SUPPLEMENTARY INFORMATION

Metallic Radionuclide-labeled Tetrameric 2,6-Diisopropylphenyl Azides for Cancer Treatment

Yudai Ode,^a Ambara R. Pradipta,^{*a} Akihiro Ishiwata,^b Akihiro Nambu,^c Kazunobu Ohnuki,^d Hiroshi Mizuma,^{e,f} Hiromitsu Haba ^c and Katsunori Tanaka ^{*a,b}

- ^a Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8552, Japan.
- ^b Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- ^c Nuclear Chemistry Group, RIKEN Nishina Center for Accelerator-Based Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- ^d Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan.
- ^e Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan.
- ^f Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan

* Corresponding author emails: pradipta.a.aa@m.titech.ac.jp (Ambara R. Pradipta) tanaka.k.dg@m.titech.ac.jp (Katsunori Tanaka)

Keywords: acrolein; aryl azide; [3+2] cycloaddition; in vivo synthesis; radiometal

Table of Contents

	pp.
Previous study	3
Fig. S1	3
Chemical synthesis	4
Synthesis of compound 9	4-5
Synthesis of compound S7	6-8
Synthesis of compound 10	9
Synthesis of compound S8	10
Synthesis of compound 11	11
Radiolabeling	12-13
Synthesis of compound 4	14
Fig. S2	14
Synthesis of compound S1	15
Fig. S3	15
Synthesis of compound 5a	16
Fig. S4	16
Synthesis of compound 5b	17
Fig. S5	17
Animal experiments	18-19
SPECT studies	20
Table S1	21
Table S2	21
Fig. S6	22
Fig. S7	22
Fig. S8	23
Table S3	23
Biodistribution studies	24
Table S4	25
Table S5	26
Fig. S9	27
Fig. S10	27
Table S6	28
Cancer treatment studies	29
Table S7	30
Table S8	30
Table S9	31
Table S10	31
Table S11	32
Table S12	32
NMR and HRMS spectra	33-62
•	

Previous study

Fig. S1 Our previous work: (a) Phenyl azide reacts selectively towards acrolein under physiological conditions. No noticeable products were found when it was reacted with other α , β -unsaturated aldehydes (*e.g.*, methacrolein, crotonaldehyde, *trans*-2-octenal) or reactive olefin (*e.g.*, cis-2-heptanol, styrene). We found that phenyl azide is stable toward the *in vivo* oxidating and reducing agents, such as H₂O₂, H₂S, and GSH. (b) Acrolein levels in various human cells were determined using a CTS probe. The fluorescence intensity corresponds to the level of acrolein in cells.

Chemical synthesis

All commercially available reagents were used without further purification. The ¹¹¹InCl₃ solution was produced by Nihon Medi-Physics Co., Ltd. The ⁹⁰YCl₃ solution was obtained from Eckert & Ziegler Radiopharma GmbH. Both [¹¹¹In]Cl₃ and [⁹⁰Y]Cl₃ solutions were dried and diluted with hydrochloric acid to the appropriate concentration before being used in the experiments. The preparative separation was performed by column chromatography on Merck Silica gel 60 (230–400 mesh). High-resolution mass spectrometry (HRMS) was recorded on micrOTOF-QIII. ¹H and ¹³C NMR spectra were recorded on the Bruker Ascend 400 NMR spectrometer. Unless otherwise mentioned, CDCl₃ was used as a solvent, and chemical shifts were represented as δ -values relative to the internal standard TMS.

Caution: Azide-containing compounds are presumed to be potentially explosive. Although we have never experienced such an explosion with the azide compounds used in this study, all manipulations should be carefully carried out in a hood.

Synthesis of bis(4-azido-3,5-diisopropylbenzyl)amine 9

Synthesis of 4-amino-3,5-diisopropylbenzaldehyde **7**: Hexamethylenetetramine (8.5 g, 61 mmol, 2.0 eq) was added to a solution of 2,6-diisopropylaniline **6** (5.3 g, 30 mmol, 1.0 eq) in AcOH and H₂O (3:1) (100 mL, [2,6-diisopropylaniline **6**] = 0.30 M). The mixture was refluxed with stirring for 30 minutes, cooled to ambient temperature, and evaporated. 20 wt% KOHaq was added until the suspension achieved a pH of 8. The mixture was extracted with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄, and filtered. The filtrate was concentrated to dryness under reduced pressure. The residue was purified by Yamazen smart flash column chromatography on silica gel using a gradient of eluents [*n*-hexane/EtOAc (85:15 to 67:33)] to give the desired 4-amino-3,5-diisopropylbenzaldehyde **7** as a white solid (1.9 g, 32% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.78 (s, 1H), 7.58 (s, 2H), 4.36 (s, 2H), 2.88 (hept, *J* = 6.7 Hz, 2H), 1.31 (d, *J* = 6.8 Hz, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 191.6, 146.9, 131.7, 127.4, 125.9, 28.0, 22.3; ESI-HRMS m/z calcd for C₁₃H₁₉NNAO ([M+Na]⁺) 228.1359, found 228.1359.

Synthesis of 4-azido-3,5-diisopropylbenzaldehyde 8: sodium azide (750 mg, 12 mmol, 2.4 eq) was slowly added to a mixture of compound 7 (980 mg, 4.8 mmol, 1.0 eq) and Sodium nitrite (790 mg, 12 mmol, 2.5 eq) dissolved in AcOH and H_2O (5:1) (48 mL, [7] = 0.10 M) at 0 °C. After stirring for 1 hour at 0 °C, a saturated aqueous solution of NaHCO₃ was added until the mixture achieved a pH of 7. The mixture was extracted with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄, and filtered. The filtrate was concentrated to dryness under reduced pressure. The residue was purified by Yamazen smart flash column chromatography on silica gel using a gradient of eluents [n-hexane/EtOAc (100:0 to 95:5)] to give the desired 4-azido-3,5diisopropylbenzaldehyde **8** as a colorless oil (1.1 g, 98% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.96 (s, 1H), 7.66 (s, 2H), 3.40 (hept, J = 6.8 Hz, 2H), 1.31 (d, J = 6.8 Hz, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 191.9, 144.2, 140.9, 134.6, 125.8, 28.9, 23.5.; ESI-HRMS m/z calcd for C₁₄H₂₁N₃NaO₂ ([M+MeOH+Na]⁺) 286.1526, found 286.1524.

Synthesis of bis(4-azido-3,5-diisopropylbenzyl)amine **9**: Compound **8** (500 mg, 2.1 mmol, 1.0 eq) was dissolved in saturated solution of NH₄OAc in EtOH 16 mL, 28% aqueous NH₃ 5.6 mL, AcOH 14 mL and THF 3 mL. NaBH₃CN was dissolved in a saturated solution of NH₄OAc in EtOH 5 mL. Compound **8** solution was added dropwise to the NaBH₃CN solution over 7 min ([**8**] = 0.050 M). After stirring for 5 hours at ambient temperature, a saturated aqueous solution of NaHCO₃ was added until the mixture achieved a pH of 8. The mixture was extracted with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄, and filtered. The filtrate was concentrated to dryness under reduced pressure. The residue was purified by Yamazen smart flash column chromatography on silica gel using eluent [*n*-hexane/EtOAc (9:1)] to give the desired bis(4-azido-3,5-diisopropylbenzyl)amine **9** as a yellow solid (120 mg, 26% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.11 (s, 4H), 3.77 (s, 4H), 3.35 (hept, *J* = 6.9 Hz, 4H), 1.27 (d, *J* = 6.8 Hz, 24H); ¹³C NMR (101 MHz, CDCl₃) δ 143.3, 138.9, 134.2, 123.8, 53.2, 29.0, 23.7.; ESI-HRMS m/z calcd for C₂₆H₃₈N₇ ([M+H]⁺) 448.3183, found 448.3183.

Synthesis of bis(3,5-diisopropylbenzyl)amine S7

Synthesis of 3,5-diisopropylbenzaldehyde **S2**¹: ^tBuONO (980 µL, 8.4 mmol, 1.5 eq) and salicylic acid (100 mg, 0.73 mmol, 0.13 eq) were added to compound **7** (1.4 g, 5.8 mmol, 1.0 eq) in dry THF (24 mL, [**7**] = 0.24 M). The reaction mixture was stirred under an argon atmosphere at ambient temperature for 3 hours. The resulting mixture was extracted with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄, and filtered. The filtrate was concentrated to dryness under reduced pressure. The residue was purified by Yamazen smart flash column chromatography on silica gel using n-hexane as eluent to give the desired 3,5-diisopropyl benzaldehyde **S2** as a yellow oil (280 mg, 26% yield). ¹H NMR (400 MHz, CDCl₃) δ 9.99 (s, 1H), 7.57 (d, *J* = 1.7 Hz, 2H), 7.35 (t, *J* = 1.8 Hz, 1H), 2.98 (hept, *J* = 6.9 Hz, 2H), 1.29 (d, *J* = 6.9 Hz, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 193.1, 150.0, 136.9, 131.7, 125.5, 34.2, 24.0; ESI-HRMS m/z calcd for C₁₄H₂₂NaO₂ ([M+MeOH+Na]⁺) 245.1512, found 245.1509.

Synthesis of 4-iodo-2,6-diisopropylaniline **S3**²: According to the literature, 4-iodo-2,6-diisopropylaniline **S3** was obtained as a red-black oil (9.3 g, 86% yield). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.27 (s, 2H), 3.73 (bs, 2H, NH₂), 2.84 (hept, *J* = 6.7 Hz, 2H), 1.24 (d, *J* = 6.8 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃, 25 °C) δ 140.2, 135.2, 131.9, 81.3, 28.0, 22.4.; ESI-HRMS m/z calcd for C₁₂H₁₉IN ([M+H]⁺) 304.0557, found 304.0558.

Synthesis of 4-amino-3,5-diisopropylbenzonitrile **S4** ²: According to the literature, 4amino-3,5-diisopropylbenzonitrile **S4** was obtained as a yellow solid (3.0 g, 82% yield). ¹H NMR (400 MHz, CDCl₃, 25 °C) δ 7.29 (s, 2H), 4.21 (s, 2H, NH₂), 2.85 (hept, *J* = 6.7 Hz, 2H), 1.27 (d, *J* = 6.8 Hz, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 144.9, 132.3, 127.5, 121.3, 100.3, 27.8, 22.0.; ESI-HRMS m/z calcd for C₁₃H₁₈N₂Na ([M+Na]⁺) 225.1362, found 225.1362.

Synthesis of 3,5-diisopropylbenzonitrile **S5**¹: ^tBuONO (741 µL, 6.4 mmol, 1.2 eq) and salicylic acid (760 mg, 5.5 mmol, 1.0 eq) were added to compound **S4** (1.1 g, 5.3 mmol, 1.0 eq) in dry THF (18 mL, [**S4**] = 0.30 M). The reaction mixture was stirred under an argon atmosphere at ambient temperature for 5.5 hours. The resulting mixture was extracted with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄, and filtered. The filtrate was concentrated to dryness under reduced pressure. The residue was purified by Yamazen smart flash column chromatography on silica gel using a gradient of eluents [*n*-hexane/EtOAc (100:0 to 97:3)] to give the desired 3,5-diisopropyl benzonitrile **S5** as a colorless oil (740 mg, 74% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (d, *J* = 1.7 Hz, 2H), 7.29 (t, *J* = 1.6 Hz, 1H), 2.91 (hept, *J* = 6.9 Hz, 2H), 1.25 (d, *J* = 6.9 Hz, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 150.2, 129.9, 127.7, 119.7, 112.3, 34.1, 23.9.; ESI-HRMS m/z calcd for C₁₃H₁₇NNa ([M+Na]⁺) 210.1253, found 210.1257.

Synthesis of (3,5-diisopropylphenyl)methanamine **S6**: LiAlH₄ (360 mg, 9.4 mmol, 6.2 eq) was slowly added to a solution of 3,5-diisopropylbenzonitrile **S5** (280 mg, 1.5 mmol, 1.0 eq) in dry THF 15 mL ([**S5**] = 0.30 M) at 0 °C. After stirring the reaction mixture under an argon atmosphere at ambient temperature for 3 hours, a saturated aqueous solution of Rochelle salt was added dropwise to the reaction mixture at 0 °C. EtOAc was then added and stirred for 30 minutes. The mixture was extracted with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄, and filtered. The filtrate was concentrated to dryness under reduced pressure. The residue was purified by Yamazen smart flash column chromatography on silica gel using a gradient of eluents [*n*-hexane/EtOAc (90:10 to 84:16)] to give the desired (3,5-diisopropylphenyl) methanamine **S6** as a yellow oil (280 mg, 98% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.00 (d, *J* = 1.7 Hz, 2H), 6.97 (t, *J* = 1.8 Hz, 1H), 3.84 (s, 2H), 2.89 (hept, *J* = 6.9 Hz, 2H), 1.26 (d, *J* = 6.9 Hz, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 149.4, 143.3, 123.4, 122.8, 46.9, 34.4, 24.2.; ESI-HRMS m/z calcd for C₁₃H₂₁NNa ([M+Na]⁺) 214.1566, found 214.1566.

References: (1) D. Felipe-Blanco, F. Alonso and J. C. Gonzalez-Gomez, Adv. Synth. Catal., 2017, **359**, 2857-2863; (2) A. R. Pradipta, H. Michiba, A. Kubo, M. Fujii, T. Tanei, K. Morimoto, K. Shimazu and K. Tanaka, Bull. Chem. Soc. Jpn., 2022, **95**, 421-426.

Synthesis of bis(3,5-diisopropylbenzyl)amine **S7**: Compound **S6** (180 mg, 0.92 mmol, 1.3 eq), AcOH 410 µL, and NaBH₃(CN) (90 mg, 1.4 mmol, 2.1 eq) were added to compound **S2** (130 mg, 0.69 mmol, 1.0 eq) in EtOH (6.9 mL, [**S2**] = 0.10 M). After stirring for 22 hours at ambient temperature, the reaction mixture was evaporated and extracted with EtOAc. The combined organic layer was washed with brine, dried over Na₂SO₄, and filtered. The filtrate was concentrated to dryness under reduced pressure. The residue was purified by Yamazen smart flash column chromatography on silica gel using eluent [*n*-hexane/EtOAc (4:1)] to give the desired bis(3,5-diisopropyl benzyl)amine **S7** as a colorless oil (250 mg, 98% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.03 (d, *J* = 1.7 Hz, 4H), 6.98 (t, *J* = 1.7 Hz, 2H), 3.80 (s, 4H), 2.89 (hept, *J* = 6.9 Hz, 4H), 1.25 (d, *J* = 6.9 Hz, 24H); ¹³C NMR (101 MHz, CDCl₃) δ 149.1, 140.4, 123.8, 123.5, 53.7, 34.3, 24.2.; ESI-HRMS m/z calcd for C₂₆H₄₀N ([M+H]⁺) 366.3155, found 366.3154.

Synthesis of DOTA-2PhN₃ 10

Synthesis of 2,2',2''-(10-(2-(bis(4-azido-3,5-diisopropylbenzyl)amino)-2-oxoethyl)-1,4, 7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid **10** (DOTA-2PhN₃ **10**): DOTA-NHSester(170 mg, 0.23 mmol, 2.0 eq) and DIPEA (120 µL, 0.69 mmol, 6.0 eq) were added to compound **9** (51 mg, 0.11 mmol, 1.0 eq) in dry DMF (1.2 mL, [**9**] = 0.10 M). The reaction mixture was stirred under an argon atmosphere at ambient temperature for 20 hours. The mixture was purified by reversed-phase (RP)-HPLC (mobile phase A, 0.1% TFA in H₂O; B, 0.1% TFA in CH₃CN) to give the DOTA-2PhN₃ **10** (in TFA salt form) as a white solid (49 mg, 45%). Conditions of RP-HPLC(Shimadzu): Column, Cosmosil 5C₁₈-AR-300 (Nacalai Tesque, Inc.) 20 × 250 mm; Gradient elution, 0 – 3 min at 50% B, 3 – 14 min at 50 – 100% B, 14 – 18 min at 100% B; Flow rate: 10 mL/min (Pump LC-20AP); UV detection at 254 nm (UV/vis detector SPD-20AV).

The desired DOTA-2PhN₃ **10** was eluted at 14 minutes. ¹H NMR (400 MHz, CD₃CN) δ 6.98 (s, 2H), 6.77 (s, 2H), 4.51 (s, 4H), 4.04 (s, 2H), 3.93 (s, 2H), 3.75 (s, 2H), 3.65 (s, 2H), 3.43 – 2.97 (m, 20H), 1.13 (dd, *J* = 9.0, 6.9 Hz, 24H); ¹³C NMR (101 MHz, CD₃CN) δ 161.0, 160.7, 160.3, 160.0, 144.4, 144.2, 136.5, 135.6, 135.1, 125.8, 123.9, 121.4, 118.5, 115.6, 112.7, 54.3, 51.8, 49.7, 29.7, 29.7, 23.7, 23.7; ESI-HRMS m/z calcd for C₄₂H₆₄N₁₁O₇ ([M+H]⁺) 834.4985, found 834.4987.

Synthesis of DOTA-2PhH S8

Synthesis of 2,2',2"-(10-(2-(bis(3,5-diisopropylbenzyl)amino)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetic acid **S8** (DOTA-2PhH **S8**): DOTA-NHS-ester(98 mg, 0.13 mmol, 1.5 eq) and DIPEA (86 μ L, 0.50 mmol, 6.0 eq) were added to compound **S7** (31 mg, 0.084 mmol, 1.0 eq) in dry DMF (0.85 mL, [**S7**] = 0.10 M). The reaction mixture was stirred under an argon atmosphere at ambient temperature for 3.5 days. The mixture was purified by reversed-phase (RP)-HPLC (mobile phase A, 0.1% TFA in H₂O; B, 0.1% TFA in CH₃CN) to give the DOTA-2PhH **S8** (in TFA salt form) as a white solid (24 mg, 33%). Conditions of RP-HPLC(Shimadzu): Column, Cosmosil 5C₁₈-AR-300 (Nacalai Tesque, Inc.) 20 × 250 mm; Gradient elution, 0 – 3 min at 50% B, 3 – 14 min at 50 – 100% B, 14 – 23 min at 100% B; Flow rate: 10 mL/min (Pump LC-20AP); UV detection at 254 nm (UV/vis detector SPD-20AV).

The desired DOTA-2PhH **S8** was eluted at 13 minutes. ¹H NMR (400 MHz, CD₃CN:D₂O = 1:1) δ 7.04 (s, 2H), 6.89 (d, *J* = 1.7 Hz, 2H), 6.76 (d, *J* = 1.7 Hz, 2H), 4.52 (s, 2H), 4.37 (s, 2H), 4.15 (s, 2H), 3.80 (s, 2H), 3.62 (s, 4H), 3.29 (s, 8H), 2.86 – 2.78 (m, 4H), 1.15 (dd, *J* = 6.9, 3.5 Hz, 24H); ¹³C NMR (101 MHz, CD₃CN) δ 161.5, 161.1, 150.6, 150.3, 143.9, 137.6, 136.6, 125.3, 124.7, 124.6, 123.8, 116.3, 34.8, 24.4; ESI-HRMS m/z calcd for C₄₂H₆₅N₅NaO₇ ([M+Na]⁺) 774.4776, found 774.4771.

Synthesis of DTPA-4PhN₃ 11

Synthesis of 2-(4-azido-3,5-diisopropylbenzyl)-1-(4-azido-3,5-diisopropylphenyl)-11-(2-(bis(4-azido-3,5-diisopropylbenzyl)amino)-2-oxoethyl)-5,8-bis(carboxymethyl)-3-oxo-2,5,8,11-tetraazatridecan-13-oic acid **11** (DTPA-4PhN₃ **11**): DTPA-dianhydride(19 mg, 0.052 mmol, 1.0 eq) was added to compound **9** (55 mg, 0.12 mmol, 2.3 eq) in dry-DMF (0.50 mL, [DTPA-dianhydride] = 0.10 M). The reaction mixture was stirred under an argon atmosphere at ambient temperature for 20 hours. The mixture was purified by reversed-phase (RP)-HPLC (mobile phase A, 0.1% TFA in H₂O; B, 0.1% TFA in CH₃CN) to give the DTPA-4PhN₃ **11** (in TFA salt form) as a yellow solid (66 mg, 95%). Conditions of RP-HPLC(Shimadzu): Column, Cosmosil 5C₁₈-AR-300 (Nacalai Tesque, Inc.) 20 × 250 mm; Gradient elution, 0 – 5 min at 80% B, 5 – 10 min at 80 – 100% B, 10 – 20 min at 100% B; Flow rate: 10 mL/min (Pump LC-20AP); UV detection at 254 nm (UV/vis detector SPD-20AV).

The desired DTPA-4PhN₃ **11** was eluted at 15 minutes. ¹H NMR (400 MHz, CD₃CN) δ 6.95 (s, 4H), 6.82 (s, 4H), 4.52 (s, 4H), 4.41 (s, 4H), 4.28 (s, 4H), 4.08 (s, 4H), 3.66 (s, 2H), 3.44 (t, *J* = 5.9 Hz, 4H), 3.29 – 3.21 (m, 8H), 3.15 (t, *J* = 5.9 Hz, 4H), 1.13 (dd, *J* = 6.9, 1.8 Hz, 48H); ¹³C NMR (101 MHz, CD₃CN) δ 172.1, 168.9, 167.4, 160.6, 160.2, 144.6, 144.2, 136.1, 135.7, 135.6, 134.8, 125.4, 124.1, 115.5, 58.0, 56.5, 54.6, 54.2, 51.5, 51.4, 50.9, 29.7, 29.6, 23.7, 23.7; ESI-HRMS m/z calcd for C₆₆H₉₄N₁₇O₈ ([M+H]⁺) 1252.7466, found 1252.7462.

Radiolabeling

Procedure A (¹¹¹*In labeling for DOTA compound*): 10 μL of 1 M KOAc aqueous solution and 106.5 μL of 4 mM DOTA compound in MeCN were added to 100 μL of [¹¹¹In]Cl₃ in 5×10^{-2} M HCl aqueous solution. After thorough mixing by pipetting the solution(pH 4), it was heated at 85 °C for 20 minutes and then cooled at room temperature for 5 minutes. In advance, the SPE Cartridge (Waters Sep-Pak tC18 Plus Short Cartridge, WAT036810) was activated with 3 mL of distilled water, and the reaction solution was injected into the cartridge. The syringe was rinsed twice with 50% MeCN distilled water (100 μL each time), and the rinsed solution was injected into the cartridge. After flushing the cartridge with 10 mL of distilled water, 99.5% EtOH (500 μL) was passed through the cartridge four times to elute the ¹¹¹In-labeled DOTA compound. The radioactivity fraction among the four fractions was collected, heated, and dried at 70 °C. The resulting product was redissolved in an appropriate amount of 10% EtOH saline for animal experiments.

Procedure B (¹¹¹*In labeling for DTPA compound*): 100 μL of 0.3 M KOAc aqueous solution and 10 μL of 1 mM DTPA compound in MeCN were added to 100 μL of [¹¹¹In]Cl₃ in 5×10⁻² M HCl aqueous solution. After thorough mixing by pipetting the solution, it was left at room temperature for 15 minutes. In advance, the SPE Cartridge (Waters Sep-Pak tC18 Plus Short Cartridge, WAT036810) was activated with 3 mL of distilled water, and the reaction solution was injected into the cartridge. The syringe was rinsed twice with 50% MeCN distilled water (100 μL each time), and the rinsed solution was injected into the cartridge. After flushing the cartridge four times to elute the ¹¹¹In-labeled DTPA compound. The radioactivity fraction among the four fractions was collected, heated, and dried at 70 °C. The resulting product was redissolved in an appropriate amount of 10% EtOH saline for animal experiments. *Procedure C* (⁹⁰*Y labeling for DTPA compound*): 100 μL of 0.3 M KOAc aqueous solution and 5 μL of 1 mM DTPA compound in MeCN were added to 10 μL of [⁹⁰Y]Cl₃ in 5×10⁻² M HCl aqueous solution. After thorough mixing by pipetting the solution, it was left at room temperature for 15 minutes. In advance, the SPE Cartridge(waters Sep-Pak tC18 Plus Short Cartridge, WAT036810) was activated with 3 mL of distilled water, and the reaction solution was injected into the cartridge. The syringe was rinsed twice with 50% MeCN distilled water (100 μL each time), and the rinsed solution was injected into the cartridge. After flushing the cartridge four times to elute the ⁹⁰Y-labeled DTPA compound. The radioactivity fraction among the four fractions was collected, heated, and dried at 70 °C. The resulting product was redissolved in an appropriate amount of 10% EtOH saline for animal experiments.

<u>Radio-thin layer chromatography (Radio-TLC)</u> is a technique that separates radiolabeled compounds for analytical work. It is often used to analyze radiolabeled compounds' purity and determine reaction conversion when optimizing radiosynthesis processes. A radio-TLC scanner is used to examine a TLC plate (spotted with a small amount of the sample and then developed with a mobile phase), which moves a radiation detector along the plate to obtain measurements of generated radiation as a function of distance. See Figs. S2-S4.

Synthesis of ¹¹¹In-DOTA-2PhN₃ **4**: This reaction was carried out following Procedure A. Upon reaction and purification with 66.9 MBq of ¹¹¹In, 56.8 MBq of ¹¹¹In-DOTA-2PhN₃ **4** was obtained. Radiochemical yield (RCY) = 85% (Uncorrected for half-life). Radiochemical purity (RCP) = 100% (100%, after 28 h).

Fig. S2 Radio-TLC chromatogram of the purified compound **4** obtained with the radio-TLC scanner. The horizontal axis represents the distance (mm) along the TLC plate between the observed peak (at 100 mm) and the original start line (at 20 mm) before elution. The vertical axis represents the intensity of radioactivity (counts/minutes). (a) Measurement immediately after purification (RCP 100%). (b) Measurement at 28 hours after purification (RCP 100%). TLC eluent: MeCN/H₂O (1:1).

Synthesis of ¹¹¹In-DOTA-2PhH **S1**: This reaction was carried out following Procedure A. Upon reaction and purification with 172 MBq of ¹¹¹In, 160 MBq of ¹¹¹In-DOTA-2PhH **S1** was obtained. RCY = 93% (Uncorrected for half-life). RCP = 100% (97%, after 24 h).

Fig. S3 Radio-TLC chromatogram of the purified compound **S1** obtained with the radio-TLC scanner. The horizontal axis represents the distance (mm) along the TLC plate between the observed peak (at 90 mm) and the original start line (at 20 mm) before elution. The vertical axis represents the intensity of radioactivity (counts/minutes). (a) Measurement immediately after purification (RCP 100%). (b) Measurement at 24 hours after purification (RCP 97%). TLC eluent: MeCN/H₂O (1:1).

Synthesis of ¹¹¹In-DTPA-4PhN₃ **5a**: This reaction followed Procedure B. Upon reacting and purifying with 170 MBq of ¹¹¹In, 127 MBq of ¹¹¹In-DTPA-4PhN₃ **5a** was obtained. RCY = 75% (Uncorrected for half-life). RCP = 97% (97%, after 24 h).

Fig. S4 Radio-TLC chromatogram of the purified compound **5a** obtained with the radio-TLC scanner. The horizontal axis represents the distance (mm) along the TLC plate between the observed peak (at 85 mm) and the original start line (at 20 mm) before elution. The vertical axis represents the intensity of radioactivity (counts/minutes). (a) Measurement immediately after purification (RCP 97%). (b) Measurement at 24 hours after purification (RCP 97%). TLC eluent: MeCN/H₂O (1:1).

Synthesis of ⁹⁰Y-DTPA-4PhN₃ **5b**: This reaction followed Procedure C. Upon reacting and purifying with 117 MBq of ⁹⁰Y, 110 MBq of ⁹⁰Y-DTPA-4PhN₃ **5b** was obtained. RCY = 94% (uncorrected for half-life). RCP = 99%.

Fig. S5 Radio-TLC chromatogram of the purified compound **5b** obtained with the radio-TLC scanner. The horizontal axis represents the distance (mm) along the TLC plate between the observed peak (at 95 mm) and the original start line (at 20 mm) before elution. The vertical axis represents the intensity of radioactivity (counts/minutes). Measurement immediately after purification (RCP 99%). TLC eluent: MeCN/H₂O (1:1).

Animal experiments

The study involving the use of animals was conducted in compliance with the relevant regulations and standards after the experimental plan was designed following the Regulations on Safety Management of Biological Experiments of the study institution, Nihon Medi-Physics Co., Ltd. Research Center, and was reviewed and approved by the Biological Experiment Committee. For all injections and tumor measurements, mice were anesthetized with 1 - 4% isoflurane in oxygen at a 2.5 - 3.0 L/minute flow rate.

Statistics: All quantitative results are expressed as mean and standard deviation. Indicators of statistical significance were unpaired two-tailed Student's t-test or twoway analysis of variance (ANOVA) with Tukey's or Šidák correction for multiple comparisons analyses. All statistical analyses were performed using a GraphPad PRISM (version 9.5.1, GraphPad Software, Inc., California, USA). Statistical significance was defined as a *P*-value < 0.05.

Cell lines and reagents: A549 cells were purchased from the European collection of Authenticated Cell Cultures. They were cultured in an F-12K Nutrient mixture (Gibco) supplemented with 10% fetal bovine serum (FBS) (ATCC) and 1% penicillin-streptomycin (Gibco). The cells were then incubated at 37 °C in a 5% CO₂ humidified atmosphere.

A549-bearing mice xenograft models for SPECT studies: The A549 (human lung) cancer xenograft tumors were established in 4-week-old female nude mice (BALB/c-nu/nu, The Jackson Laboratory Japan, Inc.) by subcutaneous injection of 7.66 x 10⁶ cells in 100 μ L of cold 50% Matrigel in PBS into the right shoulder subcutaneous. Tumor growth was then monitored. The mice were kept in a controlled temperature(18–28 °C), salinity, and aeration room with sufficient food and water for 12 hours a day and 12 hours a night. After the tumor reached 200–350 mm³ (25 days), the A549 tumor-bearing mice were ready for treatment studies.

A549-bearing mice xenograft models for Treatment studies: The A549 (human lung) cancer xenograft tumors were established in 4-week-old female nude mice (BALB/c-nu/nu, The Jackson Laboratory Japan, Inc.) by subcutaneous injection of 7.66 x 10⁶ cells in 100 μ L of cold 50% Matrigel in PBS into the right shoulder subcutaneous. Tumor growth was then monitored. The mice were kept in a controlled temperature(18–28 °C), salinity, and aeration room with sufficient food and water for 12 hours a day and 12 hours a night. After the tumor reached 50–150 mm³ (10 days), the A549 tumor-bearing mice were ready for treatment studies.

SPECT studies

The mice selected for Single Photon Emission Computed Tomography (SPECT) imaging were divided into groups (n = 3 for each group) based on visual observation, ensuring no specific abnormalities and minimizing the differences in tumor volume and body weight averages among the groups. The mice were anesthetized, and ¹¹¹In-labeled compounds (10 MBg / 10 μ L of 10% EtOH / saline) were administered into the tumor under 1-4% isoflurane anesthesia. SPECT and Computed Tomography (CT) imaging, each lasting approximately 30 minutes, were conducted at 1, 6, 24, 48, and 72 hours post-administration under 1–2% isoflurane anesthesia. SPECT and CT imaging were performed using the small-animal SPECT/CT system FX-3000 (Trifoil Imaging). From the composite images of SPECT and CT, the accumulation of ¹¹¹In-labeled compounds in the tumor and trunk was obtained in axial and coronal images using PMOD software (PMOD Technologies). Subsequently, image analysis was performed using AMIDE (AMIDE Development Team). The image analysis identified the positions of the tumor, muscles, heart, liver, and kidneys from the SPECT and CT composite images. Three-dimensional regions of interest [volume of interest (VOI)] were defined for each time point and tissue. Standardized uptake value (SUV) was calculated from the VOIs set at each time point and for each tissue. SUV is calculated as [radioactivity concentration in the volume of interest (VOI) (MBq/mL) / (administered radioactivity (MBq) / mouse body weight (g))].

Parameters	Conditions
Isotope/Energy	Indium-111/High-energy (220-270 keV)
Detector	Cadmium Zinc Telluride, 4-head
Collimator	MMP 952
Radius of rotation	50 mm
Field of view	60 mm
Scan-mode/degree	Tomography/180 degrees
Scan-time	32 minutes (240 seconds/projection, 8-projection)
Reconstruction-algorithm	3 dimensional - ordered subset expectation maximization method
Reconstruction-parameter	Iteration 4, Subsets 8

Table S1 SPECT imaging and image reconstruction conditions.

Table S2 CT imaging conditions.

Parameters	Conditions
Current/Voltage	450 μA/50 kV
Exposure time	230 mS
Magnification	1.5
Field of view	78.9 mm
Projection count	128 views
Frame averaged	1 frames/view

Fig. S6 (a) SPECT images were taken at various time points of mice administered with ¹¹¹In-DOTA-2PhN₃ **4**. Images were captured in both coronal and axial sections. Additionally, signal intensity thresholds were adjusted to depict the trunk or tumor in each section, resulting in four images in the figure. (b) The standardized uptake value (SUV) was calculated from SPECT images taken at each time point for 5 organs (n = 3). SUV is calculated as [radioactivity concentration in the volume of interest(VOI)) (MBq/mL) / (administered radioactivity (MBq) / mouse body weight (g))].

Fig. S7 (a) SPECT images were taken at various time points of mice administered with ¹¹¹In-DOTA-2PhH **S1**. Images were captured in both coronal and axial sections. Additionally, signal intensity thresholds were adjusted to depict the trunk or tumor in each section, resulting in four images in the figure. (b) The standardized uptake value (SUV) was calculated from SPECT images taken at each time point for 5 organs (n = 3). SUV is calculated as [radioactivity concentration in the volume of interest(VOI)) (MBq/mL) / (administered radioactivity (MBq) / mouse body weight (g))].

Fig. S8 (a) SPECT images were taken at various time points of mice administered with ¹¹¹In-DTPA-4PhN₃ **5a**. Images were captured in both coronal and axial sections. Additionally, signal intensity thresholds were adjusted to depict the trunk or tumor in each section, resulting in four images in the figure. (b) The standardized uptake value (SUV) was calculated from SPECT images taken at each time point for 5 organs (n = 3). SUV is calculated as [radioactivity concentration in the volume of interest(VOI) (MBq/mL) / (administered radioactivity (MBq) / mouse body weight (g))].

Table S3 Two-way ANOVA with Šidák correction was conducted to test the differences in tumor standardized uptake value (SUV) between the two groups (n = 3 for each group). The difference between the ¹¹¹In-DOTA-2PhN₃ **4**-treated group and the ¹¹¹In-DOTA-2PhH **S1**-treated group was significant starting from 6 hours post-administration, and this difference increased significantly throughout the entire experiment (see Fig. 2b in the manuscript). SUV is calculated as [radioactivity concentration in the volume of interest(VOI) (MBq/mL) / (administered radioactivity (MBq) / mouse body weight (g))] from SPECT images. n.s. = not significant, *P < 0.05, **P < 0.01, ***P < 0.001.

	¹¹¹ lr	ו-DC	DTA-	¹¹¹ Ir	ו-DC	DTA-		
	21	PhNa	3 4	2F	νhΗ	S1	Summany	Adjusted P
	SUV	(tur	mor)	SUV	(tur	mor)	Summary	value
Time (hours)	Me	an ±	: SD	Me	an ±	: SD		
1	4.63	±	1.15	2.67	±	0.24	n.s.	0.2876
6	4.83	±	0.64	0.67	±	0.10	**	0.0026
24	4.55	±	1.73	0.17	±	0.09	**	0.0015
48	4.70	±	1.97	0.10	±	0.02	***	0.0009
72	4.99	±	2.55	0.07	±	0.02	***	0.0004

Biodistribution studies

After the completion of SPECT imaging at the 72-hour time point, mice were euthanized under deep anesthesia with isoflurane inhalation (1.0 - 4.0%) and cardiac blood collection, followed by organ extraction (n = 3 for each group). Feces and urine were collected from the metabolic cage. The extracted organs included the tumor, heart, lungs, spleen, pancreas, stomach, small intestine, large intestine, ovaries, uterus, muscles, bones, liver, kidneys, whole brain, and the remaining whole body. The weights of the collected blood and organs (excluding feces and urine) were measured, and radioactivity was quantified to assess the distribution of radioactivity. Additionally, the radioactivity (count rate) obtained from the gamma well scintillation counting system was time-corrected to the time of ¹¹¹In administration. %ID for all tissues and %ID/g for organs excluding feces and urine were calculated.

		¹¹¹ In-DOTA- 2PhH S1		¹¹¹ In-DOTA- 2PhN ₃ 4			¹¹¹ In-DTPA- 4PhN₃ 5a		
Tissue	Me	an ±	: SD	Me	an ±	: SD	Me	an ±	: SD
Tumor	1.543	±	0.551	3.269	±	1.179	53.11	±	3.937
Blood	0.005	±	0.002	0.014	±	0.002	0.306	±	0.101
Heart	0.014	±	0.004	0.022	±	0.003	0.044	±	0.014
Lung	0.040	±	0.006	0.057	±	0.014	0.079	±	0.013
Spleen	0.021	±	0.002	0.039	±	0.009	0.395	±	0.271
Pancreas	0.014	±	0.003	0.021	±	0.004	0.040	±	0.006
Stomach	0.016	±	0.007	0.028	±	0.009	0.052	±	0.022
Small intestine	0.241	±	0.062	0.405	±	0.038	0.753	±	0.220
Large intestine	0.197	±	0.082	0.584	±	0.212	0.598	±	0.030
Ovaries	0.001	±	0.000	0.002	±	0.002	0.001	±	0.000
Uterus	0.008	±	0.002	0.059	±	0.070	0.028	±	0.012
Muscle	0.003	±	0.000	0.009	±	0.003	0.011	±	0.003
Bone	0.006	±	0.002	0.009	±	0.002	0.039	±	0.009
Liver	0.823	±	0.141	0.768	±	0.061	6.837	±	0.764
Kidney	0.118	±	0.014	0.244	±	0.041	0.380	±	0.086
Whole brain	0.001	±	0.000	0.003	±	0.001	0.014	±	0.006
Remained whole body	0.873	±	0.123	3.408	±	0.321	21.13	±	3.652
Urine	9.128	±	6.284	9.961	±	2.823	0.797	±	0.645
Feces	86.95	±	5.991	81.10	±	1.554	15.38	±	0.473

Table S4 The distribution of radioactivity (%ID) in each tissue after SPECT imaging (n = 3) (see Fig. 2c in the manuscript).

	¹¹¹ Ir	¹¹¹ In-DOTA-			¹¹¹ In-DOTA-			¹¹¹ In-DTPA-		
	2F	hH :	S1	2F	2PhN₃ 4			4PhN₃ 5a		
Tissue	Me	an ±	SD	Me	an ±	: SD	Me	an ±	: SD	
Tumor	4.437	±	1.464	13.79	±	7.495	146.6	±	28.38	
Blood	0.006	±	0.001	0.020	±	0.001	0.387	±	0.155	
Heart	0.134	±	0.046	0.216	±	0.016	0.412	±	0.155	
Lung	0.338	±	0.071	0.455	±	0.055	0.635	±	0.150	
Spleen	0.360	±	0.132	0.612	±	0.124	5.847	±	2.929	
Pancreas	0.091	±	0.040	0.164	±	0.013	0.273	±	0.079	
Stomach	0.070	±	0.069	0.100	±	0.048	0.124	±	0.043	
Small intestine	0.261	±	0.150	0.389	±	0.015	0.650	±	0.261	
Large intestine	0.333	±	0.309	0.523	±	0.267	0.457	±	0.103	
Ovaries	0.224	±	0.123	0.857	±	0.794	0.685	±	0.529	
Uterus	0.375	±	0.140	1.345	±	0.933	0.824	±	0.249	
Muscle	0.038	±	0.007	0.089	±	0.019	0.126	±	0.043	
Bone	0.079	±	0.013	0.152	±	0.014	0.463	±	0.101	
Liver	0.890	±	0.435	0.771	±	0.152	6.342	±	0.304	
Kidney	0.421	±	0.108	0.867	±	0.082	1.364	±	0.435	
Whole brain	0.004	±	0.001	0.006	±	0.001	0.039	±	0.023	
Remained whole body	0.077	±	0.020	0.282	±	0.015	1.722	±	0.384	

Table S5 The distribution of radioactivity ((NID/g)) in each tissue after SPECT imaging (n = 3).

Fig. S9 Biodistribution (%ID) of **S1**, **4**, and **5a** in the xenograft mice 72 hours after the corresponding compounds were administered intratumorally (n = 3) (see also Fig. 2c in the manuscript).

Fig. S10 Biodistribution (%ID/g) of **S1**, **4**, and **5a** in the xenograft mice 72 hours after the corresponding compounds were administered intratumorally (n = 3).

Table S6 The cellbased assay was conducted to determine the effectiveness of cellular uptake of [¹¹¹In]Cl₃ and compound 5a into two cancer cell lines – PANC-1 cells and B16 cells. For both cell lines, $1 \ x \ 10^6$ and $5 \ x \ 10^6$ cells were used. The cells were incubated with 1.5 - 1.8 MBq of [¹¹¹In]Cl₃ or compound 5a for 30 minutes at room temperature. After labeling, the radioactive amounts in the cell pellet or supernatant were measured using a dose calibrator immediately after labeling and after washing. PANC-1 = human nancreas

			After labeling			After washing	
Cell line (Cell number)	Loading	Cell pellet, CP (MBq)	Supernatant, S (MBq)	Uptake ratio CP/(CP+S) %	Cell pellet, CP (MBq)	Supernatant, S (MBq)	Uptake ratio CP/(CP+S) %
1001 1 1 1 100	[¹¹¹ In]Cl ₃	0.06	0.81	6.6%	0.04	0.99	3.4%
	Compound 5a	0.26	0.85	23.0%	0.06	1.09	5.2%
	[¹¹¹ In]Cl ₃	0.06	0.87	6.8%	0.04	1.00	3.5%
	Compound 5a	0.31	0.87	26.3%	0.06	1.11	5.3%
D16 /1 / 10 ⁶ /	[¹¹¹ In]Cl ₃	0.19	1.01	15.9%	0.06	1.13	5.1%
	Compound 5a	0.31	0.92	25.0%	0.14	1.09	11.0%
D16 / E / 106/	[¹¹¹ In]Cl ₃	0.23	1.01	18.6%	0.07	1.16	5.5%
	Compound 5a	0.53	0.81	39.6%	0.32	1.02	24.1%

Cancer treatment studies

The mice selected for treatment studies were divided into four groups (n = 6 for each group) based on visual observation, ensuring no specific abnormalities and minimizing the differences in tumor volume and body weight averages among the groups. Four groups of mice were injected intratumorally with a solution of 0 MBq (vehicle), 0.1, 0.5, and 2.5 MBq of ⁹⁰Y-DTPA-4PhN₃ **5b** dissolved in 10 µL of 10% EtOH/saline (20 µM DTPA-4PhN₃ **11**), respectively. The mice's tumor volume and body weight were recorded within a specific period using the equation V = W² × L/2, where W and L represented the minor and major lengths of the tumor, respectively. After the completion of the measurement of tumor volume at the 33-day time point, mice were euthanized under deep anesthesia with isoflurane inhalation (1.0 – 4.0%) and bloodletting, followed by organ extraction. The extracted organs included the tumor, heart, lungs, spleen, pancreas, liver, kidneys, and the remaining whole body. The weight of each organ removed from the mice was measured. The relative weight of the organs in each group was calculated by comparing the weight of the organs in the vehicle group.

Table S7 Two-way ANOVA with Tukey's correction was performed to test group tumor growth differences (n = 6) (see manuscript Fig. 3a). The difference between the vehicle-treated and ⁹⁰Y-DTPA-4PhN₃ **5b**-treated groups was significant starting 13 days after treatment. The considerable increase continued throughout the experiment. Vehicle = Saline (10% EtOH, 20 μ M DTPA-4PhN₃ **11**). n.s. = not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.0001.

Post- treatment (days)		⁹⁰ Y-DTPA-4PhN ₃ 5b 0.1MBq)		s. ⁹⁰ Y-DTPA-4PhN ₃ (0.5MBq)		⁰Y-DTPA-4PhN₃ 5b 2.5MBq)
(uuys)	Summary	Adjusted P value	Summary	Adjusted P value	Summary	Adjusted P value
0	n.s.	>0.9999	n.s.	>0.9999	n.s.	>0.9999
4	n.s.	0.8886	n.s.	0.5330	n.s.	0.4283
7	n.s.	0.9372	n.s.	0.4593	n.s.	0.4934
11	n.s.	0.8757	n.s.	0.2191	n.s.	0.1364
13	n.s.	0.3563	*	0.0186	*	0.0199
18	n.s.	0.1176	****	<0.0001	****	<0.0001
21	*	0.0268	****	<0.0001	****	<0.0001
25	*	0.0224	****	<0.0001	****	<0.0001
28	***	0.0005	****	<0.0001	****	<0.0001

Table S8 Two-way ANOVA with Tukey's correction was performed to test group tumor growth differences (n = 6) (see manuscript Fig. 3a). The difference between the ⁹⁰Y-DTPA-4PhN₃ **5b** 0.1 MBq-treated group and the 0.5 and 2.5 MBq-treated groups was significant starting 18 days after treatment. Vehicle = Saline (10% EtOH, 20 μ M DTPA-4PhN₃ **11**). n.s. = not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

Post- treatment (days)	vs. ⁹⁰ Y-	⁹⁰ Y-DTPA-4PhN ₃ 5b (0.1MBq) ⁹⁰ Y-DTPA-4PhN ₃ 5b (0.1MBq) vs. ⁹⁰ Y-DTPA-4PhN ₃ 5b (0.1MBq) vs. ⁹⁰ Y-DTPA-4PhN ₃ 5b (0.1MBq) (0.5MBq) (2.5MBq)		vs. ⁹⁰ Y-D	PhN₃ 5b (0.5MBq))TPA-4PhN₃ 5b ?.5MBq)	
(00,0)	Summary	Adjusted P value	Summary	Adjusted P value	Summary	Adjusted P value
0	n.s.	>0.9999	n.s.	0.9996	n.s.	0.9996
4	n.s.	0.9229	n.s.	0.8552	n.s.	0.9983
7	n.s.	0.8127	n.s.	0.8403	n.s.	>0.9999
11	n.s.	0.6413	n.s.	0.4913	n.s.	0.9953
13	n.s.	0.5596	n.s.	0.5738	n.s.	>0.9999
18	*	0.0312	**	0.0031	n.s.	0.8788
21	***	0.0009	****	<0.0001	n.s.	0.6162
25	****	<0.0001	****	<0.0001	n.s.	0.3069
28	****	<0.0001	****	<0.0001	n.s.	0.1100

Table S9 Two-way ANOVA with Tukey's correction was performed to test group relative body weight change differences (n = 6) (see manuscript Fig. 3b). There were no combinations for which significant differences were identified. Vehicle = Saline (10% EtOH, 20 μ M DTPA-4PhN₃ **11**). n.s. = not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.001.

Post- treatment (days)	Vehicle vs. ⁹⁰ Y-DTPA-4PhN ₃ 5b (0.1MBq)			s. ⁹⁰ Y-DTPA-4PhN₃ (0.5MBq)	Vehicle vs. ⁹⁰ Y-DTPA-4PhN ₃ 5b (2.5MBq)		
(44,5)	Summary	Adjusted P value	Summary	Adjusted P value	Summary	Adjusted P value	
0	n.s.	0.3198	n.s.	0.7767	n.s.	0.5053	
4	n.s.	0.1217	n.s.	0.9389	n.s.	0.9782	
7	n.s.	0.2354	n.s.	0.9432	n.s.	0.7479	
11	n.s.	0.1304	n.s.	0.6088	n.s.	0.5027	
13	n.s.	0.3456	n.s.	0.9831	n.s.	0.6662	
18	n.s.	0.1960	n.s.	0.8566	n.s.	0.5629	
21	n.s.	0.2746	n.s.	0.9654	n.s.	0.9090	
25	n.s.	0.5133	n.s.	0.9988	n.s.	0.9020	
28	n.s.	0.2889	n.s.	>0.9999	n.s.	0.7368	

Table S10 Two-way ANOVA with Tukey's correction was performed to test group relative body weight change differences (n = 6) (see manuscript Fig. 3b). There were no combinations for which significant differences were identified. Vehicle = Saline (10% EtOH, 20 μ M DTPA-4PhN₃ **11**). n.s. = not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ***P < 0.0001.

Post- treatment (days)	⁹⁰ Y-DTPA-4PhN₃ 5b (0.1MBq) vs. ⁹⁰ Y-DTPA-4PhN₃ 5b (0.5MBq)			4PhN₃ 5b (0.1MBq) vs. 4PhN₃ 5b (2.5MBq)	⁹⁰ Y-DTPA-4PhN₃ 5b (0.5MBq) vs. ⁹⁰ Y-DTPA-4PhN₃ 5b (2.5MBq)		
(00)	Summary	Adjusted P value	Summary	Adjusted P value	Summary	Adjusted P value	
0	n.s.	0.8717	n.s.	0.9886	n.s.	0.9713	
4	n.s.	0.3571	n.s.	0.2677	n.s.	0.9981	
7	n.s.	0.5454	n.s.	0.8109	n.s.	0.9713	
11	n.s.	0.7732	n.s.	0.8585	n.s.	0.9983	
13	n.s.	0.5656	n.s.	0.9527	n.s.	0.8671	
18	n.s.	0.6316	n.s.	0.9020	n.s.	0.9574	
21	n.s.	0.5427	n.s.	0.6675	n.s.	0.9973	
25	n.s.	0.6074	n.s.	0.8995	n.s.	0.9495	
28	n.s.	0.3111	n.s.	0.8754	n.s.	0.7625	

Table S11 Two-way ANOVA with Tukey's correction was performed to test group differences for each relative organ weight (n = 6) (see manuscript Fig. 3c). There was a significant difference in tumor and spleen between the vehicle group and the ⁹⁰Y-DTPA-4PhN₃ **5b** group. Vehicle = Saline (10% EtOH, 20 μ M DTPA-4PhN₃ **11**). n.s. = not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

organs	Vehicle vs. ⁹⁰ Y-DTPA-4PhN ₃ 5b (0.1MBq)			′ehicle vs. IPhN₃ 5b (0.5MBq)		ehicle vs. PhN₃ 5b (2.5MBq)
	Summary	Adjusted P value	Summary	Adjusted P value	Summary	Adjusted P value
Tumor	n.s.	0.4467	****	<0.0001	****	<0.0001
Heart	n.s.	0.3899	n.s.	0.6319	n.s.	0.5754
Lung	n.s.	0.7478	n.s.	0.8756	n.s.	0.8532
Spleen	****	<0.0001	*	0.0177	**	0.0036
Pancreas	n.s.	0.3428	n.s.	0.6297	n.s.	0.3428
Liver	n.s.	0.5052	n.s.	0.3992	n.s.	0.1357
Kidney	n.s.	0.6667	n.s.	0.8522	n.s.	0.6559

Table S12 Two-way ANOVA with Tukey's correction was performed to test group differences for each relative organ weight (n = 6) (see manuscript Fig. 3c). In the comparison between the ⁹⁰Y-DTPA-4PhN₃ **5b** treatment groups, there was a significant difference only in the tumor. Vehicle = Saline (10% EtOH, 20 μ M DTPA-4PhN₃ **11**). n.s. = not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.

organs	 ⁹⁰Y-DTPA-4PhN₃ 5b (0.1MBq) vs. ⁹⁰Y-DTPA-4PhN₃ 5b (0.5MBq) 			4PhN₃ 5b (0.1MBq) vs. 4PhN₃ 5b (2.5MBq)	 ⁹⁰Y-DTPA-4PhN₃ 5b (0.5MBq) vs. ⁹⁰Y-DTPA-4PhN₃ 5b (2.5MBq) 		
	Summary	Adjusted P value	Summary	Adjusted P value	Summary	Adjusted P value	
Tumor	****	<0.0001	****	<0.0001	n.s.	0.1649	
Heart	n.s.	0.9795	n.s.	0.9903	n.s.	0.9997	
Lung	n.s.	0.9944	n.s.	0.9971	n.s.	>0.9999	
Spleen	n.s.	0.3694	n.s.	0.6822	n.s.	0.9569	
Pancreas	n.s.	0.9648	n.s.	>0.9999	n.s.	0.9648	
Liver	n.s.	0.9981	n.s.	0.8644	n.s.	0.9312	
Kidney	n.s.	0.9872	n.s.	>0.9999	n.s.	0.9852	

¹H-NMR in CDCl₃

¹³C-NMR in CDCl₃

HRMS Mass Spectrum SmartFormula Report

Analysis Info				Acquisition Date	2023/10/	01 21:18:56
Analysis Name Method Sample Name Comment	D:\Data\User Data\ lcms_esi_pos_low. 000820	Ode\000820_1-91_01_1 m	8224.d		AL@DE xrotof II	8213750.10448
Acquisition Pa	rameter					
Source Type ESI		Ion Polarity	Positive	Set Nebulizer		3.0 Bar
ocus	Not active	0.10.1	4500.14	Set Dry He		200 • <c< td=""></c<>
Scan Begin 50 m/z Scan End 2000 m/z		Set Capillary Set End Plate Offset	4500 ∨ -500 ∨	Set Dry Gas Set Divert Valve		10.0 l/min Waste
Intens.					+1	15 0 2 0 3min #0 1
$x10^4$					+N	/IS, 0.2-0.3min #9-1
-	5	80.4230				
-	5	80.4230	~	\checkmark		
3-	-	80.4230		NHa		
	5 228 <mark>.1</mark> 359	80.4230	Ń	NH ₂		
	-	767.5664	онс	NH ₂		
	-			NH ₂		
	228 <mark>.1</mark> 359					
	-	767.5664				
2	433.2815	767.5664 954	.7270	7		
2	228 <mark>.1</mark> 359	767.5664		7	1600	1800 m/z
2	228.1359 433.2815 200 400	767.5664 954 600 800	.7270 1000 1200	7		
2-	228.1359 433.2815 200 400 h/z # Ion Formula	767.5664 954 600 800	.7270	7 7 gma Score r 1 100.00		

35

HRMS Mass Spectrum SmartFormula Report Analysis Info Acquisition Date 2023/11/25 15:00:58 D:\Data\User Data\Ode\000832_1-91_01_18964.d Analysis Name Method Operator BDAL@DE lcms_esi_pos_low.m Sample Name 000832 Instrument micrOTOF II 8213750.10448 Comment Acquisition Parameter Ion Polarity Source Type ESI Positive Set Nebulizer 3.0 Bar Set Dry Heater 200 • (C Focus Not active Scan Begin 50 m/z Set Capillary 4500 V Set Dry Gas 10.0 l/min Set End Plate Offset -500 V Set Divert Valve Scan End 2000 m/z Waste Intens. +MS, 0.3min #15 x104-413.2680 3- N_3 2-OHC 1 8 803.5430 685.4337 1075.7143 0 200 400 600 800 1000 1200 1600 1800 1400 m/z mSigma e• P Conf N-Rule Meas. m/z Ion Formula err [ppm] # mSigma Score # m/z rdb 286.1524 1 C14H21N3NaO2 286.1526 0.6 25.7 1 100.00 5.5 even ok

HRMS

Mass Spectrum SmartFormula Report

Analysis Info Analysis Name	D:\Data\User Data\	Ode\000829_1-100_01_	18233 d	Acquisition Date 2023/1	0/01 21:52:31					
Method Sample Name Comment	lcms_esi_pos_low. 000829		10203.0	Operator BDAL@DE Instrument micrOTOF II	8213750.10448					
Acquisition Par	Acquisition Parameter									
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar					
Focus	Not active			Set Dry Heater	200 • ‹C					
Scan Begin	50 m/z	Set Capillary	4500 V	Set Dry Gas	10.0 l/min					
Scan End	2000 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Waste					
Intens x10 ⁵	448 <mark>,3</mark> 183		/	N_3	+MS, 0.4min #22					
3-				HN						
-	1409			9 N ₃						
				•						
-		705.4901								
0-1	200 400	600 800	1000 1	1200 1400 1600	1800 m/z					
Meas. m/ 448.318		m/z err [ppm] 448.3183 0.0	mSigma # n _{8.9}	nSigma Score rdb e• P 1 100.00 11.5 even	Conf N-Rule ok					

¹H-NMR in CDCl₃

¹³C-NMR in CDCl₃ 77.48 CDCl3 77.16 CDCl3 76.84 CDCl3 -3800000 -3600000 \136.94 -131.71 -193.10150.03 -34.17 -24.04 3400000 -3200000 -3000000 2800000 онс -2600000 S2 2400000 2200000 -2000000 1800000 1600000 -1400000 1200000 1000000 -800000 -600000 -400000 200000 -0 -200000 l0 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

		HRI	MS		
	Mass S	pectrum Sm	nartForm	ula Report	
Analysis Info				Acquisition Date 2023/11	/25 15:04:50
Analysis Name	D:\Data\User Data\Ode	000833_1-92_01_18	965.d	-	
Method	lcms_esi_pos_low.m			Operator BDAL@DE	
Sample Name Comment	000833			Instrument micrOTOF II	8213750.10448
Acquisition Par	rameter				
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar
Focus Scan Begin	Not active 50 m/z	Set Capillary	4500 V	Set Dry Heater Set Dry Gas	200 • <c 10.0 l/min</c
Scan End	2000 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Waste
1.25 1.00 0.75 0.50	560.385	1		OHC S2	/
0.50	070.0470	723.5100 910.645	8		
0.25	373.2479		1097.7798		
0.00	200 400 60	0 800	1000 120	00 1400 1600	1800 m/
Meas. m. 245.150		m/z err [ppm] r 5.1512 1.1	mSigma # mS 3.2	Sigma Score rdb e• P (1 100.00 3.5 even	Conf N-Rule ok

¹H-NMR in CDCl₃

¹³C-NMR in CDCl₃

HRMS Mass Spectrum SmartFormula Report Analysis Info Acquisition Date 2023/11/25 15:08:35 D:\Data\User Data\Ode\000834 1-93 01 18966.d Analysis Name BDAL@DE lcms_esi_pos_low.m Operator Method Sample Name 000834 Instrument micrOTOF II 8213750.10448 Comment **Acquisition Parameter** Source Type ESI Ion Polarity Positive Set Nebulizer 3.0 Bar Set Dry Heater 200 · (C Focus Not active Scan Begin 50 m/z Set Capillary 4500 V Set Dry Gas 10.0 l/min Set End Plate Offset Scan End -500 V Set Divert Valve 2000 m/z Waste +MS, 0.2min #8 Intens. x104 685.4368 1.25-210.1257 1.00-NC 0.75-413.2663 S5 0.50-0.25 831,5779 1076.7422 1590.9197 والباني المتعاقب 0.00 200 400 800 1200 1600 600 1000 1400 1800 m/z # mSigma Ion Formula Score e• P Conf N-Rule Meas. m/z # m/z err [ppm] mSigma rdb 210.1257 1 C13H17NNa 210.1253 -1.9 4.5 1 100.00 5.5 even ok

HRMS

Mass Spectrum SmartFormula Report

Analysis Info Analysis Name	D:\D;	ata\User Data\	Ode\00082	4 1-95 01	18228 d	Acqu	uisition I	Date	2023/10/01	1 21:33:50	
Method Sample Name Comment		_esi_pos_low.i		1_1 00_01_	10220.0		rator ument	BDAL micrO		8213750.1	0448
Acquisition Par	amete	er									
Source Type		SI	Ion Po	larity	Positive			bulizer		0 Bar	
Focus Seen Begin		ot active 0 m/z	Cat Ca	millon	4500 V			y Heate	-	00 • ‹C 0.0 I/min	
Scan Begin Scan End		000 m/z		apillary Id Plate Offse			Set Dr	y Gas vert Val		/aste	
x10 ⁵ 1.0- 175.1 0.8- 0.6- 0.4- 0.2-	430	364.3009	3.4484 ^{725.}	5785		H ₂ N 、	S6				
0.0	200	400	600	800	1000	1200	1400		1600	1800	m/z
Meas. m/ 192.172	z #	lon Formula C13H22N	m/z 192.1747	err [ppm] 13.7	mSigma	# mSigma	Score	rdb	e• P Con		
132.172		010112211	192.1141	10.7	0.0	1	100.00	0.0	CVCII	UN	

¹³C-NMR in CDCl₃

HRMS

Mass Spectrum SmartFormula Report

Analysis Info Analysis Name	D:\Data\l	Jser Data\Ode	e\000830	1-101 01	18234.d		Acquisition	Date	2023/10	/01 21:56:17	7		
Method Sample Name Comment		_pos_low.m					Operator Instrument		_@DE DTOF II	8213750.	10448		
Acquisition Par	Acquisition Parameter												
Source Type	ESI		Ion Pola	arity	Positive			ebulizer		3.0 Bar			
Focus Scan Begin	Not ac 50 m/z		Set Cap	aillon	4500 V						200 • <c 10.0 l/min</c 		
Scan End	2000 1			d Plate Offset	-500 V			vert Val	lve	Waste			
Intens. x104 1.5 1.0 0.5		3 154				H				+MS, 1.0	nin #57		
175.1	443	475.3263 62	3.4805				S7						
0.02	200	400 6	00	800	1000	1200	1400	· ·	1600	1800	m/z		
Meas. m/ 366.315		n Formula 6H40N 36	m/z 6.3155	err [ppm] 0.2	mSigma 21.8	# mSig	ma Score 1 100.00		e• P C even		e k		

HRMS

Mass Spectrum SmartFormula Report

Analysis Info Analysis Name Method Sample Name Comment	D:\Data\User Data\Ode lcms_esi_pos_low.m 000825	e\000825_1-96_01_18	229.d	Acquisition Date 20 Operator BDAL@ Instrument micrOTC	DE					
Acquisition Parameter										
Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	3.0 Bar					
Focus	Not active			Set Dry Heater	200 • ‹C					
Scan Begin	50 m/z	Set Capillary	4500 V	Set Dry Gas	10.0 l/min					
Scan End	2000 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Waste					
Intens. 3000 175.1 2000 - 1000 -	483 475.3282 364.3009 588.4	834, 4 987 4098 684.1997		$HO \rightarrow 0$ $N \rightarrow N$ $N \rightarrow 0$ $N \rightarrow$	+MS, 0.7-0.7min #43-44					
مانلان میں مار میں میں اور اور میں	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	<u>роля и Перени.</u> 00 800	1000 1200) 1400 160	00 1800 m/z					
Meas. m/. 834.498		m/z err [ppm] 834.4985 -0.3	mSigma #mS 17.2	Sigma Score rdb 4 100.00 16.5	e• P Conf N-Rule even ok					

¹³C-NMR in CD₃CN

HRMS Mass Spectrum SmartFormula Report Analysis Info Acquisition Date 2023/10/01 21:41:16 Analysis Name D:\Data\User Data\Ode\000826_1-97_01_18230.d Icms esi pos low.m Operator BDAL@DE Method Sample Name 000826 Instrument micrOTOF II 8213750.10448 Comment **Acquisition Parameter** Source Type ESI Ion Polarity Positive Set Nebulizer 3.0 Bar 200 · (C Focus Not active Set Dry Heater Scan Begin Set Capillary 4500 V Set Dry Gas 50 m/z 10.0 l/min Set End Plate Offset Scan End 2000 m/z -500 V Set Divert Valve Waste +MS, 0.2min #9 Intens. 0 4000-HO 271.1870 0 3000-OH 774.4771 Ö 2000 OH 475.3280 1000 **S**8 200 400 800 1000 1200 1400 1600 1800 600 m/z Ion Formula err [ppm] mSigma # mSigma Score rdb e• P Conf N-Rule # m/z Meas. m/z C42H65N5NaO7 774.4776 0.7 39.9 100.00 774.4771 1 1 12.5 even ok

HRMS Mass Spectrum SmartFormula Report Analysis Info Acquisition Date 2023/10/01 21:44:59 Analysis Name D:\Data\User Data\Ode\000827_1-98_01_18231.d Method lcms_esi_pos_low.m Operator BDAL@DE Sample Name 000827 Instrument micrOTOF II 8213750.10448 Comment **Acquisition Parameter** Source Type ESI Ion Polarity Positive Set Nebulizer 3.0 Bar Set Dry Heater Focus Not active 200 · (C Scan Begin Set Capillary 4500 V Set Dry Gas 50 m/z 10.0 l/min Set End Plate Offset Scan End 2000 m/z -500 V Set Divert Valve Waste +MS, 0.6min #33 Intens. N_3 N₃ 175.1460 1500 .CO2H HO2C 0 0 1000 453.3450 HO₂C² 1252.7462 N_3 N₃ 500 845.4460 588.4179 11 0-400 800 1600 1800 200 1200 600 1000 1400 m/z Ion Formula e• P Conf N-Rule Meas. m/z mSigma #mSigma Score rdb # m/z err [ppm] 0.3 1252.7462 1 C66H94N17O8 1252.7466 263.5 6 0.00 28.5 even ok