Supporting Information

Fenton-mediated thermocatalytic conversion of CO₂ to acetic acid by industrial waste-derived magnetite nanoparticles

Jaidev Kaushik,^{a,#} Nicky Kumar Lamba,^{a,#} Vishrant Kumar,^a Amit Kumar Sonker^{*,b} and Sumit Kumar Sonkar^{*,a}

^a Department of Chemistry, Malaviya National Institute of Technology, Jaipur, Jaipur-302017, INDIA

^bBA54, Biomaterials processing and products, VTT (Technical Research Center of Finland), Tietotie 4E, Espoo, 02150, Finland.

[#] authors contributed equally to this work

*To whom correspondence should be addressed:

sksonkar.chy@mnit.ac.in, amit.sonker@vtt.fi

Table of contents

- 1. Experimental
- 2. Detectable ¹H NMR peaks positions of internal standards and CO₂ reduced products.
- 3. FESEM analysis of Fe₃O₄-NP
- 4. Recyclability studies of Fe₃O₄-NP
- 5. TEM analysis of spent-Fe₃O₄-NP and comparative pXRD analysis of Fe₃O₄-NP before and after the CO₂ reduction reaction
- 6. Radical scavenging data showing yield of AcOH in presence of different scavengers.
- 7. Comparison of various materials available in the literature for CO₂ reduction to C₂ products with present approach.

1 Experimental

Materials

IOD was purchased from TATA Steel Ltd., and all other chemicals were used as received without any further purification, such as $30\% \text{ w/v} \text{ H}_2\text{O}_2$ (CDH), Na₂S (Loba Chemie), CO₂ Gas (99.9998 %), Sodium Hydroxide (Thermo Fisher), Silicon Oil (ASES Chemicals), Imidazole (LOBA Chemie), Sodium formate (TCI), D₂O (Sigma Aldrich), De-Ionized water was purchased from Vision and purged with nitrogen gas before all experiments.

Synthesis of Fe₃O₄-NP

Briefly, 10 g of IOD was added to 100 mL of 6M of HCl in a 250 mL RB flask. Then, the mixture was refluxed at ~100 °C for 6 h. Then, after getting the red-colored solution, the whole solution was diluted to 400 mL by adding DI water. After that, 10 mL of a saturated solution of Na₂S was added to the mixture dropwise with the help of a burette. Later, black-colored iron nanoparticles were precipitated out by neutralizing the whole solution using NaOH solutions. The black precipitates were filtered, washed 3-4 times with water and acetone, and dried at room temperature. After getting the obtained, the black-colored magnetic powder was obtained and named Fe₃O₄-NP and characterized via various spectroscopic methods.

Material Characterization and Analysis

Powder X-ray diffraction (PXRD) analysis was performed by using an X-ray diffractometer instrument (Panalytical X Pert Pro). An ESCA+ omicron nanotechnology Oxford instrument performed X-ray photoelectron spectra (XPS) of Fe₃O₄-NP. Images taken from a Nova Nano FE-SEM 450 (FEI) electron microscope were used to analyze the geometry and morphology Fe₃O₄-NP. The pH of the solutions was checked by a LABMAN-LMPH-10 pH meter. The ¹H, ¹³C NMR spectra were recorded using a JEOL ECS-400 spectrometer (operating at 400 MHz. CO gas was detected on a CO detector purchased from Honewell International, Inc.

Reduction of CO₂ to C₂ Products

Initially, Fe_3O_4 -NP was added to the autoclave stainless steel (SS) batch reactor, then a solution of 20 mL mixture of H_2O_2 and H_2O (0-30 % v/v) was added to the reactor. After that, the autoclave was sealed carefully, and CO_2 gas was pressurized, ensuring all vents/valves were tightly closed. Then, the setup was heated continuously in an oil bath at various times (1, 2.5,

5, 10, 15 h), temperature (room temperature (RT), 100, and 180°C) and pressure (5, 10, 15 bar) in the presence of mechanical stirring in search of optimized conditions. The reaction was quenched at the desired time and the reactor was cooled down at RT. The CO gas was identified by CO detector. The recyclability of Fe₃O₄-NP was checked by regenerating the catalyst from the reaction mixture by distillation followed by separation using magnet. After that the catalyst was washed with DI water and dried in oven at ~70°C for 4 h.

The mixtures of gaseous products (mainly unreacted CO₂ and CO) collected after the completion of the reaction were analyzed using GC equipped with a thermal conductivity detector (TCD) and Hayesep-Q packed column. The retention peak time of CO₂ was ~ 4.5-5 min, and for CO was ~29-30 min. The liquid products (alcohols and acid: EtOH and AcOH) were separated by forming respective organic acid salts in 1N NaOH (~pH 12). Then the alcohols were collected from the distilled-out samples in the form of liquid. Later, both were quantified by ¹H and ¹³C NMR spectroscopy, where HCOONa and imidazole were employed as internal standards for quantifying organic acids and alcohols, respectively. The concentrations of internal standards, i.e., sodium formate and imidazole, were fixed at 46.47 mM and 100 mM, respectively. The concentration of organic aid and alcohols was calculated by evaluating the integrated area of respective peaks of AcOH and HCOONa and alcohols and imidazole in the presence of D₂O as a reference, as shown in **Table 1**. The quantification of product yield (from ¹H NMR), was calculated using **Equation 1**.

$$Product Yield = \frac{\text{Normalized area of analyte } \times \text{Standard Concentration}}{\text{Normalized area of standard}}$$

2	. Table S1	: Detectable	¹ H NMR	peaks pos	itions of ir	nternal stan	dards and (CO ₂ reduced
p	roducts.							

Analytes	Detectable number of protons (splitting)	Peak position
Sodium formate (Internal standard for	1 (s)	~8.38
AcOH)		
AcOH	3 (s)	~1.85
Imidazole	2 (s)	~7.10
(Internal standard for	1 (s)	~7.74
EtOH and MeOH)		
EtOH	2 (q)	~3.63
MeOH	3 (s)	~3.32

3. FESEM analysis of Fe₃O₄-NP

Fig. S1: (a) Low-resolution SEM image of Fe₃O₄-NP and (b) corresponding EDS analysis.

4. Recyclability of Fe₃O₄-NP

Fig. S2: Recyclability of Fe₃O₄-NP towards the conversion of CO₂ to acetic acid.

5. TEM analysis of spent-Fe₃O₄-NP and comparative pXRD analysis of Fe₃O₄-NP before and after the CO₂ reduction reaction

Fig. S3: (a) TEM analysis of spent-Fe₃O₄-NP catalyst after 3 cycles and (b) pXRD analysis of Fe₃O₄-NP before (black colour line) and after (blue colour line) the CO₂ reduction reaction along with the corresponding JCPDS data.

6. Table S2: Radical scavenging data showing yield of AcOH in presence of different scavengers.

Scavengers	Radical	Yield of AcOH (M)	% Reduction in		
			Yield of AcOH		
control		0.442	0		
BZQ	O ₂ •-	0.137	69.00		
t-BuOH	OH.	0.008	98.19		

K₂S₂O8

electrons

91.63

7. Table S3: Comparison of various materials available in the literature with d-ZCu

based on the thermal reduction of $\ensuremath{\text{CO}}_2$ to $\ensuremath{\text{C}}_2$ products in batch reactor.

S. No.	Catalyst Precursors	Catalyst	Product	Catalyst Loading	Isolated Yield	Temperature (°C)	CO ₂ :H ₂ Pressure (Bar)	Time (h)	Technique	Remark	Ref.
1	Fe(NO ₃) ₃ .H ₂ O, CBEA, CrCl ₃ .H ₂ O, H ₂ BDC, NaOH, DMF	MIL-88B	AcOH	400mg/ 40mL	0.59 M/g	150	35:35 (70)	21	Thermal	Hydrogen gas was used externally	1
2	C. aceticum, C. carboxydivoran, NH ₄ Cl, vitamins stock solution, HCl, NaOH	Zerovalent Iron	АсОН	25g/L	~0.03 M	121	1.5:0 (1.5)	0.33	Thermal Bioconvers ion	NH ₄ Cl and vitamin stock solutions were used	2
3	In(NO ₃) ₃ .4.5H ₂ O, NH ₃ , H ₂ IrCl ₆	Ir ₁ –In ₂ O ₃	EtOH	20mg/3 mL	0.99 mmol g ⁻ ¹ h ⁻¹	200	10:50 (60)	5	Thermal	Hydrogen gas was used externally	3
4	Pd(acac) ₂ , Cu(acac) ₂ , FeCl ₃ .6H ₂ O, Ascorbic acid, Oleylamine,TO P	Pd-Cu Nanoparticles	EtOH	5mg/5 mL	40 mmol g ⁻¹ h ⁻¹	200	8:24 (30)	5	Thermal	Hydrogen gas was used externally	4
5	[Ru(bpy) ₂ Cl ₂], BPYDC, CuNO ₃ .3H ₂ O, phosphate buffer solution	Cu–Ru–MOF	EtOH	10mg/ N.A. mL	9.65 mmol g ⁻ ¹ h ⁻¹	150	5:15 (20)	24	Photo- Thermal	450nm LED light, H ₂ gas was used externally	5
6	TALH, Urea, HAuCl ₄ , NaOH, NH ₃	Au/a-TiO ₂	EtOH	100mg/ 5mL (0.3 mg Au)	0.63 M g ⁻¹ h ⁻¹	200	15:45 (60)	10	Thermal	Reaction media DMF, H_2 gas was used externally	6
7	Waste Industrial Iron	Fe ₃ O ₄ -NP	АсОН	100mg/ 20 mL	0.44 M	100	10:0 (10)	2.5	Thermal	H ₂ O ₂ is used	T h
	Dust, HCl, NaOH	, HCl, H			0.22 M	25	10:0 (10)				i s
											w
											0
											r k

References

- 1. W. Ahmad, P. Koley, S. Dwivedi, R. Lakshman, Y. K. Shin, A. C. van Duin, A. Shrotri and A. Tanksale, *Nature communications*, 2023, **14**, 2821.
- 2. B. Bayar, M. C. Veiga and C. Kennes, *Journal of CO2 Utilization*, 2022, 58, 101915.
- 3. X. Ye, C. Yang, X. Pan, J. Ma, Y. Zhang, Y. Ren, X. Liu, L. Li and Y. Huang, *Journal* of the American Chemical Society, 2020, **142**, 19001-19005.
- 4. S. Bai, Q. Shao, P. Wang, Q. Dai, X. Wang and X. Huang, *Journal of the American Chemical Society*, 2017, **139**, 6827-6830.
- 5. L. Zeng, Z. Wang, Y. Wang, J. Wang, Y. Guo, H. Hu, X. He, C. Wang and W. Lin, Journal of the American Chemical Society, 2019, 142, 75-79.
- 6. D. Wang, Q. Bi, G. Yin, W. Zhao, F. Huang, X. Xie and M. Jiang, *Chemical Communications*, 2016, **52**, 14226-14229.