Supporting Information

Two-dimensional $\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Br}_{9}$ Inducing Three-dimensional CsPbBr_{3} Transformation to Nanoplates

Wei Shen, \dagger^{*} a Jiayu Jiang, \dagger^{+a} Yanxing He, ${ }^{a}$ Zhihua Chen, ${ }^{a}$ Yue Qiu, ${ }^{a}$ Hao Cui, ${ }^{\text {a }}$ Yanfeng Chen, ${ }^{a}$ Lihui Liu, ${ }^{\text {a }}$ Gang Cheng, ${ }^{\text {b }}$ Shufen Chen*a
${ }^{a}$ State Key Laboratory of Organic Electronics and Information Displays \& Institute of Advanced Materials (IAM), Nanjing University of Posts \& Telecommunications, Nanjing 210023, People's Republic of China.

E-mail: iamwshen@njupt.edu.cn; iamsfchen@njupt.edu.cn
${ }^{b}$ State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (P. R. China).
\ddagger W. S. and J. J. contributed equally to this work.

Experimental section

Chemical Materials. Cesium carbonate $\left(\mathrm{Cs}_{2} \mathrm{CO}_{3}, 99.99 \%\right)$, lead bromide $\left(\mathrm{PbBr}_{2}\right.$, 99\%), 1-octadecene (ODE, 90\%), oleic acid (OA, 90\%), oleylamine (OLA, 80-90\%), antimony bromide hydrate $\left(\mathrm{SbBr}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}, 99 \%\right)$ and N, N-Dimethylformamide (DMF, 99.9\%) were purchased from Aladdin. Toluene (99.5\%) was purchased from Nanjing Chemical Reagent Co. Ltd. All materials and solvents were directly used without further purification.

Synthesis of Cs-OA. $0.8140 \mathrm{~g} \mathrm{Cs}_{2} \mathrm{CO}_{3}, 2.5 \mathrm{~mL} \mathrm{OA}$ and 10 mL ODE were mixed into a 100 mL three-neck flask and dried under vacuum at $120^{\circ} \mathrm{C}$ for 1 h . Then the mixture was heated to $150{ }^{\circ} \mathrm{C}$ under N_{2} until the $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ powders were completely dissolved to form a transparent solution. The solution was cooled down to room temperature in an ice-water bath and preheated to $120^{\circ} \mathrm{C}$ before use.

Synthesis of CsPbBr_{3} NCs. CsPbBr_{3} NCs were synthesized by the following method. Cs-OA (0.04 mmol$), \mathrm{PbBr}_{2}(0.10 \mathrm{mmol}), \mathrm{OA}(0.80 \mathrm{mmol})$ and OLA $(0.40 \mathrm{mmol})$ were dissolved in 2 mL of DMF to prepare precursor solution. Then, $50 \mu \mathrm{~L}$ of the precursor solution was injected into 2 mL of toluene under vigorous stirring at room temperature. After the CsPbBr_{3} crude solution was centrifuged at 5000 rpm for 3 min , we discarded the bottom sediment, the supernatant was used for further characterization.

Synthesis of $\mathbf{C s P b B r}_{3}$ NPLs. CsPbBr_{3} NPLs were synthesized by the following method. Cs-OA (0.04 mmol), $\mathrm{PbBr}_{2}(0.10 \mathrm{mmol}), \mathrm{OA}(0.80 \mathrm{mmol})$ and OLA (0.40 mmol) were dissolved in 2 mL of DMF to prepare precursor solution. $0.1 \mathrm{mmol} \mathrm{SbBr}_{3}$ was dissolved in 10 ml of toluene, which was diluted to different concentrations to tune $\mathrm{Sb} / \mathrm{Pb}$ ratios. NPLs were prepared by injecting $50 \mu \mathrm{~L}$ of DMF precursor solution into different concentrations of SbBr_{3} toluene solutions at room temperature with vigorous stirring. The centrifugation purification procedure was the same as that for CsPbBr_{3} NCs.

Characterization. The chemical compositions were determined using a PerkinElmer NexION 2000 inductively coupled plasma mass spectrometer (ICP-MS). X-ray diffraction (XRD) data were collected using a Bruker D8 Advance X-ray powder diffractometer with $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=0.154 \mathrm{~nm})$. The morphology and size of NPLs
were confirmed by transmission electron microscopy (TEM) (Hitachi, HT7700) and high-resolution TEM (HRTEM) (Talos, F200X). The ultraviolet-visible (UV-vis) absorption spectra were recorded using a PerkinElmer Lambda 35S instrument in transmission mode. Photoluminescence (PL) spectra were recorded using a RF6000 spectrofluorometer with an excitation wavelength of 400 nm . The PL lifetimes were measured using an FLS920 fluorescence spectrometer with a pulse laser at 375 nm . The photoluminescence fluorescence quantum yield (PLQY), which is defined as the ratio of emitted photons to absorbed ones, was determined using a FLS920 fluorescence spectrometer equipped with an integrating sphere.

Fig. S1. XRD patterns of CsPbBr_{3} and $\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Br}_{9}$ samples with different $\mathrm{Sb} / \mathrm{Pb}$ ratios.

Fig. S2. Particle size distribution of $\mathrm{CsPbBr}_{3} \mathrm{NCs}(\mathrm{Sb} / \mathrm{Pb}=0.211)$.
(a)

(b)

(c)

Fig. S3. Zoom-in TEM image of NPLs with different $\mathrm{Sb} / \mathrm{Pb}$ ratios: (a) $\mathrm{Sb} / \mathrm{Pb}=0.838$, (b) $\mathrm{Sb} / \mathrm{Pb}=1.123$, and (c) $\mathrm{Sb} / \mathrm{Pb}=1.539$.

Fig. S4. Thickness (a-c), space distance (d-f), and edge (g-i) distributions for NPLs with different $\mathrm{Sb} / \mathrm{Pb}$ ratios: (a), (d), (g) $\mathrm{Sb} / \mathrm{Pb}=0.838$; (b), (e), (h) $\mathrm{Sb} / \mathrm{Pb}=1.123$; and (c), (f), (i) $\mathrm{Sb} / \mathrm{Pb}=1.539$.

Fig. S5. UV-vis absorption spectrum for $\mathrm{Cs}_{3} \mathrm{Sb}_{2} \mathrm{Br}_{9}$.

Fig. S6. (a) The long-term stabilities of deep blue NPLs: (left image $\mathrm{Sb} / \mathrm{Pb}=0.838$ and right image $\mathrm{Sb} / \mathrm{Pb}=1.123$). (b) The images of samples under UV light at 0 day and 55 days storage.

Fig. S7. The image of samples under sunlight at 55 days storage. (left image $\mathrm{Sb} / \mathrm{Pb}=$ 0.838 and right image $\mathrm{Sb} / \mathrm{Pb}=1.123$).

Fig. S8. (a) The thermal stabilities of deep blue NPLs at $80^{\circ} \mathrm{C}$: (left image $\mathrm{Sb} / \mathrm{Pb}=$ 0.838 and right image $\mathrm{Sb} / \mathrm{Pb}=1.123$). (b) The images of samples under UV light at 0 \min and 90 mins aging.

Fig. S9. (a) The UV resistance of deep blue NPLs under 365 nm (24 W) UV lamps: (left image $\mathrm{Sb} / \mathrm{Pb}=0.838$ and right image $\mathrm{Sb} / \mathrm{Pb}=1.123$). (b) The images of samples under UV light at 0 and 8 h aging.

Table S1. ICP-MS identification the actual $\mathrm{Sb} / \mathrm{Pb}$ ratios.

Samples (feed $\mathbf{S b} / \mathbf{P b}$ ratio)	$\mathbf{S b}(\mathbf{p p b})$	$\mathbf{P b}(\mathbf{p p b})$	Actual Sb/Pb ratio
$\mathrm{B}(0.5: 1)$	2.345	18.871	$0.211: 1$
$\mathrm{C}(1.0: 1)$	4.644	9.438	$0.838: 1$
$\mathrm{D}(1.5: 1)$	8.177	12.408	$1.123: 1$
$\mathrm{E}(2.0: 1)$	11.292	12.492	$1.539: 1$

Table S2. PL lifetimes of different $\mathrm{Sb} / \mathrm{Pb}$ ratios.

Samples	$\mathbf{S b} / \mathbf{P b}=\mathbf{0}$	$\mathbf{S b} / \mathbf{P b}=\mathbf{0 . 2 1 1}$	$\mathbf{S b} / \mathbf{P b}=\mathbf{0 . 8 3 8}$	$\mathbf{S b} / \mathbf{P b}=\mathbf{1 . 1 2 3}$	$\mathbf{S b} / \mathbf{P b}=\mathbf{1 . 5 3 9}$
$\tau_{1}(\mathrm{~ns})$	3.96	4.94	5.50	4.01	1.24
$\tau_{2}(\mathrm{~ns})$	15.30	10.69	12.14	12.31	5.86
A 1	0.52	0.33	0.26	0.14	0.11
A 2	0.48	0.67	0.74	0.86	0.89
$\tau_{\text {avg }}(\mathrm{ns})$	9.40	8.79	10.41	11.14	5.35

Table S3. PL lifetimes of different $\mathrm{Sb} / \mathrm{Pb}$ ratios. (average lifetime, $\tau_{\text {avg }}$; nonradiative composite lifetime, $\tau_{\mathrm{n} \mathrm{r}}$; radiative decay rate, k_{r}; radiative composite lifetime, τ_{r}; nonradiative decay rate, k_{nr}; and PLQY)

Samples	$\mathbf{S b} / \mathbf{P b}=\mathbf{0}$	$\mathbf{S b} / \mathbf{P b}=\mathbf{0 . 2 1 1}$	$\mathbf{S b} / \mathbf{P b}=\mathbf{0 . 8 3 8}$	$\mathbf{S b} / \mathbf{P b}=\mathbf{1 . 1 2 3}$	$\mathbf{S b} / \mathbf{P b}=\mathbf{1 . 5 3 9}$
$\tau_{\text {avg }}(\mathrm{ns})$	9.40	8.79	10.41	11.14	5.35
PLQY (\%)	66	47	53	33	0.60
$\tau_{\mathrm{r}}(\mathrm{ns})$	14.24	18.70	19.64	33.75	891.67
$\mathrm{k}_{\mathrm{r}}\left(\times 10^{-2} \mathrm{~ns}^{-1}\right)$	7.02	5.34	5.09	2.96	0.11
$\tau_{\mathrm{nr}}(\mathrm{ns})$	27.64	16.58	22.14	16.62	5.38
$\mathrm{k}_{\mathrm{nr}}\left(\times 10^{-2} \mathrm{~ns}^{-1}\right)$	3.61	6.03	4.51	6.01	18.59
$\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{nr}}$	1.94	0.88	1.12	0.49	0.01

Radiative recombination lifetime, $\tau_{\mathrm{r}}=\tau_{\text {avg }} /$ PLQY;
Non-radiative recombination lifetime, $\tau_{\mathrm{nr}}=\tau_{\text {avg }} /(1-\mathrm{PLQY})$;
Radiative decay rate constant, $\mathrm{k}_{\mathrm{r}}=1 / \tau_{\mathrm{r}}$;
Non-radiative decay rate constant, $\mathrm{k}_{\mathrm{nr}}=1 / \tau_{\mathrm{nr}}$.

