ${ }^{111} \mathrm{In}$-DOTA-2PhH S1-treated group was significant starting from 6 hours post-administration, and this difference increased significantly throughout the entire experiment (see Fig. 2b in the manuscript). SUV is calculated as [radioactivity concentration in the volume of interest $(\mathrm{VOI})(\mathrm{MBq} / \mathrm{mL}) /$ (administered radioactivity (MBq) / mouse body weight (g))] from SPECT images. n.s. = not significant, ${ }^{*} \mathrm{P}<0.05$, ${ }^{* *} \mathrm{P}<0.01,{ }^{* * *}$ P <0.001, ${ }^{* * * * P ~}$ < 0.0001 .

	$\begin{gathered} { }^{111} \text { In-DOTA- } \\ 2 \mathrm{PhN}_{3} 4 \\ \text { SUV (tumor) } \end{gathered}$			$\begin{aligned} & { }^{111} \text { In-DOTA- } \\ & \text { 2PhH S1 } \\ & \text { SUV (tumor) } \end{aligned}$			Summary	Adjusted P value
Time (hours)		n			n			
1	4.63	\pm	1.15	2.67	\pm	0.24	n.s.	0.2876
6	4.83	\pm	0.64	0.67	\pm	0.10	**	0.0026
24	4.55	\pm	1.73	0.17	\pm	0.09	**	0.0015
48	4.70	\pm	1.97	0.10	\pm	0.02	***	0.0009
72	4.99	\pm	2.55	0.07	\pm	0.02	***	0.0004

Biodistribution studies

After the completion of SPECT imaging at the 72-hour time point, mice were euthanized under deep anesthesia with isoflurane inhalation (1.0-4.0\%) and cardiac blood collection, followed by organ extraction ($n=3$ for each group). Feces and urine were collected from the metabolic cage. The extracted organs included the tumor, heart, lungs, spleen, pancreas, stomach, small intestine, large intestine, ovaries, uterus, muscles, bones, liver, kidneys, whole brain, and the remaining whole body. The weights of the collected blood and organs (excluding feces and urine) were measured, and radioactivity was quantified to assess the distribution of radioactivity. Additionally, the radioactivity (count rate) obtained from the gamma well scintillation counting system was time-corrected to the time of ${ }^{111}$ In administration. \%ID for all tissues and \%ID/g for organs excluding feces and urine were calculated.

Table S4 The distribution of radioactivity (\%ID) in each tissue after SPECT imaging ($n=3$) (see Fig. 2c in the manuscript).

	$\begin{gathered} { }^{111} \text { In-DOTA- } \\ \text { 2PhH S1 } \end{gathered}$			$\begin{gathered} { }^{111} \mathrm{In}-\mathrm{DOTA}- \\ 2 \mathrm{PhN}_{3} 4 \end{gathered}$			$\begin{gathered} { }^{111} \mathrm{In}-\mathrm{DTPA}- \\ 4 \mathrm{PhN} \mathrm{~N}_{3} 5 \mathrm{a} \end{gathered}$		
Tissue	Mean \pm SD			Mean \pm SD			Mean \pm SD		
Tumor	1.543	\pm	0.551	3.269	\pm	1.179	53.11	\pm	3.937
Blood	0.005	\pm	0.002	0.014	\pm	0.002	0.306	\pm	0.101
Heart	0.014	\pm	0.004	0.022	\pm	0.003	0.044	\pm	0.014
Lung	0.040	\pm	0.006	0.057	\pm	0.014	0.079	\pm	0.013
Spleen	0.021	\pm	0.002	0.039	\pm	0.009	0.395	\pm	0.271
Pancreas	0.014	\pm	0.003	0.021	\pm	0.004	0.040	\pm	0.006
Stomach	0.016	\pm	0.007	0.028	\pm	0.009	0.052	\pm	0.022
Small intestine	0.241	\pm	0.062	0.405	\pm	0.038	0.753	\pm	0.220
Large intestine	0.197	\pm	0.082	0.584	\pm	0.212	0.598	\pm	0.030
Ovaries	0.001	\pm	0.000	0.002	\pm	0.002	0.001	\pm	0.000
Uterus	0.008	\pm	0.002	0.059	\pm	0.070	0.028	\pm	0.012
Muscle	0.003	\pm	0.000	0.009	\pm	0.003	0.011	\pm	0.003
Bone	0.006	\pm	0.002	0.009	\pm	0.002	0.039	\pm	0.009
Liver	0.823	\pm	0.141	0.768	\pm	0.061	6.837	\pm	0.764
Kidney	0.118	\pm	0.014	0.244	\pm	0.041	0.380	\pm	0.086
Whole brain	0.001	\pm	0.000	0.003	\pm	0.001	0.014	\pm	0.006
Remained whole body	0.873	\pm	0.123	3.408	\pm	0.321	21.13	\pm	3.652
Urine	9.128	\pm	6.284	9.961	\pm	2.823	0.797	\pm	0.645
Feces	86.95	\pm	5.991	81.10	\pm	1.554	15.38	\pm	0.473

Table S5 The distribution of radioactivity (\%ID/g) in each tissue after SPECT imaging ($n=3$).

	$\begin{gathered} { }^{111} \text { In-DOTA- } \\ \text { 2PhH S1 } \end{gathered}$			$\begin{gathered} { }^{111} \mathrm{In}^{2} \text { DOTA- } \end{gathered}$			${ }^{111}$ In-DTPA$4 \mathrm{PhN}_{3} 5 \mathrm{a}$		
Tissue	Mean \pm SD			Mean \pm SD			Mean \pm SD		
Tumor	4.437	\pm	1.464	13.79	\pm	7.495	146.6	\pm	28.38
Blood	0.006	\pm	0.001	0.020	\pm	0.001	0.387	\pm	0.155
Heart	0.134	\pm	0.046	0.216	\pm	0.016	0.412	\pm	0.155
Lung	0.338	\pm	0.071	0.455	\pm	0.055	0.635	\pm	0.150
Spleen	0.360	\pm	0.132	0.612	\pm	0.124	5.847	\pm	2.929
Pancreas	0.091	\pm	0.040	0.164	\pm	0.013	0.273	\pm	0.079
Stomach	0.070	\pm	0.069	0.100	\pm	0.048	0.124	\pm	0.043
Small intestine	0.261	\pm	0.150	0.389	\pm	0.015	0.650	\pm	0.261
Large intestine	0.333	\pm	0.309	0.523	\pm	0.267	0.457	\pm	0.103
Ovaries	0.224	\pm	0.123	0.857	\pm	0.794	0.685	\pm	0.529
Uterus	0.375	\pm	0.140	1.345	\pm	0.933	0.824	\pm	0.249
Muscle	0.038	\pm	0.007	0.089	\pm	0.019	0.126	\pm	0.043
Bone	0.079	\pm	0.013	0.152	\pm	0.014	0.463	\pm	0.101
Liver	0.890	\pm	0.435	0.771	\pm	0.152	6.342	\pm	0.304
Kidney	0.421	\pm	0.108	0.867	\pm	0.082	1.364	\pm	0.435
Whole brain	0.004	\pm	0.001	0.006	\pm	0.001	0.039	\pm	0.023
Remained whole body	0.077	\pm	0.020	0.282	\pm	0.015	1.722	\pm	0.384

Fig. $\mathbf{S 9}$ Biodistribution (\%ID) of $\mathbf{S 1 , 4}$, and $\mathbf{5 a}$ in the xenograft mice 72 hours after the corresponding compounds were administered intratumorally $(n=3)$ (see also Fig. 2 c in the manuscript).

Fig. S10 Biodistribution (\%ID/g) of S1, 4, and 5a in the xenograft mice 72 hours after the corresponding compounds were administered intratumorally ($n=3$).

Table S6 The cellbased assay was conducted determine the effectiveness of cellular uptake of $\left[{ }^{111} \mathrm{In}\right] \mathrm{Cl}_{3}$ and compound 5 a into two cancer cell lines - PANC-1 cells and B16 cells. For both cell lines, 1×10^{6} and 5×10^{6} cells were used. The cells were incubated with 1.5 - 1.8 MBq of [$\left.{ }^{111} \mathrm{In}\right] \mathrm{Cl}_{3}$ or compound 5a for 30 minutes at room temperature.

After labeling, the radioactive amounts in the cell pellet or supernatant were measured using a dose calibrator immediately after labeling and after washing. PANC-1 = hıman nancroac

Cell line (Cell number)	Loading	After labeling			After washing		
		Cell pellet, CP (MBq)	Supernatant, S (MBq)	Uptake ratio CP/(CP+S) \%	Cell pellet, CP (MBq)	Supernatant, S (MBq)	Uptake ratio CP/(CP+S) \%
PANC-1 (1×10^{6})	$\left[{ }^{111} \mathrm{In}\right] \mathrm{Cl}_{3}$	0.06	0.81	6.6\%	0.04	0.99	3.4\%
	Compound 5a	0.26	0.85	23.0\%	0.06	1.09	5.2\%
PANC-1 (5×10^{6})	$\left[{ }^{111} \mathrm{In}\right] \mathrm{Cl}_{3}$	0.06	0.87	6.8\%	0.04	1.00	3.5\%
	Compound 5a	0.31	0.87	26.3\%	0.06	1.11	5.3\%
B16 (1×10^{6})	$\left[{ }^{111} \mathrm{In}\right] \mathrm{Cl}_{3}$	0.19	1.01	15.9\%	0.06	1.13	5.1\%
	Compound 5a	0.31	0.92	25.0\%	0.14	1.09	11.0\%
B16 (5×10^{6})	$\left[{ }^{111} \mathrm{In}\right] \mathrm{Cl}_{3}$	0.23	1.01	18.6\%	0.07	1.16	5.5\%
	Compound 5a	0.53	0.81	39.6\%	0.32	1.02	24.1\%

Cancer treatment studies

The mice selected for treatment studies were divided into four groups ($n=6$ for each group) based on visual observation, ensuring no specific abnormalities and minimizing the differences in tumor volume and body weight averages among the groups. Four groups of mice were injected intratumorally with a solution of 0 MBq (vehicle), $0.1,0.5$, and 2.5 MBq of ${ }^{90}$ Y-DTPA-4PhN N_{3} 5b dissolved in $10 \mu \mathrm{~L}$ of $10 \% \mathrm{EtOH} /$ saline ($20 \mu \mathrm{M}$ DTPA$4 \mathrm{PhN}_{3}$ 11), respectively. The mice's tumor volume and body weight were recorded within a specific period using the equation $\mathrm{V}=\mathrm{W}^{2} \times \mathrm{L} / 2$, where W and L represented the minor and major lengths of the tumor, respectively. After the completion of the measurement of tumor volume at the 33-day time point, mice were euthanized under deep anesthesia with isoflurane inhalation (1.0-4.0\%) and bloodletting, followed by organ extraction. The extracted organs included the tumor, heart, lungs, spleen, pancreas, liver, kidneys, and the remaining whole body. The weight of each organ removed from the mice was measured. The relative weight of the organs in each group was calculated by comparing the weight of the organs in the vehicle group.

Table S7 Two-way ANOVA with Tukey's correction was performed to test group tumor growth differences $(n=6)$ (see manuscript Fig. 3a). The difference between the vehicle-treated and ${ }^{90}$ Y-DTPA-4PhN $\mathbf{3}_{3} \mathbf{5 b}$-treated groups was significant starting 13 days after treatment. The considerable increase continued throughout the experiment. Vehicle = Saline ($10 \% \mathrm{EtOH}, 20 \mu \mathrm{M}$ DTPA-4PhN ${ }_{3}$ 11). n.s. $=$ not significant, ${ }^{*} \mathrm{P}<0.05,{ }^{* *} \mathrm{P}<0.01,{ }^{* * *} \mathrm{P}<0.001,{ }^{* * * * P}<0.0001$.

Posttreatment (days)	Vehicle vs. ${ }^{90} \mathrm{Y}$-DTPA- $4 \mathrm{PhN} \mathrm{S}_{3}$ 5b (0.1MBq)		Vehicle vs. ${ }^{90} \mathrm{Y}$-DTPA-4PhN 3 5b (0.5MBq)		Vehicle vs. ${ }^{90} \mathrm{Y}$-DTPA- $4 \mathrm{PhN} \mathrm{N}_{3}$ 5b (2.5MBq)	
	Summary	Adjusted P value	Summary	Adjusted P value	Summary	Adjusted P value
0	n.s.	>0.9999	n.s.	>0.9999	n.s.	>0.9999
4	n.s.	0.8886	n.s.	0.5330	n.s.	0.4283
7	n.s.	0.9372	n.s.	0.4593	n.s.	0.4934
11	n.s.	0.8757	n.s.	0.2191	n.s.	0.1364
13	n.s.	0.3563	*	0.0186	*	0.0199
18	n.s.	0.1176	****	<0.0001	****	<0.0001
21	*	0.0268	****	<0.0001	****	<0.0001
25	*	0.0224	****	<0.0001	****	<0.0001
28	***	0.0005	****	<0.0001	****	<0.0001

Table S8 Two-way ANOVA with Tukey's correction was performed to test group tumor growth differences $\left(n=6\right.$) (see manuscript Fig. 3a). The difference between the ${ }^{90}$ Y-DTPA-4PhN $\mathbf{N}_{3} \mathbf{5 b} 0.1 \mathrm{MBq}-$ treated group and the 0.5 and 2.5 MBq -treated groups was significant starting 18 days after treatment. Vehicle $=$ Saline ($10 \% \mathrm{EtOH}, 20 \mu \mathrm{M}$ DTPA-4PhN ${ }_{3}$ 11). n.s. = not significant, ${ }^{*} \mathrm{P}<0.05$, ${ }^{* *} \mathrm{P}$ $<0.01,{ }^{* * *}$ P $<0.001,{ }^{* * * * P}<0.0001$.

Posttreatment (days)	${ }^{90} \mathrm{Y}$-DTPA-4PhN $\mathrm{N}_{3} 5 \mathrm{~b}$ (0.1 MBq) vs. ${ }^{90}$ Y-DTPA- $4 \mathrm{PhN}_{3}$ 5b (0.5MBq)		${ }^{90} \mathrm{Y}$-DTPA-4PhN 3 5b (0.1 MBq) vs. ${ }^{90} \mathrm{Y}$-DTPA-4PhN ${ }_{3}$ 5b (2.5 MBq)		${ }^{90} \mathrm{Y}$-DTPA-4PhN $\mathrm{N}_{3} 5 \mathrm{~b}$ (0.5 MBq) vs. ${ }^{90} \mathrm{Y}$-DTPA-4PhN ${ }_{3}$ 5b (2.5MBq)	
	Summary	Adjusted P value	Summary	Adjusted P value	Summary	Adjusted P value
0	n.s.	>0.9999	n.s.	0.9996	n.s.	0.9996
4	n.s.	0.9229	n.s.	0.8552	n.s.	0.9983
7	n.s.	0.8127	n.s.	0.8403	n.s.	>0.9999
11	n.s.	0.6413	n.s.	0.4913	n.s.	0.9953
13	n.s.	0.5596	n.s.	0.5738	n.s.	>0.9999
18	*	0.0312	**	0.0031	n.s.	0.8788
21	***	0.0009	****	<0.0001	n.s.	0.6162
25	****	<0.0001	****	<0.0001	n.s.	0.3069
28	****	<0.0001	****	<0.0001	n.s.	0.1100

Table S9 Two-way ANOVA with Tukey's correction was performed to test group relative body weight change differences ($n=6$) (see manuscript Fig. 3b). There were no combinations for which significant differences were identified. Vehicle $=$ Saline ($10 \% \mathrm{EtOH}, 20 \mu \mathrm{M}$ DTPA-4PhN N_{3} 11). n.s. = not significant, *P < 0.05, **P < 0.01, ${ }^{* * * P ~<~ 0.001, ~ * * * * P ~<~} 0.0001$.

Posttreatment (days)	Vehicle vs. ${ }^{90}$ Y-DTPA-4PhN 3 5b (0.1MBq)		Vehicle vs. ${ }^{90} \mathrm{Y}$-DTPA- $4 \mathrm{PhN} \mathrm{N}_{3}$ 5b (0.5 MBq)		Vehicle vs. ${ }^{90}$ Y-DTPA- 4 PhN ${ }_{3}$ 5b (2.5MBq)	
	Summary	Adjusted P value	Summary	Adjusted P value	Summary	Adjusted P value
0	n.s.	0.3198	n.s.	0.7767	n.s.	0.5053
4	n.s.	0.1217	n.s.	0.9389	n.s.	0.9782
7	n.s.	0.2354	n.s.	0.9432	n.s.	0.7479
11	n.s.	0.1304	n.s.	0.6088	n.s.	0.5027
13	n.s.	0.3456	n.s.	0.9831	n.s.	0.6662
18	n.s.	0.1960	n.s.	0.8566	n.s.	0.5629
21	n.s.	0.2746	n.s.	0.9654	n.s.	0.9090
25	n.s.	0.5133	n.s.	0.9988	n.s.	0.9020
28	n.s.	0.2889	n.s.	>0.9999	n.s.	0.7368

Table S10 Two-way ANOVA with Tukey's correction was performed to test group relative body weight change differences $(n=6$) (see manuscript Fig. 3b). There were no combinations for which significant differences were identified. Vehicle $=$ Saline ($10 \% \mathrm{EtOH}, 20 \mu \mathrm{M}$ DTPA-4PhN 3 11). n.s. $=$ not

Posttreatment (days)	${ }^{90} \mathrm{Y}-\mathrm{DTPA}-4 \mathrm{PhN} \mathrm{N}_{3}$ 5b (0.1MBq) vs. ${ }^{90} \mathrm{Y}$-DTPA-4PhN $\mathrm{N}_{3} 5 \mathrm{~b}$ (0.5 MBq)		$\begin{gathered} { }^{90} \mathrm{Y}-\mathrm{DTPA}-4 \mathrm{PhN}_{3} \mathbf{5 b}(0.1 \mathrm{MBq}) \\ \text { vs. } \\ { }^{90} \mathrm{Y} \text {-DTPA- } 4 \mathrm{PhN}_{3} \mathbf{5 b}(2.5 \mathrm{MBq}) \end{gathered}$		${ }^{90} \mathrm{Y}-\mathrm{DTPA}-4 \mathrm{PhN} \mathrm{N}_{3}$ 5b (0.5MBq) vs. ${ }^{90} \mathrm{Y}$-DTPA-4PhN N_{3} 5b (2.5MBq)	
	Summary	Adjusted P value	Summary	Adjusted P value	Summary	Adjusted P value
0	n.s.	0.8717	n.s.	0.9886	n.s.	0.9713
4	n.s.	0.3571	n.s.	0.2677	n.s.	0.9981
7	n.s.	0.5454	n.s.	0.8109	n.s.	0.9713
11	n.s.	0.7732	n.s.	0.8585	n.s.	0.9983
13	n.s.	0.5656	n.s.	0.9527	n.s.	0.8671
18	n.s.	0.6316	n.s.	0.9020	n.s.	0.9574
21	n.s.	0.5427	n.s.	0.6675	n.s.	0.9973
25	n.s.	0.6074	n.s.	0.8995	n.s.	0.9495
28	n.s.	0.3111	n.s.	0.8754	n.s.	0.7625

Table S11 Two-way ANOVA with Tukey's correction was performed to test group differences for each relative organ weight $(n=6$) (see manuscript Fig. 3c). There was a significant difference in tumor and spleen between the vehicle group and the ${ }^{90} \mathrm{Y}$-DTPA- $4 \mathrm{PhN}_{3} 5$ b group. Vehicle $=$ Saline ($10 \% \mathrm{EtOH}, 20$ $\mu \mathrm{M}$ DTPA-4PhN N_{3} 11). n.s. $=$ not significant, ${ }^{*} \mathrm{P}<0.05$, $^{* *} \mathrm{P}<0.01,{ }^{* * * \mathrm{P}}<0.001,{ }^{* * * *} \mathrm{P}<0.0001$.

organs	Vehicle vs. ${ }^{90} \mathrm{Y}$-DTPA-4PhN ${ }_{3}$ 5b (0.1 MBq)		Vehicle vs. ${ }^{90}$ Y-DTPA-4PhN ${ }_{3}$ 5b (0.5 MBq)		Vehicle vs. ${ }^{90} \mathrm{Y}$-DTPA-4PhN N_{3} 5b (2.5MBq)	
	Summary	Adjusted P value	Summary	Adjusted P value	Summary	Adjusted P value
Tumor	n.s.	0.4467	****	<0.0001	****	<0.0001
Heart	n.s.	0.3899	n.s.	0.6319	n.s.	0.5754
Lung	n.s.	0.7478	n.s.	0.8756	n.s.	0.8532
Spleen	****	<0.0001	*	0.0177	**	0.0036
Pancreas	n.s.	0.3428	n.s.	0.6297	n.s.	0.3428
Liver	n.s.	0.5052	n.s.	0.3992	n.s.	0.1357
Kidney	n.s.	0.6667	n.s.	0.8522	n.s.	0.6559

Table S12 Two-way ANOVA with Tukey's correction was performed to test group differences for each relative organ weight ($n=6$) (see manuscript Fig. 3c). In the comparison between the ${ }^{90} \mathrm{Y}$-DTPA-4PhN ${ }_{3}$ 5b treatment groups, there was a significant difference only in the tumor. Vehicle $=$ Saline $(10 \% \mathrm{EtOH}$,

organs	$\begin{gathered} { }^{90} \mathrm{Y}-\text { DTPA- } 4 \mathrm{PhN}_{3} \mathbf{5 b}(0.1 \mathrm{MBq}) \\ \text { vs. } \\ { }^{90} \mathrm{Y} \text {-DTPA- } 4 \mathrm{Ph} \mathrm{~N}_{3} \mathbf{5 b}(0.5 \mathrm{MBq}) \end{gathered}$		$\begin{gathered} { }^{90} \mathrm{Y}-\text { DTPA- } 4 \mathrm{PhN}_{3} \mathbf{5 b}(0.1 \mathrm{MBq}) \\ \text { vs. } \\ { }^{90} \mathrm{Y} \text {-DTPA- } 4 \mathrm{Ph} \mathrm{~N}_{3} \mathbf{5 b}(2.5 \mathrm{MBq}) \end{gathered}$		$\begin{gathered} { }^{90} \mathrm{Y}-\text { DTPA- } 4 \mathrm{PhN}_{3} 5 \mathbf{b}(0.5 \mathrm{MBq}) \\ \text { vs. } \\ { }^{90} \mathrm{Y} \text {-DTPA- } 4 \mathrm{PhN}_{3} \mathbf{5 b}(2.5 \mathrm{MBq}) \end{gathered}$	
	Summary	Adjusted P value	Summary	Adjusted P value	Summary	Adjusted P value
Tumor	****	<0.0001	****	<0.0001	n.s.	0.1649
Heart	n.s.	0.9795	n.s.	0.9903	n.s.	0.9997
Lung	n.s.	0.9944	n.s.	0.9971	n.s.	>0.9999
Spleen	n.s.	0.3694	n.s.	0.6822	n.s.	0.9569
Pancreas	n.s.	0.9648	n.s.	>0.9999	n.s.	0.9648
Liver	n.s.	0.9981	n.s.	0.8644	n.s.	0.9312
Kidney	n.s.	0.9872	n.s.	>0.9999	n.s.	0.9852

${ }^{1} \mathrm{H}-\mathrm{NMR}$ in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR in CDCl_{3}

HRMS

Mass Spectrum SmartFormula Report

Analysis Info				Acquisition Date 2023/10/01 21:18:56		
Analysis Name	D:IData\User DatalOdel000820_1-91_01_18224.d					
Method	Icms_esi_pos_low.m			Operator	BDAL@DE	
Sample Name	000820			Instrument	microtof II	8213750.10448
Comment						
Acquisition Parameter						
Source Type	ESI	Ion Polarity	Positive	Set	ebulizer	3.0 Bar
Focus	Not active			Set D	y Heater	$200 \cdot$ C
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set Capillary	4500 V	Set D	y Gas	10.0 l/min
Scan End	2000 m/z	Set End Plate Offset	-500 V	Set D	vert Valve	Waste

${ }^{1} \mathrm{H}-\mathrm{NMR}$ in CDCl_{3}

${ }^{13} \mathrm{C}$-NMR in CDCl_{3}

Mass Spectrum SmartFormula Report

${ }^{1} \mathrm{H}-\mathrm{NMR}$ in CDCl_{3}

Mass Spectrum SmartFormula Report

Analysis Info
Analysis Name
Method
Sample Name
Comment

Acquisition Parameter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active			Set Dry Heater	$200 \cdot$ ©
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$		Set Capillary	4500 V	Set Dry Gas
Scan End	$2000 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V	Set Divert Valve	Waste

${ }^{1} \mathrm{H}-\mathrm{NMR}$ in CDCl_{3}

${ }^{13} \mathrm{C}-\mathrm{NMR}$ in CDCl_{3}

Mass Spectrum SmartFormula Report

${ }^{1} \mathrm{H}-\mathrm{NMR}$ in CDCl_{3}

${ }^{13} \mathrm{C}-\mathrm{NMR}$ in CDCl_{3}

Mass Spectrum SmartFormula Report

${ }^{1} \mathrm{H}-\mathrm{NMR}$ in CDCl_{3}

${ }^{13} \mathrm{C}-\mathrm{NMR}$ in CDCl_{3}

HRMS

Mass Spectrum SmartFormula Report

Analysis Info				Acquisition Date 2023/10/01 21:33:50		
Analysis Name	D:IData\User Data\Odel000824_1-95_01_18228.d					
Method	Icms_esi_pos_low.m			Operator	BDAL@DE	
Sample Name	000824			Instrument	microtof II	8213750.10448
Comment						
Acquisition Parameter						
Source Type	ESI	Ion Polarity	Positive	Set Ne	bulizer	3.0 Bar
Focus	Not active			Set Dry	Heater	$200 \cdot$ く
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set Capillary	4500 V	Set Dry	Gas	10.0 l/min
Scan End	2000 m/z	Set End Plate Offset	-500 V	Set Div	ert Valve	Waste

${ }^{1} \mathrm{H}-\mathrm{NMR}$ in CDCl_{3}

${ }^{13} \mathrm{C}-\mathrm{NMR}$ in CDCl_{3}

HRMS

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name
Method
Sample Name
Comment

Acquisition Date 2023/10/01 21:56:17

Operator BDAL@DE
Instrument micrOTOF II 8213750.10448

Acquisition Parameter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active			Set Dry Heater	$200 \cdot$ 人C
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$		Set Capillary	4500 V	Set Dry Gas
Scan End	$2000 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V	Set Divert Valve	Waste

${ }^{1} \mathrm{H}-\mathrm{NMR}$ in $\mathrm{CD}_{3} \mathrm{CN}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ in $\mathrm{CD}_{3} \mathrm{CN}$

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name
Method
Sample Name Comment

Acquisition Date 2023/10/01 21:37:32

Operator BDAL@DE
Instrument micrOTOF II 8213750.10448

Acquisition Parameter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active			Set Dry Heater	$200 \cdot$ 人
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set Capillary	4500 V	Set Dry Gas	$10.0 \mathrm{l} / \mathrm{min}$
Scan End	$2000 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V	Set Divert Valve	Waste

${ }^{1} \mathrm{H}-\mathrm{NMR}$ in $\mathrm{CD}_{3} \mathrm{CN}$

${ }^{13} \mathrm{C}-\mathrm{NMR}$ in $\mathrm{CD}_{3} \mathrm{CN}$

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name D:IDatalUser Data\Odel000826_1-97_01_18230.d
Method
Sample Name
Icms_esi_pos_low.m 000826

Acquisition Date 2023/10/01 21:41:16

Operator BDAL@DE
Instrument micrOTOF II 8213750.10448

Comment

Acquisition Parameter					
Source Type	ESI	Pon Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active			Set Dry Heater	$200 \cdot<\mathrm{C}$
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$		Set Capillary	4500 V	Set Dry Gas

${ }^{1} \mathrm{H}-\mathrm{NMR}$ in $\mathrm{CD}_{3} \mathrm{CN}$

Mass Spectrum SmartFormula Report

Analysis Info

Analysis Name
Method
Sample Name
Icms_esi_pos_low.m 000827

Acquisition Date 2023/10/01 21:44:59

Comment

Acquisition Parameter					
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus	Not active			Set Dry Heater	$200 \cdot<$ C
Scan Begin	$50 \mathrm{~m} / \mathrm{z}$	Set Capillary	4500 V	Set Dry Gas	$10.0 \mathrm{l} / \mathrm{min}$
Scan End	$2000 \mathrm{~m} / \mathrm{z}$	Set End Plate Offset	-500 V	Set Divert Valve	Waste

[^0]: * Corresponding author emails:
 pradipta.a.aa@m.titech.ac.jp (Ambara R. Pradipta) tanaka.k.dg@m.titech.ac.jp (Katsunori Tanaka)

