Supporting Information

Two-dimensional Cs₃Sb₂Br₉ Inducing Three-dimensional CsPbBr₃

Transformation to Nanoplates

Wei Shen,‡*a Jiayu Jiang,‡a Yanxing He, Zhihua Chen, Yue Qiu, Hao Cui, Yanfeng Chen, Lihui Liu, Gang Cheng, Shufen Chen*a

^a State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, People's Republic of China.

E-mail: iamwshen@njupt.edu.cn; iamsfchen@njupt.edu.cn

^b State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and

Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (P. R. China).

‡ W. S. and J. J. contributed equally to this work.

Experimental section

Chemical Materials. Cesium carbonate (Cs₂CO₃, 99.99%), lead bromide (PbBr₂, 99%), 1-octadecene (ODE, 90%), oleic acid (OA, 90%), oleylamine (OLA, 80-90%), antimony bromide hydrate (SbBr₃•xH₂O, 99%) and N,N-Dimethylformamide (DMF, 99.9%) were purchased from Aladdin. Toluene (99.5%) was purchased from Nanjing Chemical Reagent Co. Ltd. All materials and solvents were directly used without further purification.

Synthesis of Cs-OA. 0.8140 g Cs₂CO₃, 2.5 mL OA and 10 mL ODE were mixed into a 100 mL three-neck flask and dried under vacuum at 120 °C for 1 h. Then the mixture was heated to 150 °C under N₂ until the Cs₂CO₃ powders were completely dissolved to form a transparent solution. The solution was cooled down to room temperature in an ice-water bath and preheated to 120 °C before use.

Synthesis of CsPbBr₃ NCs. CsPbBr₃ NCs were synthesized by the following method. Cs-OA (0.04 mmol), PbBr₂ (0.10 mmol), OA (0.80 mmol) and OLA (0.40 mmol) were dissolved in 2 mL of DMF to prepare precursor solution. Then, 50 μ L of the precursor solution was injected into 2 mL of toluene under vigorous stirring at room temperature. After the CsPbBr₃ crude solution was centrifuged at 5000 rpm for 3 min, we discarded the bottom sediment, the supernatant was used for further characterization.

Synthesis of CsPbBr₃ NPLs. CsPbBr₃ NPLs were synthesized by the following method. Cs-OA (0.04 mmol), PbBr₂ (0.10 mmol), OA (0.80 mmol) and OLA (0.40 mmol) were dissolved in 2 mL of DMF to prepare precursor solution. 0.1 mmol SbBr₃ was dissolved in 10 ml of toluene, which was diluted to different concentrations to tune Sb/Pb ratios. NPLs were prepared by injecting 50 μ L of DMF precursor solution into different concentrations of SbBr₃ toluene solutions at room temperature with vigorous stirring. The centrifugation purification procedure was the same as that for CsPbBr₃ NCs.

Characterization. The chemical compositions were determined using a PerkinElmer NexION 2000 inductively coupled plasma mass spectrometer (ICP-MS). X-ray diffraction (XRD) data were collected using a Bruker D8 Advance X-ray powder diffractometer with Cu K α radiation ($\lambda = 0.154$ nm). The morphology and size of NPLs

were confirmed by transmission electron microscopy (TEM) (Hitachi, HT7700) and high-resolution TEM (HRTEM) (Talos, F200X). The ultraviolet-visible (UV-vis) absorption spectra were recorded using a PerkinElmer Lambda 35S instrument in transmission mode. Photoluminescence (PL) spectra were recorded using a RF6000 spectrofluorometer with an excitation wavelength of 400 nm. The PL lifetimes were measured using an FLS920 fluorescence spectrometer with a pulse laser at 375 nm. The photoluminescence fluorescence quantum yield (PLQY), which is defined as the ratio of emitted photons to absorbed ones, was determined using a FLS920 fluorescence spectrometer equipped with an integrating sphere.

Fig. S1. XRD patterns of CsPbBr₃ and Cs₃Sb₂Br₉ samples with different Sb/Pb ratios.

Fig. S2. Particle size distribution of CsPbBr₃ NCs (Sb/Pb = 0.211).

Fig. S3. Zoom-in TEM image of NPLs with different Sb/Pb ratios: (a) Sb/Pb = 0.838, (b) Sb/Pb = 1.123, and (c) Sb/Pb = 1.539.

Fig. S4. Thickness (a-c), space distance (d-f), and edge (g-i) distributions for NPLs with different Sb/Pb ratios: (a), (d), (g) Sb/Pb = 0.838; (b), (e), (h) Sb/Pb = 1.123; and (c), (f), (i) Sb/Pb = 1.539.

Fig. S5. UV-vis absorption spectrum for Cs₃Sb₂Br₉.

Fig. S6. (a) The long-term stabilities of deep blue NPLs: (left image Sb/Pb = 0.838 and right image Sb/Pb = 1.123). (b) The images of samples under UV light at 0 day and 55 days storage.

Fig. S7. The image of samples under sunlight at 55 days storage. (left image Sb/Pb = 0.838 and right image Sb/Pb = 1.123).

Fig. S8. (a) The thermal stabilities of deep blue NPLs at 80 °C: (left image Sb/Pb = 0.838 and right image Sb/Pb = 1.123). (b) The images of samples under UV light at 0 min and 90 mins aging.

Fig. S9. (a) The UV resistance of deep blue NPLs under 365 nm (24 W) UV lamps: (left image Sb/Pb = 0.838 and right image Sb/Pb = 1.123). (b) The images of samples under UV light at 0 and 8 h aging.

Samples (feed Sb/Pb ratio)	Sb (ppb)	Pb (ppb)	Actual Sb/Pb ratio
B (0.5 : 1)	2.345	18.871	0.211 : 1
C (1.0 : 1)	4.644	9.438	0.838 : 1
D (1.5 : 1)	8.177	12.408	1.123 : 1
E (2.0 : 1)	11.292	12.492	1.539 : 1

Table S1. ICP-MS identification the actual Sb/Pb ratios.

Table S2. PL lifetimes of different Sb/Pb ratios.

Samples	Sb/Pb=0	Sb/Pb=0.211	Sb/Pb=0.838	Sb/Pb=1.123	Sb/Pb=1.539
τ_1 (ns)	3.96	4.94	5.50	4.01	1.24
τ_2 (ns)	15.30	10.69	12.14	12.31	5.86
A1	0.52	0.33	0.26	0.14	0.11
A2	0.48	0.67	0.74	0.86	0.89
$\tau_{avg}\left(ns\right)$	9.40	8.79	10.41	11.14	5.35

Samples	Sb/Pb=0	Sb/Pb=0.211	Sb/Pb=0.838	Sb/Pb=1.123	Sb/Pb=1.539
$ au_{\mathrm{avg}}\left(\mathrm{ns}\right)$	9.40	8.79	10.41	11.14	5.35
PLQY (%)	66	47	53	33	0.60
$\tau_{\rm r} ({\rm ns})$	14.24	18.70	19.64	33.75	891.67
$k_r (\times 10^{-2} ns^{-1})$	7.02	5.34	5.09	2.96	0.11
$ au_{ m nr}$ (ns)	27.64	16.58	22.14	16.62	5.38
$k_{nr} (\times 10^{-2} ns^{-1})$	3.61	6.03	4.51	6.01	18.59
k _r /k _{nr}	1.94	0.88	1.12	0.49	0.01

Table S3. PL lifetimes of different Sb/Pb ratios. (average lifetime, τ_{avg} ; nonradiative composite lifetime, τ_{nr} ; radiative decay rate, k_r ; radiative composite lifetime, τ_r ; nonradiative decay rate, k_{nr} ; and PLQY)

Radiative recombination lifetime, $\tau_r = \tau_{avg}/PLQY$;

Non-radiative recombination lifetime, $\tau_{nr} = \tau_{avg}/(1-PLQY)$;

Radiative decay rate constant, $k_r = 1/\tau_r$;

Non-radiative decay rate constant, $k_{nr}=1/\tau_{nr}$.