Palladium-catalyzed denitrogenation/vinylation of benzotriazinones with vinylene carbonate

Jiang Nan*, Qiong Huang, Xinran Men, Shuai Yang, Jing Wang, Yangmin Ma

Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China

Xi'an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an, 710021, China

Email: nanjiang@sust.edu.cn

Electronic Supplementary Information

Table of Contents:

1. General information 1
2. General procedure for the synthesis of starting materials 1
3. General procedure for the synthesis of bioactive molecules 3
4. General procedure for the catalytic reaction 5
5. Further derivatives of method 21
6. Mechanistic studies 24
7. References 26
8. NMR spectra 27

1. General information

All reagents were used from commercial received unless otherwise noted. Analytical thin-layer chromatography was performed with 0.25 mm coated commercial silica gel plates (TLC Silica Gel $60 \mathrm{~F}_{254}$); visualization of the developed chromatogram was performed by fluorescence. Flash Chromatography was performed with silica gel (300-400 mesh). Proton-1 nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) data were acquired at 400 MHz on a Bruker Ascend $400(400 \mathrm{MHz})$ spectrometer, and chemical shifts are reported in delt a (δ) units, in parts per million (ppm) downfield from tetramethylsilane. Splitting patterns are designated as s, singlet; d, doublet; t , triplet; q, quartet; m, multiplet, coupling constants J are quoted in Hz . Carbon-13 nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) data were acquired at 100 MHz on a Bruker Ascend 400 spectrometer, chemical shifts are reported in ppm relative to the center line of a triplet at 77.0 ppm for CDCl_{3}. Fluorine-19 nuclear magnetic resonance (${ }^{19} \mathrm{~F} N \mathrm{NR}$) data were acquired at 376 MHz on a Bruker Ascend 400 spectrometer. Infrared spectra (IR) data were recorded on a TENSOR 27 FT-IR spectrometer and recorded in wave numbers $\left(\mathrm{cm}^{-1}\right)$. High resolution mass spectra were acquired on a Bruker Daltonics MicroTof-Q II mass spectrometer.
2. General procedure for the synthesis of starting materials

1a, $X=\mathrm{H} \quad 1 \mathrm{~h}, \mathrm{X}=\mathrm{Cl}$
1 b, $X=\mathrm{Me} \quad 1 i, X=\mathrm{CF}_{3}$
1c, $X=O M e \quad 1 j, X=C O O E t$
1e, $X=O P h \quad 1 k, X=B r$
1f, $X=P h \quad 11, X=1$
$1 \mathrm{~g}, \mathrm{X}=\mathrm{F} \quad 1 \mathrm{~m}, \mathrm{X}=\mathrm{Bpin}$

1d

$1 n^{\prime}$

1n, $X=O M e$
10, $X=C$ l
1p, $X=B r$
1q, $X=\mathrm{CF}_{3}$

1u

1j', X=Cl
$\mathbf{1 k}^{\prime}, \mathrm{X}=\mathrm{CN}$

10°

A mixture of the benzo[$d][1,2,3]$ triazin- $4(3 H)$-one (5.0 mmol), organoboronic acid (7.5 mmol), anhydrous $\mathrm{Cu}(\mathrm{OAc})_{2}(5.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(10.0 \mathrm{mmol})$ in $\mathrm{DCE}(30.0 \mathrm{~mL})$ was stirred at room temperature (monitored by TLC). After finished, the reaction mixture was filtered through celite. The corresponding filtrate was collected, concentrated in vacuo. To obtained residue was finally purified by manual column chromatography on silica gel to afford the desired products.

Method B: (1b, 1c, 1d, 1e, 1f, 1h, 1i, 1j, 1k, 11, 1m, 1n, 1o, 1p, 1q, 1r, 1s, 1t, 1u, 1v, $\left.\mathbf{1 g}^{\prime}, \mathbf{1 h}^{\prime}, \mathbf{1 i}^{\prime}\right)^{[1-5]}$

To a round bottom flask containing methyl anthranilate derivatives (10.0 mmol) were evacuated and purged with argon three times, and then $\mathrm{HCl}(\mathrm{aq})(16.0 \mathrm{~mL}, 2 \mathrm{M})$ was added, followed by being stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min . A solution of $\mathrm{NaNO}_{2}(11.7 \mathrm{mmol})$ in water (5.5 mL) were slowly added within 40 min to the system and then stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min . Then, a solution of $\mathrm{NaOAc}(38.6 \mathrm{mmol})$ in water $(12.5 \mathrm{~mL})$ was slowly added within 20 min , followed by addition of corresponding anilines $(15.2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 3 h . The precipitate was collected by filtration, washed with cold water (25.0 ml). The above triazene and morpholine (30.0 mmol) was refluxed in ethanol (45.0 mL) until triazene was completely consumed. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ for crystallization. The product was collected by filtration and washed with cold ethanol to give corresponding products. The residue was purified by manual column chromatography on silica gel to obtain the corresponding products.

Method C: (1g) ${ }^{[2]}$

In a round bottom flask isotoic anhydride (10.0 mmol), aliphatic amine (11.1 mmol) and DMF (10.0 mL) were loaded and the be heated to $50^{\circ} \mathrm{C}$ in an oil bath and stirred for 3 h . After completed, a solution of $\mathrm{NaNO}_{2}(11.0 \mathrm{mmol})$ in 2 M aqueous $\mathrm{HCl}(20.0 \mathrm{~mL})$ was added to the reaction mixture at $0^{\circ} \mathrm{C}$ and stirred for 1 h . Then, 1 M aqueous NaOH solution was added slowly to adjust the pH to 12 . The reaction mixture was vigorously stirred for 15 min and then reacidified to pH 2.0. After stirring for 30 min , the sturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(3 \times 20 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc. The combined organic layers were washed with brine, dried over MgSO_{4}, filtered, and concentrated on a rotary evaporator. The residue was purified by manual column chromatography on silica gel to obtain the corresponding products.

3. General procedure for the synthesis of bioactive molecules

(1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl4-(4-oxo-3-phenyl-3,4-dihydrobenzo[d][1, 2,3]triazin-6-yl)benzoate (1b"')

The reaction was performed following the general procedure method B . White solid ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.67(\mathrm{~d}, J=2.06 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.45 \mathrm{~Hz}, 1 \mathrm{H}), 8.25-8.18(\mathrm{~m}, 3 \mathrm{H})$, $7.81(\mathrm{~d}, J=8.06 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=7.68 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.65 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 1 \mathrm{H})$, $5.16(\mathrm{~d}, J=9.91 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{t}, J$ $=4.51 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{t}, J=12.73 \mathrm{~Hz}, 1 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.19-1.13(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H})$, $0.94(\mathrm{~d}, J=3.97 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,155.5,144.8,143.3,142.9,139.0$, $134.2,131.5,130.7,130.6,129.6,129.4,129.3,127.8,127.8,126.3,124.1,121.1,81.2,49.4,48.2$, $45.3,37.2,28.4,27.7,20.0,19.2,13.9$. IR: $3062,3029,1696,1654,1523,1489,1271,749,699$ cm^{-1}. HRMS (ESI) m/z Calcd for $\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 480.2282$, found 480.2285.

7-((8S,9R,13R,14R)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)-3-phenylbenzo[d][1,2,3]triazin-4(3H)-one (1c')

The reaction was performed following the general procedure method B . White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.48(\mathrm{dd}, J=8.22,1.90 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=2.06 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dt}, J$ $=8.34,1.99 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.50(\mathrm{~d}, J=5.09 \mathrm{~Hz}, 3 \mathrm{H}), 3.13-$ $2.98(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~d}, J=12.25 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.07(\mathrm{~m}$, $2 \mathrm{H}), 2.02(\mathrm{~d}, J=11.49 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.56(\mathrm{~d}, J=13.95 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=1.91$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 220.9,155.5,148.3,144.6,141.5,139.1,138.0,136.3$, $131.7,129.4,129.2,128.4,126.7,126.5,126.3,126.3,125.1,119.0,50.8,48.3,44.7,38.4,36.1$, 31.9, 29.8, 26.7, 26.0, 21.9, 14.2. IR: 3064, 3041, 2985, 1734, 1694, 1552, 1269, 755, $694 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 476.2333$, found 476.2328 .

3-ethyl-3-(4-(4-oxobenzo[d][1,2,3]triazin-3(4H)-yl)phenyl)piperidine-2,6-dione(1e')

The reaction was performed following the general procedure method B . Yellow solid. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~d}, J=7.86 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.07 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{t}, J=7.71$ $\mathrm{Hz}, 1 \mathrm{H}), 7.84(\mathrm{t}, J=7.60 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.33 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.35 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{dt}, J$ $=18.35,3.62 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{ddt}, J=18.09,7.17,4.30 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{td}, J=14.12,13.67,4.41 \mathrm{~Hz}$, $1 \mathrm{H}), 2.10(\mathrm{dt}, J=14.62,7.26 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{dt}, J=14.23,7.36 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{t}, J=7.43 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.1,172.5,155.4,143.8,139.9,138.3,135.5,133.1,128.8$, $127.2,126.6,125.9,120.5,51.2,33.2,29.5,27.2,9.3$. IR: $3058,2012,2867,1695,1653,1518$, 1473, 1268, 1194, 754, $669 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 363.1452$,
found 363.1446.

4. General procedure for the catalytic reaction

A pressure tube was charged with benzotriazinone $\mathbf{1}(0.2 \mathrm{mmol})$, vinylene carbonate $\mathbf{2}(0.6$ $\mathrm{mmol}), \mathrm{PdCl}_{2}(10.0 \% \mathrm{~mol})$ and $\mathrm{CH}_{3} \mathrm{CN}(1.0 \mathrm{~mL})$. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 12 h under Ar atmosphere in an oil bath. After cooling to room temperature, all volatiles were removed under reduced pressure. The residue was purified by silica gel manual column chromatography to afford the product $\mathbf{3}$.

2-Phenyl-1(2H)-isoquinolinone (3a) ${ }^{[6]}$

White solid ($34.1 \mathrm{mg}, 77 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.28 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.48(\mathrm{~d}, J=8.14,1.37 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.54 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.43(\mathrm{t}, 3 \mathrm{H}), 7.19$ $(\mathrm{d}, J=7.39 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=7.40 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.0,141.3$, 137.0, 132.5, 132.1, 129.2, 128.2, 128.0, 127.1, 126.8, 126.5, 125.9, 106.1. IR: 3065, 3021, 2986, 2910, 1657, 1645, 1501, 1282, 787, $688 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$ 222.0913, found 222.0917.

2-Phenyl-1(2H)-7-methylisoquinolinone (3b)

White solid ($33.8 \mathrm{mg}, 72 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.35 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.28(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=7.49,5.08 \mathrm{~Hz}, 4 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{~d}, J=7.38 \mathrm{~Hz}, 1 \mathrm{H}), 6.53$ (d, $J=7.38 \mathrm{~Hz}, 1 \mathrm{H}$), $2.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.2,141.8,137.5,134.9$, 134.3, 131.54, 129.5, 128.2, 128.1, 127.1, 126.7, 126.1, 106.3, 21.8. IR: 3068, 3023, 2986, 2912, 1657, 1630, 1616, 1335, 1283, 741, $691 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$ 236.1070, found 236.1061 .

2-Phenyl-1(2H)-7-methoxyisoquinolinone (3c)

White solid ($40.2 \mathrm{mg}, 80 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.35 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.89(\mathrm{~d}, J=2.71 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.29(\mathrm{dd}, J=8.65,2.73 \mathrm{~Hz}$, $1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.36 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=7.35 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 162.0,159.3,141.8,131.3,130.2,129.5,128.3,128.0,127.8,127.1,123.3,108.4,106.3$, 55.9. IR: $3065,3002,2913,2942,2856,1655,1607,1280,1219,833,691 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$252.1019, found 252.1018.

2-Phenyl-1(2H)-7-morpholinoisoquinolinone (3d)

White solid (39.7 mg, 65% yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.36 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.88(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.74 \mathrm{~Hz}, 3 \mathrm{H}), 7.43(\mathrm{~d}, J=4.78 \mathrm{~Hz}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=8.62 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (dd, $J=7.35,3.00 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=7.42,2.98 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{q}, J=4.07 \mathrm{~Hz}, 4 \mathrm{H}), 3.29(\mathrm{q}, J$ $=4.02 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.5,150.1,141.3,129.7,129.3,128.9,127.6$, $127.2,126.8,126.5,121.8,111.5,105.7,66.4,48.8$. IR: $3059,3040,2986,2913,1665,1654,1601$, 1273, 1046, $680 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$307.1441, found 307.1435.

H

2-Phenyl-1(2H)-7-phenoxyisoquinolinone (3e)

White solid ($40.1 \mathrm{mg}, 64 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.28 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.00(\mathrm{~d}, J=2.57 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.39(\mathrm{~m}, 4 \mathrm{H})$, $7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.51 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.41 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=7.41 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 161.1,156.5,156.2,141.0,132.4,130.6,129.6,128.9,127.8$, 127.6, 127.6, 126.5, 1244, 123.6, 118.9, 115.5, 105.5. IR: 3058, 3038, 2984, 2915, 1664, 1656,

1601, 1346, 1223, 838, 758, $690 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 314.1176$, found 314.1173 .

2-Phenyl-1(2H)-7-Phenylisoquinolinone (3f)

White solid ($40.9 \mathrm{mg}, 69 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=2: 1, \mathrm{R}_{\mathrm{f}}=0.28 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.73(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=9.92 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.51 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.22 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-$ $7.38(\mathrm{~m}, 8 \mathrm{H}), 7.21(\mathrm{~d}, J=7.38 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.39 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $161.76,141.03,139.68,135.70,131.84,131.17,128.97,128.59,127.78,127.35,126.86,126.56$, $126.52,126.23,125.94,105.62$. IR: $3063,3005,2968,2913,1663,1630,1652,1524,930,761$, $688 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$298.1226, found 298.1220.

2-Phenyl-1(2H)-7-fluoroisoquinolinone (3g)

White solid ($26.3 \mathrm{mg}, 55 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=2: 1, \mathrm{R}_{\mathrm{f}}=0.28,{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.11(\mathrm{~d}, J=11.58 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=8.60,5.16 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{dd}, J=$ $12.31,8.43 \mathrm{~Hz}, 4 \mathrm{H}), 7.16(\mathrm{~d}, J=7.42 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=7.42 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 162.0(\mathrm{~d}, J=246.0 \mathrm{~Hz}), 161.5,141.4,133.9,131.8,129.6,128.6,128.5,128.4$, $127.0,121.6(\mathrm{~d}, J=23.6 \mathrm{~Hz}), 113.7(\mathrm{~d}, J=22.7 \mathrm{~Hz}), 105.6 .{ }^{19} \mathrm{~F}$ NMR $\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-112.4$. IR: $3065,3041,3020,1653,1625,1605,1591,1502,1325,1286,832,757,690 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+} 240.0819$, found 240.0824.

2-Phenyl-1(2H)-7-Chloroisoquinolinone (3h)

White solid ($29.6 \mathrm{mg}, 58 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=2: 1, \mathrm{R}_{\mathrm{f}}=0.28 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.44(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=9.66 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.62 \mathrm{~Hz}, 3 \mathrm{H}), 7.43(\mathrm{t}, J=6.80 \mathrm{~Hz}, 3 \mathrm{H}), 7.19(\mathrm{~d}$, $J=7.38 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=7.41 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.6,140.7,135.1$,
132.8, 132.7, 132.2, 129.0, 128.0, 127.4, 127.4, 127.2, 126.4, 105.2. IR: 3068, 3048, 3021, 2916, 1653, 1502, 831, $689 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 256.0524$, found 256.0532.

2-Phenyl-1(2H)-7-Trifluoroisoquinolinone (3i)

White solid ($33.5 \mathrm{mg}, 58 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.36 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.75(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.31 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.43 \mathrm{~Hz}, 2 \mathrm{H}), 7.44$ $(\mathrm{q}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=7.42 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.42 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.0$, $140.5,139.2,134.1,129.1,128.3(\mathrm{q}, J=16.5 \mathrm{~Hz}), 128.1,126.5,126.4,126.1,125.7(\mathrm{q}, J=12.4$ $\mathrm{Hz}), 124.9,122.3(\mathrm{q}, J=280.3 \mathrm{~Hz}), 105.1 .{ }^{19} \mathrm{~F}$ NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.3$. IR: 3085, 3047, 3012, 2916, 1662, 1528, 1132, 798, $677 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$ 290.0787 , found 290.0784 .

Ethyl 1-oxo-2-phenyl-1,2-dihydroisoquinoline-7-carboxylate (3j)
White solid ($39.3 \mathrm{mg}, 67 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.32 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.52(\mathrm{~d}, J=8.39 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=9.88 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.41$ $(\mathrm{m}, 3 \mathrm{H}), 7.24(\mathrm{~d}, J=7.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=7.43 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{q}, J=7.14 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{t}, J$ $=7.14 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.6,161.2,140.8,136.5,133.6,132.7,129.1$, $129.0,128.3,128.0,127.6,126.8,126.4,105.9,61.2,14.0$. IR: $3065,3041,3020,1653,1625$, 1605, 1591, 1502, 1332, 1286, 832, 757, $690 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$294.1125, found 294.1121.

2-Phenyl-1(2H)-7--bromoisoquinolinone (3k)

White solid (38.3 mg, 64% yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.35 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.60(\mathrm{~d}, J=2.06 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=8.38,2.09 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.64 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{dd}, J=$ 8.23, $6.42 \mathrm{~Hz}, 4 \mathrm{H}), 7.20(\mathrm{~d}, J=7.36 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.37 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 161.1,141.4,136.0,133.0,131.2,129.7,128.6,128.3,127.9,127.0,121.3,105.9 . \mathrm{IR}:$ 3078, 3047, 2986, 2917, 1712, 1653, 1602, 1525, 1272, 792, 763, $684 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 300.0019$, found 300.0026.

2-Phenyl-1(2H)-7-iodoisoquinolinone (31)

White solid ($43.7 \mathrm{mg}, 63 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.34 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.81(\mathrm{~d}, J=1.83 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=8.36,1.88 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.46 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{td}, J=$ $8.25,1.26 \mathrm{~Hz}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=8.34 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.41 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.41 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 160.3,140.9,140.7,136.8,135.8,132.6,129.0,128.0,127.7$, $127.3,126.4,105.3,91.6$. IR: $3083,3045,3012,2918,1667,1651,1526,798,762,682 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{INO}[\mathrm{M}+\mathrm{H}]^{+} 347.9880$, found 347.9881.

2-Phenyl-1 (2H)-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan) isoquinolinone (3m)
White solid (38.2 mg, 55\% yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.25 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.9(\mathrm{~s}, 1 \mathrm{H}), 8.1(\mathrm{~d}, J=7.84 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.5-7.4(\mathrm{~m}, 3 \mathrm{H}), 7.2(\mathrm{~d}, J=7.40 \mathrm{~Hz}$, $1 \mathrm{H}), 6.5(\mathrm{~d}, J=7.39 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 162.0,141.4,139.1$, 138.0, 135.7, 133.2, 129.3, 128.0, 126.8, 125.8, 125.1, 106.1, 84.0, 24.9. IR: 3087, 3045, 2922, $2874,1678,1655,1524,1143,806,767,670 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{BNO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}$348.1766, found 348.1770.

2-Phenyl-1(2H)-6-methoxyisoquinolinone (3n)

Yellow solid ($39.7 \mathrm{mg}, 79 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=2: 1, \mathrm{R}_{\mathrm{f}}=0.35 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.39(\mathrm{~d}, J=8.89 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.65 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=7.41 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08(\mathrm{dd}, J=8.96,2.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=2.42 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.42 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 162.6,161.4,141.1,138.8,132.5,130.0,128.9,127.6,126.5$, 120.0, 116.1, 106.2, 105.6, 55.2. IR: 3060, 3042, 3013, 2912, 1664, 1630, 1601, 1282, 1245, 690 cm^{-1}. HRMS (ESI) m/z Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$252.1019, found 252.1015.

2-Phenyl-1(2H)-6-Chloroisoquinolinone (3o)

White solid (29.1 mg, 57% yield). $\mathrm{PE} / \mathrm{DCM}=2: 1, \mathrm{R}_{\mathrm{f}}=0.28 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.39(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{q}, J=7.51 \mathrm{~Hz}, 4 \mathrm{H}), 7.21(\mathrm{~d}, J=7.45 \mathrm{~Hz}$, $1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.43 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 161.7, 141.3, 139.3, 138.6, 133.8, $130.4,129.6,128.5,127.9,127.0,125.5,125.2,105.4$. IR: 3082, 3042, 2986, 2867, 1657, 1623, 1514, 1283, 872, 772, $681 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 256.0524$, found 256.0523.

2-Phenyl-1(2H)-6--bromoisoquinolinone (3p)

Yellow solid ($37.1 \mathrm{mg}, 62 \%$ yield). $\left.\mathrm{PE} / \mathrm{DCM}=2: 1, \mathrm{R}_{\mathrm{f}}=0.35\right)^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.32(\mathrm{~d}, J=8.60 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.60 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.67 \mathrm{~Hz}, 2 \mathrm{H}), 7.42$ $(\mathrm{d}, J=7.71 \mathrm{~Hz}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=7.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=7.48 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.6,141.0,138.5,133.5,130.4,130.1,129.3,128.4,128.3,127.7,126.7,125.2,105.0$. IR: $3081,3047,2986,2875,1658,1632,1578,1283,872,772,681 \mathrm{~cm}^{-1}$. HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 300.0019$, found 300.0013.

2-Phenyl-1(2H)-6 -Trifluoroisoquinolinone (3q)

White solid (29.5 mg, 51\% yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.36 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.59(\mathrm{~d}, J=8.42 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.50 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=9.28 \mathrm{~Hz}, 2 \mathrm{H}), 7.45$ $(\mathrm{t}, J=8.06 \mathrm{~Hz}, 3 \mathrm{H}), 7.28(\mathrm{~d}, J=7.46 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.44 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{CDCl} 3) ~ \delta 161.2,140.8,137.0,134.3(\mathrm{q}, J=40.00 \mathrm{~Hz}), 133.6,129.4,129.4,128.6,128.4,126.7$, $123.6(\mathrm{q}, J=272.93 \mathrm{~Hz}), 123.3(\mathrm{q}, J=3.90 \mathrm{~Hz}), 123.1(\mathrm{q}, J=3.07 \mathrm{~Hz}), 105.7 .{ }^{19} \mathrm{~F}$ NMR $(375 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$-63.0. IR: 3085, 3045, 2968, 2875, 1668, 1654, 1518, 1129, 755, $694 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$290.0787, found 290.0780.

2-Phenyl-1(2H)-5-methylisoquinolinone (3r)

White solid ($30.6 \mathrm{mg}, 65 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.38 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.36(\mathrm{~d}, J=8.03 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.50 \mathrm{~Hz}, 3 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.23(\mathrm{~d}, J=7.62 \mathrm{~Hz}, 1 \mathrm{H})$, $6.70(\mathrm{~d}, J=7.65 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.9,141.0,135.6,133.0$, $132.9,131.4,128.9,127.7,126.5,126.5,126.4,125.9,102.6,18.7$. IR: 3063, 3005, 2916, 2845 , 1678, 1623, 1523, 1257, 776, $698 \mathrm{~cm}^{-1}$. HRMS (ESI) mz/z Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$236.1070, found 236.1063.

2-Phenyl-1(2H)-5-bromoisoquinolinone (3s)

Yellow solid ($35.3 \mathrm{mg}, 59 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.34 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.45(\mathrm{~d}, J=9.03 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=7.71,1.26 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}$, $3 \mathrm{H}), 7.36(\mathrm{t}, J=7.89 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.72 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.70 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.3,140.9,136.4,136.3,133.3,129.4,128.3,128.1,127.9,127.7,126.7,120.6$,
104.8. IR: 3087, 3046, 2985, 2867, 1663, 1653, 1522, 758, $683 \mathrm{~cm}^{-1}$. HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 300.0019$, found 300.0015 .

2-Phenyl-1(2H)-5-nitroisoquinolinone (3t)

White solid (31.9 mg, 60% yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.35 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.46(\mathrm{~d}, J=8.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.46 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{t}, 2 \mathrm{H})$, $7.35(\mathrm{~d}, J=7.42 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.42 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=7.42 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.5,141.9,136.6,134.4,132.4,131.2,129.9,128.0,127.0,126.1,125.7,124.9$, 106.3. IR(neat): $3085,3042,2957,2866,1660,1654,1530,1365,1286,873,775,684 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$267.0764, found 267.0763.

2-Phenyl-1(2H)-6,7-dimethoxyisoquinolinone (3u)

White solid ($43.8 \mathrm{mg}, 78 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.35 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.85(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{t}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=7.35 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=$ $7.36 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=3.45 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.00,153.25,149.10$, $141.21,132.21,130.54,128.85,127.64,126.53,120.01,107.79,105.73,105.50,55.86,55.80$. IR: 3065, 3042, 2988, 2876, 1653, 1621, 1507, 1275, 1060, 867, 758, $690 \mathrm{~cm}^{-1}$. HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$282.1125, found 282.1120 .

6-Phenyl-3a,7a-dihydrothieno[2,3-c]pyridin-7(6H)-one (3v)

White solid ($28.6 \mathrm{mg}, 63 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.38 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.72(\mathrm{~d}, J=5.16 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, 2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{t}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=7.16 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.8,144.9,140.4,133.6,133.2,130.4,128.8,127.8,126.5,123.9$,
102.7. IR: 3082, 3041, 2985, 1653, 1624, 1507, 1390, 1276, 1132, 1060, 758, $690 \mathrm{~cm}^{-1}$. HRMS (ESI) Calcd for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{NOS}[\mathrm{M}+\mathrm{H}]^{+}$228.0478, found 228.0482.

2-(4-Methylphenyl)-1(2H)-isoquinolinone (3a')

White solid (34.3 mg, 73\% yield). $\mathrm{PE} / \mathrm{DCM}=2: 1, \mathrm{R}_{\mathrm{f}}=0.28 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.47(\mathrm{dd}, J=8.07,1.24 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=7.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 4 \mathrm{H}), 7.17$ $(\mathrm{d}, J=7.39 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=7.36 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.4$, 139.1, 138.3, 1374, 132.8, 132.6, 130.2, 128.6, 127.4, 126.9, 126.2, 106.4, 21.5. IR: 3063, 3042, 2943, 2896, 1665, 1654, 1518, 1281, 784, 732, $682 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+} 236.1070$, found 236.1074.

2-(4-Methoxyphenyl)-1(2H)-isoquinolinone (3b')

White solid (37.7 mg, 75% yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.28 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.47(\mathrm{dd}, J=8.09,1.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J$ $=7.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.88 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=7.36 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.9,158.7,136.7,133.9,132.1,132.1,127.8,127.5,126.7,126.1,125.5,114.1$, 105.6, 55.2. IR: 3065, 3042, 3018, 2989, 1667, 1654, 1518, 1281, 784, 756, $682 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$252.1019, found 252.1010

2-(4-(Methylthio)phenyl)-1(2H)-isoquinolinone(3c')

White solid (40.1mg, 75% yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.35 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.50(\mathrm{~d}, J=8.03 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=17.43,7.48 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 4 \mathrm{H}), 7.19(\mathrm{~d}, J=$ $7.36 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.38 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.7,138.4$,
$138.0,136.6,132.2,131.7,127.9,126.8,126.8,126.7,126.1,125.6,105.9,15.5$. IR: 3085, 3048, 2987, 2854, 1689, 1653, 1649, 1547, 786, $683 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z Calcd for $\mathrm{C}_{16} \mathrm{H}_{14}$ NOS $[\mathrm{M}+\mathrm{H}]^{+}$268.0791, found 268.0792.

2-(4-Fluorophenyl)-1(2H)-isoquinolinone (3d')
White solid ($32.9 \mathrm{mg}, 69 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.32,{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.46(\mathrm{~d}, J=8.06 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.41(\mathrm{dd}, J=8.92,4.79 \mathrm{~Hz}$, $2 \mathrm{H}), 7.21-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.57(\mathrm{~d}, J=7.40 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.3,162.2(\mathrm{~d}$, $J=246.3 \mathrm{~Hz}), 137.5,137.3,132.9,132.2,128.9(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 128.5,127.5,126.7,126.3,116.4$ $(\mathrm{d}, J=22.8 \mathrm{~Hz}), 106.6 .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$-113.3. IR: 3068, 3041, 3012 2918, 1694, 1651, 1522, 1269, 791, 755, $698 \mathrm{~cm}^{-1}$. HHRMS (ESI) m / z Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+}$ 240.0819 , found 240.0815 .

2-(4-Chlorophenyl)-1(2H)-isoquinolinone (3e')
White solid (34.7 mg, 68% yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.35,{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.46(\mathrm{~d}, J=9.30 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.53 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=15.72,7.52 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=$ $8.70 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.42 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=7.41 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.2,140.0,137.3,134.1,133.0,131.9,129.7,128.5,128.5,127.6,126.7$, 126.3, 106.9. IR: $3069,3043,3019$ 2819, 1643, 1652, 1341, 820, 795, $677 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 256.0524$, found 256.0520 .

2-(4-Bromophenyl)-1(2H)-isoquinolinone (3f')

White solid ($38.9 \mathrm{mg}, 65 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.32,{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.46(\mathrm{~d}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=8.06 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.65 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{q}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.65$ $\mathrm{Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=7.43 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $162.1,140.6,137.3,133.0,132.7,131.9,128.8,128.6,127.6,126.7,126.3,122.2,106.9$. IR: 3061, 3045, 3012 2918, 1694, 1651, 1522, 1269, 791, 755, $698 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 300.0019$, found 300.0018 .

2-(4-Trifluorophenyl)-1(2H)-isoquinolinone (3g')
White solid (34.7 mg, 60% yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.38,{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.47(\mathrm{~d}, J=7.99 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.26 \mathrm{~Hz}, 2 \mathrm{H}), 7.74-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.52(\mathrm{~m}, 4 \mathrm{H})$, $7.17(\mathrm{~d}, J=7.43 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.45 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.8,144.2$, $136.9,132.9,131.2,130.1(\mathrm{q}, J=32.9 \mathrm{~Hz}), 128.3,127.5,127.3,126.4(4), 126.1,123.8(\mathrm{q}, J=270$ $\mathrm{Hz}), 106.9 .{ }^{19} \mathrm{~F}$ NMR ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.6. IR: 3060, 3041, 3018, 2918, 1665, 1651, 1123, $792,682 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$290.0787, found 290.0785.

2-(4-Iodophenyl)-1(2H)-isoquinolinone (3h')
White solid ($44.4 \mathrm{mg}, 64 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.30, \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.81(\mathrm{~d}, J=1.83 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{dd}, J=8.36,1.88 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}, J=7.46 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.40$ $(\mathrm{m}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=8.34 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.41 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.40 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.3,140.9,140.7,136.8,135.8,132.6,129.0,128.0,127.7,127.3,126.4$, 105.3, 91.6. IR: 3069, 3045, 3012, 2918, 1648, 1528, 1123, 789, $684 \mathrm{~cm}^{-1} . \mathrm{HRMS}$ (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{INO}[\mathrm{M}+\mathrm{H}]^{+} 347.9880$, found: 347.9888 .

White solid ($38.5 \mathrm{mg}, 69 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.31 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.46(\mathrm{~d}, J=8.01 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.44 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{t}, J=7.49 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{q}, J=7.55 \mathrm{~Hz}$, 4H), $7.18(\mathrm{~d}, J=7.44 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.44 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.9,161.4,144.8,136.6,132.5,131.0,130.3,129.2,127.9,127.1,126.5,126.1,125.7$, 106.5, 52.0. IR: $3068,3040,3019,2926,1655,1527,1225,763,676 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 280.0968$, found 280.0960 .

2-(3-Chlorophenyl)-1(2H)-isoquinolinone (3j')
White solid ($31.6 \mathrm{mg}, 62 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=2: 1, \mathrm{R}_{\mathrm{f}}=0.28,{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.46(\mathrm{~d}, J=8.06 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{q}, 2 \mathrm{H}), 7.49-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $5.75 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.42 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=7.44 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $162.1,142.5,137.2,135.0,133.1,131.8,130.5,128.6,128.5,127.6,127.6,126.7,126.3,125.5$, 106.9. IR: 3065, $3043,3018,2919,1662,1654,762,679 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 256.0524$, found 256.0519.

2-(3-Cyanophenyl)-1(2H)-isoquinolinone (3k')

White solid ($29.7 \mathrm{mg}, 60 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.32 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.45(\mathrm{~d}, J=8.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{q}, 3 \mathrm{H}), 7.66-7.53(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, J=7.44 \mathrm{~Hz}$, $1 \mathrm{H}), 6.63(\mathrm{~d}, J=7.45 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.1,142.2,137.2,133.4,131.9$, $131.2,130.8,130.5,128.6,127.9,126.6,126.5,118.1,113.8,107.5$. IR: $3052,3041,3012,2918$, 1657, 1648, 1135, 752, $679 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$247.0866, found 247.0861.

2-(2-Fluorophenyl)-1(2H)-isoquinolinone (31')

White solid ($30.1 \mathrm{mg}, 63 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.38 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.49(\mathrm{~d}, J=7.99 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{t}, J=6.90 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.33$ $-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=7.40 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.42 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.6,157.5(\mathrm{~d}, J=250.6 \mathrm{~Hz}), 137.1,132.7,132.0,130.2(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 129.1,128.8(\mathrm{~d}, J=13.1$ $\mathrm{Hz}), 128.3,127.2,126.4,126.0,124.7(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 116.8(\mathrm{~d}, J=19.7 \mathrm{~Hz}), 106.4 .{ }^{19} \mathrm{~F} \mathrm{NMR}$ ($375 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-120.3(\mathrm{~d}, J=10.69 \mathrm{~Hz}$). IR: 3059, 3037, 3012, 2858, 1675, 1656, 1423, 756, $676 \mathrm{~cm}^{-1}$. HRMS (ESI). m / z Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+} 240.0819$, found 240.0825 .

2-(2-Methylphenyl)-1(2H)-isoquinolinone (3m')

White solid (28.2 mg, 60% yield). $\mathrm{PE} / \mathrm{DCM}=2: 1, \mathrm{R}_{\mathrm{f}}=0.28 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.49(\mathrm{~d}, J=8.06 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=7.95 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.64 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.25(\mathrm{~d}, J=7.85 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=7.36 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=7.38$ $\mathrm{Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.4,140.2,137.0,135.1,132.2,131.8$, $130.7,128.5,127.9,127.2,126.8,126.7,126.3,125.6,105.7,17.4$. IR: $3067,3041,2932,2856$, 1663, 1654, 1524, 1278, 758, $686 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$236.1070, found 236.1072 .

2-Naphthalen-1(2H)-isoquinolinone($3 n^{\prime}$)

White solid (36.3 mg, 67\% yield). $\mathrm{PE} / \mathrm{DCM}=2: 1, \mathrm{R}_{\mathrm{f}}=0.25 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.55(\mathrm{~d}, J=8.07 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{t}, J=8.13 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{t}, 1 \mathrm{H}), 7.67-7.48(\mathrm{~m}, 7 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $7.36 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.36 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.0,137.7,137.0,134.1$, $132.6,132.3,129.3,128.9,128.1,128.0,126.9,126.8,126.2,126.1,125.7,125.2,125.1,122.2$, 105.7. IR: $3083,3039,3012,2986,1676,1648,1526,1510,1269,754,698 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z Calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$272.1070, found 272.1075.

2-Benzyl-1(2H)-isoquinolinone (3o')

White solid (19.7mg, 42% yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.35 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.47(\mathrm{~d}, J=7.63 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.11 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=3.98 \mathrm{~Hz}, 4 \mathrm{H})$, $7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.38 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=7.39 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 162.6,137.3,137.2,132.5,131.6,129.1,128.4,128.2,128.1,127.2,126.6$, 126.2, 106.8, 52.0. IR: 3085, 3041, 3012, 2918, 2876, 1706, 1662, 1518, 1272, 1181, 1107, 839 , $756,702 \mathrm{~cm}^{-1} . \quad$ HRMS (ESI) m/z Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$236.1070, found 236.1064.

(2R,5S)-2-Isopropyl-5-methylcyclohexyl-4-(1-0xo-2-phenyl-1,2-dihydroisoquinolin-7-yl)benz oate (3a'")

White solid ($71.8 \mathrm{mg}, 75 \%$ yield $) . \mathrm{PE} / \mathrm{DCM}=2: 1, \mathrm{R}_{\mathrm{f}}=0.38 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.75(\mathrm{~d}, J=1.91 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.31 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{dd}, J=8.25,2.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=$ $8.32 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.26 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dt}, J=8.27,2.94 \mathrm{~Hz}, 3 \mathrm{H}), 7.22$ $(\mathrm{d}, J=7.39 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.40 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{td}, J=10.85,4.39 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~d}, J=$ $11.90 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{td}, J=6.91,2.33 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{t}, J=10.14 \mathrm{~Hz}, 2 \mathrm{H})$, $1.27(\mathrm{~d}, J=12.69 \mathrm{~Hz}, 1 \mathrm{H}), 1.16-1.11(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~d}, J=6.30 \mathrm{~Hz}, 6 \mathrm{H}), 0.82(\mathrm{~d}, J=6.93 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,162.3,144.5,141.5,139.0,136.93,132.9,131.7,130.5$, $130.2,129.6,128.5,127.3,127.2,127.1,127.0,126.9,106.1,75.2,47.5,41.3,34.6,31.7,26.8$, 23.9, 22.3, 21.1, 16.8. IR: $3335,2955,1706,1662,1519,1272,1182,1108,839,756 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z Calcd for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 480.2533$, found 480.2534 .

(1R,2S,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl-4-(1-oxo-2-phenyl-1,2-dihydroisoquinoli n-7-yl)benzoate (3b")

White solid ($62.0 \mathrm{mg}, 65 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=2: 1, \mathrm{R}_{\mathrm{f}}=0.35 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.75(\mathrm{~d}, J=1.95 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.19 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{dd}, J=8.28,2.00 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.16$ $\mathrm{Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.14 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.44 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=7.92 \mathrm{~Hz}, 3 \mathrm{H}), 7.23(\mathrm{~d}, J=$ $7.41 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=7.40 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=9.80 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.11(\mathrm{~m}$, $1 \mathrm{H}), 1.82(\mathrm{tt}, J=7.95,3.98 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{t}, J=4.51 \mathrm{~Hz}, 1 \mathrm{H}), 1.48-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.31(\mathrm{~m}$, $1 \mathrm{H}), 1.18-1.11(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=3.42 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $166.9,162.3,144.6,141.6,139.1,137.0,133.0,131.7,130.5,130.3,129.6,129.4,128.5,127.4,127.2$, 127.1, 127.1, 127.0, 106.1, 80.9, 49.43, 48.2, 45.3, 37.2, 28.4, 27.7, 20.1, 19.2, 14.0. IR: 3425, 2955, 1716, 1659, 1636, 1524, 1273, 1112, $756 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z Calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 478.2377, found 478.2375.

6-((8S,9R,13R,14R)-13-Methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a

]phenanthren-3-yl)-2-phenylisoquinolin-1(2H)-one (3c')White solid ($64.3 \mathrm{mg}, 68 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.38 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.51(\mathrm{~d}, J=8.55 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=6.98 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{~d}$, $J=7.45 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.45 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=13.86 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{dt}, J=19.32,10.35 \mathrm{~Hz}$, $2 \mathrm{H}), 2.38(\mathrm{t}, J=11.11 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.06(\mathrm{~m}, 3 \mathrm{H}), 2.01(\mathrm{~d}, J=9.17 \mathrm{~Hz}, 1 \mathrm{H}), 1.66(\mathrm{t}, J=12.19 \mathrm{~Hz}$, $3 \mathrm{H}), 1.56(\mathrm{t}, J=11.75 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 220.4,161.5,144.7,141.0$, $139.7,137.1,136.8,132.2,128.9,128.5,127.7,127.6,126.5,125.8,125.7,124.9,124.4,123.4,106.0$,
$50.1,47.6,44.0,37.8,35.5,31.2,29.2,26.1,25.4,21.2,13.5 . \operatorname{IR}: 3043,3012,2954,1678,1657$, 1521, 1436, 1269, $755 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 474.2428$, found 474.2425.

7-(4-((()3R,8R,9R,10S,13S,14R,17S)-10,13-Dimethyl-17-((S)-6-methylheptan-2-yl)-2,3,4,7,8,9, $\mathbf{1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6 , 1 7 - t e t r a d e c a h y d r o - 1 H - c y c l o p e n t a [a] p h e n a n t h r e n - 3 - y l) o x y) m e t h y l) p h e n ~}$ yl)-2-phenylisoquinolin-1(2H)-one (3d")

White solid ($87.6 \mathrm{mg}, 63 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.35 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.71(\mathrm{~d}, J=1.87 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{dd}, J=8.26,1.87 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.94 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=$ $8.23 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.65 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=7.95,2.08 \mathrm{~Hz}, 5 \mathrm{H}), 7.20(\mathrm{~d}, J=7.39 \mathrm{~Hz}, 1 \mathrm{H})$, $6.60(\mathrm{~d}, J=7.39 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~d}, J=5.03 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.38-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J$ $=15.37,4.20 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{t}, J=12.43 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.91-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.52$ $(\mathrm{dt}, J=17.63,6.21 \mathrm{~Hz}, 8 \mathrm{H}), 1.34(\mathrm{~d}, J=7.89 \mathrm{~Hz}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=3.47 \mathrm{~Hz}, 2 \mathrm{H}), 1.15-1.05(\mathrm{~m}$, $6 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.01-0.94(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~d}, J=6.53 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{dd}, J=6.59,1.66 \mathrm{~Hz}, 6 \mathrm{H})$, $0.68(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 162.4,141.7,141.2,140.1,139.5,139.0,136.3,132.4$, $131.8,129.6,128.5,128.4,127.5,127.2,127.2,126.9,126.5,121.9,106.3,79.0,69.9,57.1,56.4$, $50.5,42.6,40.1,39.8,39.5,37.5,37.2,36.5,36.1,32.3,32.2,28.8,28.5,28.3,24.6,24.1,23.1$, 22.9, 21.4, 19.7, 19.0, 12.2. IR(neat): 3045, 2941, 2867, 1653, 1636, 1541, 1508, 1278, 1089, 752 cm^{-1}. HRMS (ESI) m/z Calcd for $\mathrm{C}_{49} \mathrm{H}_{62} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$696.4775, found 696.4773.

3-Ethyl-3-(4-(1-oxoisoquinolin-2(1H)-yl)phenyl)piperidine-2,6-dione(3e')

White solid ($56.2 \mathrm{mg}, 78 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.21 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.46(\mathrm{~d}, J=8.00 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=16.63,8.53 \mathrm{~Hz}, 2 \mathrm{H})$, $7.47(\mathrm{~d}, J=8.49 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.67 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.41 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=7.43$ $\mathrm{Hz}, 1 \mathrm{H}), 2.69-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{dt}, J=14.66,7.28$ $\mathrm{Hz}, 1 \mathrm{H}), 1.95(\mathrm{dq}, J=14.53,7.38 \mathrm{~Hz}, 1 \mathrm{H}), 0.91(\mathrm{t}, J=7.38 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.10,172.39,162.22,140.89,138.97,137.26,133.00,132.03,128.54,127.62,127.59,127.42$, $126.71,126.29,106.88,51.22,33.23,29.54,27.17,9.36$. IR: $3063,3012,2985,1670,1636,1541$, 1269, 1195, $755 \mathrm{~cm}^{-1}$. HRMS (ESI) m / z Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$361.1547, found 361.1545.

6H-dibenzo[c,e][1,2]thiazine 5,5-dioxide(8)

White solid ($32.8 \mathrm{mg}, 71 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=0.25 .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.00(\mathrm{t}, J=6.29 \mathrm{~Hz}, 3 \mathrm{H}), 7.72(\mathrm{t}, J=7.79 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.65 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.73 \mathrm{~Hz}$, 1H), $7.33(\mathrm{~d}, J=7.77 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.96 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 135.7,135.2,132.8,132.7,130.7,128.6,125.7,125.7,125.5,123.4,122.4,121.0 . \mathrm{IR}:$ 3219, 3021, 2914, 2876, 1745, 1693, 1522, 1269, $755 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$232.0427, found 232.0427.

5. Further derivatives of method

A pressure tube equipped with a stir bar was charged with $\boldsymbol{4}^{[7]}(19.5 \mathrm{mg}, 0.1 \mathrm{mmol})$, vinylene carbonate $2(25.8 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{PdCl}_{2}(1.7 \mathrm{mg}, 10.0 \mathrm{~mol} \%)$ in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 12 h under argon atmosphere in an oil bath. After cooling to room temperature, it was further detected by NMR spectroscopy and showed no product 5 .

3a

toluene, $120^{\circ} \mathrm{C}$

9

To a solution of 2-Phenyl-1 $(2 H)$-isoquinolinone 3a ($0.2 \mathrm{mmol}, 44.6 \mathrm{mg}, 1.0$ equiv.) in toluene (6.0 mL) was added Lawesson's reagent ($0.8 \mathrm{mmol}, 32.3 \mathrm{mg}, 4.0$ equiv.). The reaction was stirred at $120{ }^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was filtered through a pad of celite and washed with DCM. The combined organic layer was concentrated in vacuo. The crude product was purified by manual column chromatography on silica gel to give $\mathbf{9}$ as a yellow solid (29.9 mg , 63% yield $) . \mathrm{R}_{\mathrm{f}}=0.4(\mathrm{PE}: \mathrm{EA}=10: 1) \cdot{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.14(\mathrm{~d}, J=8.30 \mathrm{~Hz}, 1 \mathrm{H})$, $7.72(\mathrm{t}, J=7.54 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.49(\mathrm{~d}, J=7.28 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=16.90,7.28$ $\mathrm{Hz}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=7.07 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 185.7,146.0,134.0,133.2$, $132.4,132.3,132.1,129.3,128.5,128.4,126.7,126.4,111.2$. IR: 3063, 3042, 2986, 1725, 1694, 1653, 1528, 1269, 755, $687 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{NS}[\mathrm{M}+\mathrm{H}]^{+} 238.0685$, found 238.0684 .

To a solution of 2-Phenyl-1 $(2 H)$-isoquinolinone $\mathbf{3 a}(0.2 \mathrm{mmol}, 44.6 \mathrm{mg})$ was added 1,2-diphenylethyne ($53.5 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(6.2 \mathrm{mg}, 5.0 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc})_{2}(36.4 \mathrm{mg}$, 0.2 mmol), PivOH ($408.5 \mathrm{mg}, 40.0 \mathrm{mmol}$) and DMA (1.0 mL) under Ar . The tube was sealed with a Teflon-coated cap and the reaction solution was heated at $120^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was filtered through a pad of celite and washed with DCM. The combined organic layer was concentrated in vacuo. The crude product was purified by manual column chromatography on silica gel to give 10 as a yellow solid ($32.6 \mathrm{mg}, 41 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.35(\mathrm{~d}$, $J=8.70 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=8.14 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{dt}, J=15.44,8.06 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}$, $J=7.95 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{q}, J=5.30,4.83 \mathrm{~Hz}, 7 \mathrm{H}), 7.11(\mathrm{dd}, J=17.31,7.44 \mathrm{~Hz}, 5 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 164.2,138.1,137.5,137.1,136.9,135.2,135.0,134.2,132.4$, $130.5,130.2,128.4,128.2,127.9,127.6,127.3,127.1,127.0,126.8,126.3,125.8,125.4,124.3$, 121.6, 105.5. IR: $3063,3014,2918,1723,1646,1522,1498,1268,755,698 \mathrm{~cm}^{-1} . \quad$ HRMS (ESI) m / z Calcd for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 398.1539$, found 398.1538.

Isoquinolone $3 \mathbf{a}$ ($44.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) was placed in a single-necked round-bottomed flask fitted with a stirring bar. THF (1.0 mL) was added via a syringe under argon. N-Bromosuccinimide ($53.5 \mathrm{mg}, 0.3 \mathrm{mmol}$) was added under argon atmosphere. The reaction mixture was allowed to stir at room temperature for 12 h . The solvent was removed under reduced pressure. The residue was purified by manual column chromatography on silica gel to provide 4-bromoisoquinolone 11 as a white solid ($55.0 \mathrm{mg}, 92 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.50(\mathrm{~d}, J=9.35 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=1.16 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{t}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=8.19 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{t}$, $3 \mathrm{H}), 7.44(\mathrm{q}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.4,140.8,135.8,133.6,132.9,129.7,129.0$, $128.8,128.5,127.0,126.2,100.6$. IR: 3065, 2916, 2845, 1672, 1661, 1518, 1270, 755, $691 \mathrm{~cm}^{-1}$. HRMS (ESI) m/z Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+} 300.0019$, found 300.0022.

To a 10.0 mL round bottom flask charged with $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](11.6 \mathrm{mg}, 5.0 \mathrm{~mol} \%)$ under argon was added brominated isoquinolinone $11(59.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and arylboronic acid ($36.6 \mathrm{mg}, 1.5$ equiv) with 3 mL of 1,4-dioxane (1.0 mL). $\mathrm{K}_{2} \mathrm{CO}_{3}(55.3 \mathrm{mg}, 2.0$ equiv) was then added to this solution. The mixture was heated in an oil bath at $80^{\circ} \mathrm{C}$ under argon for 12 h . The reaction mixture was diluted with 15 mL of $\mathrm{H}_{2} \mathrm{O}$ at room temperature and extracted with ethyl acetate ($10.0 \mathrm{~mL} \times 3$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the filtrate was concentrated in vacuo. The residue was purified by manual column chromatography on silica gel to give $\mathbf{1 2}$ as white solid ($50.5 \mathrm{mg}, 85 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.58(\mathrm{dd}, J=8.03,1.36 \mathrm{~Hz}, 1 \mathrm{H})$, $7.68-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 10 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.2,140.9,136.1,135.8,132.2,130.8,129.6,129.0,128.3,127.8,127.4,126.9,126.5$, 126.0, 124.4, 119.4. IR: $3065,3006,2916,2873,1658,1516,1270,756,693 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$298.1226, found 298.1229.

An autoclave equipped with a stir bar was charged with $\mathrm{Pd} / \mathrm{C}(2.1 \mathrm{mg}, 10.0 \mathrm{~mol} \%)$, isoquinolone 3a $(44.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{EtOH}(1.0 \mathrm{~mL})$, The reaction mixture was stirred under H_{2} atmosphere (5 atm) at $40{ }^{\circ} \mathrm{C}$ for 12 h . After the reaction was complete (monitored by TLC), the crude reaction mixture was filtered with celite and washed with EtOAc. The solvent was removed under reduced pressure. Then the residue was purified by manual column chromatography on silica gel to afford the desired product 13 . White solid ($22.3 \mathrm{mg}, 50 \%$ yield). $\mathrm{PE} / \mathrm{DCM}=1: 1, \mathrm{R}_{\mathrm{f}}=$ 0.3. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{dd}, J=7.80,1.40 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.42-$ $7.35(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{~d}, J=8.23 \mathrm{~Hz}, 2 \mathrm{H}), 3.99(\mathrm{t}, J=6.46 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{t}, J=6.45 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 164.18,143.08,138.27,132.01,129.69,128.90,128.73,127.18$, 126.91, 126.24, 125.30, 49.41, 28.62. IR: 3051, 3018, 2986, 1654, 1516, 1410, 1267, 754, 692 cm^{-1}. HRMS (ESI) m/z Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$224.1070, found 224.1067.

6. Mechanistic studies

A pressure tube equipped with a stir bar was charged with $\mathbf{1 a}(22.3 \mathrm{mg}, 0.1 \mathrm{mmol})$, vinylene carbonate $2(25.8 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{PdCl}_{2}(1.7 \mathrm{mg}, 10.0 \mathrm{~mol} \%)$, and TEMPO ($31.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 12 h under argon atmosphere in an oil bath. After cooling to room temperature, it was further detected by NMR spectroscopy and showed trace product $\mathbf{3 a}$.
(b) radical trapping experiment

A pressure tube equipped with a stir bar was charged with $\mathbf{1 a}(22.3 \mathrm{mg}, 0.1 \mathrm{mmol})$, vinylene
carbonate $2(25.8 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{PdCl}_{2}(1.7 \mathrm{mg}, 10 \mathrm{~mol} \%)$, and ethene-1,1-diyldibenzene (36.1 $\mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$. The reaction mixture was stirred at $90{ }^{\circ} \mathrm{C}$ for 12 h under argon atmosphere in an oil bath. After cooling to room temperature, it was filtered through a short pad of silica gel. The resulting residue was further purified by manual column chromatography on silica gel to give 14 ($24.3 \mathrm{mg}, 65 \%$ yield) and $\mathbf{3 a}$ ($3.3 \mathrm{mg}, 15 \%$ yield).
(c) behavior of N -phenylbenzamide

A round bottom flask equipped with a stir bar was charged with the $\mathbf{1 a}(223.3 \mathrm{mg}, 1.0 \mathrm{mmol})$, $\mathrm{PdCl}_{2}(17.0 \mathrm{mg}, 10 \mathrm{~mol} \%)$ and $\mathrm{CH}_{3} \mathrm{CN}(3.0 \mathrm{~mL})$ were loaded and the be heated to $90^{\circ} \mathrm{C}$ in an oil bath and stirred for 12 h . After cooling to room temperature, it was filtered through a short pad of silica gel. The resulting residue was further purified by column chromatography ($\mathrm{PE}: \mathrm{EA}=5: 1$ as the eluent) to give $\mathbf{1 5}$ ($25.6 \mathrm{mg}, 15 \%$ yield). A pressure tube equipped with a stir bar was charged with $\mathbf{1 a}(19.7 \mathrm{mg}, 0.1 \mathrm{mmol})$, vinylene carbonate $2(25.8 \mathrm{mg}, 0.3 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}(1.7 \mathrm{mg}, 10.0$ $\mathrm{mol} \%)$ in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 12 h under argon atmosphere in an oil bath. After cooling to room temperature, it was further detected by NMR spectroscopy and showed no product $\mathbf{3 a}$.
(d) behavior of N-methoxyphenylbenzamide

A pressure tube equipped with a stir bar was charged with $\mathbf{1 6}^{[8]}$ ($15.1 \mathrm{mg}, 0.1 \mathrm{mmol}$), vinylene carbonate $2(25.8 \mathrm{mg}, 0.3 \mathrm{mmol})$, and $\mathrm{PdCl}_{2}(1.7 \mathrm{mg}, 10.0 \mathrm{~mol} \%)$ in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 12 h under argon atmosphere in an oil bath. After cooling to room temperature, it was further detected by NMR spectroscopy and showed no product 17.

7. References

(1) Vijaykumar, H.; Nitinkumar, U.; Murakami, M.; Cheng, C. H. Adv. Synth. Catal. 2017, 2, 284.
(2) Li, J.; Zheng, Y.; Huang, M.; Li, W. Org. Lett. 2020, 22, 5020.
(3) Chen, F.; Hu, S.; Li, S.; Tang, G.; Zhao, Y. Green Chem. 2021, 23, 296.
(4) Madasamy, K.; Balakrishnan, M. H.; Korivi, R.; Mannathan, S. J. Org. Chem. 2022, 87, 8752.
(5) Wang, F.; Tong, Y.; Zou, G. Org. Lett. 2022, 24, 5741.
(6) Lee, J.; Oh, K.; Kim, H. Y. Org. Lett. 2020, 22, 474.
(7) Nasrollahzadeh, M.; Sajadi, S, M., Maham. M. RSC Adv., 2015, 5, 40628.
(8) Liu, P.; He, Z, T.; Tian, p.; Lin, G, Q.; Yuki, F. J. Am. Chem. Soc. 2014, 136, 15607.

8. NMR spectra

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 a}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 b}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Abstract

$\underbrace{\infty}$

${ }^{13} \mathbf{C}$ NMR of $\mathbf{3} \mathbf{b}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 c}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 c}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 d}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 3d ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathbf{3 e}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3} \mathbf{e}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 f}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 f}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 g}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 g}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR of $\mathbf{3 g}\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\qquad

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 h}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of $\mathbf{3 h}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 i}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 i}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

-

${ }^{19} \mathrm{~F}$ NMR of $\mathbf{3 i}\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 j}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

等昌热等

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 j}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
|%%%
|%%%

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 k}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathbf{C}$ NMR of $\mathbf{3 k}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
=

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 1}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 m}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 m}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 n}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR of $\mathbf{3 n}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 o}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 o}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 p}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR of $\mathbf{3 p}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 q}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 q}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR of $\mathbf{3 q}\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
i

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 r}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 r}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 s}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 s}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 t}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 t}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 u}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 u}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 v}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 v}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of 3a' $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 a} \mathbf{a}^{\prime}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 b}{ }^{\mathbf{\prime}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 3b' $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3} \mathbf{c}^{\prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3} \mathbf{c}^{\prime}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 d}{ }^{\prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of 3d' $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of 3d' ${ }^{(375 ~ M H z, ~} \mathrm{CDCl}_{3}$)

\qquad
${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 e} \mathbf{e}^{\prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 e} \mathrm{e}^{\prime}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

In

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 f}{ }^{\prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 f}$ ' $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

İ

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 g} \mathbf{g}^{\prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 g} \mathbf{g}^{\mathbf{\prime}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19}$ F NMR of $\mathbf{3 g}$ ' $\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\qquad

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 h}{ }^{\mathbf{\prime}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 h}{ }^{\prime}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 i}{ }^{\prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 i}{ }^{\prime}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 j}{ }^{\prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 j}{ }^{\prime}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 k} \mathbf{k}^{\mathbf{\prime}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 k}{ }^{\mathbf{\prime}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 1}{ }^{\prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\underbrace{\text { \& * }}$

${ }^{13} \mathrm{C}$ NMR of $31{ }^{\prime}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllllllllllllllllll}1200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathbf{3 m}{ }^{\mathbf{\prime}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 m}{ }^{\mathbf{\prime}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR of $\mathbf{3 m}$ ' $\left(375 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 n}{ }^{\mathbf{\prime}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR of $\mathbf{3 n}$ ' $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of 3o' $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 o}{ }^{\prime}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of 3a' ${ }^{\prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR of 3a' $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 b}{ }^{\prime \prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR of 1b" ${ }^{\prime}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 b}{ }^{\prime \prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR of 3b" ${ }^{\prime}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 c} \mathbf{c}^{\prime \prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 c} \mathbf{c}^{\prime \prime}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 c} \mathbf{c}^{\prime \prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3} \mathbf{c}$ " $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 d}{ }^{\prime \prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR of $\mathbf{3 d}$ " $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 e}{ }^{\prime \prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 e} \mathbf{e}^{\prime}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]${ }^{1} \mathrm{H}$ NMR of $3 \mathrm{e}^{\prime \prime}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 e} \mathrm{e}^{\text {" }}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200	190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \mathrm{fl} 1(\mathrm{p} \end{array}$	100	90	80	70	60	50	40	30	20	10	0
											74									

${ }^{1} \mathrm{H}$ NMR of $\mathbf{8}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \mathrm{NMR}$ of $\mathbf{8}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $9\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $9\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 0}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 0}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 1}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \mathrm{NMR}$ of $\mathbf{1 2}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 2}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 3}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of $13\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 4}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Fatromy ing

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 4}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]:

