Supporting Information

Small-size and well-dispersed Fe nanoparticles embedded in carbon rods for efficient oxygen reduction reaction

Xinde Duan, Fayuan Ge, Yang Liu and Hegen Zheng*

School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China

S1. Experimental Section

All reagents were analytical grade and used without further purifification. All solutions used in electrochemical experiments were prepared with Millipore water (\geq 18 M Ω).

Synthesis of Zn-MOF

A mixture of $Zn(NO_3)_2 \cdot 6H_2O$ (14.9 mg, 0.05 mmol), 1,2,4-Benzenetricarboxylic acid (10.5 mg, 0.05 mmol) and MIDPPA (4,4'-di(4-pyridine)-4"-imidazoletriphenylamine) (23.3 mg, 0.05 mmol) was dissolved in 12 mL of DMF/H₂O(1:2, V/V). The final mixture was placed in a Parr Teflon-lined stainless steel vessel (20 mL) under autogenous pressure and heated at 130 °C for 3 d. Large quantity of yellow crystals were obtained, which were washed with mother liquid, and dried under ambient conditions.

Synthesis of Fe@Zn-MOF

Zn-MOF (10 mg) was placed in a 5-mL glass vial. This vial was placed in a glass bottle containing Fc (1.0, 2.5 and 4.0 mg named as Fe(10)@Zn-MOF, Fe(25)@Zn-MOF and Fe(40)@Zn-MOF). The bottle was sealed and then heated under 150 °C for 24 hours.

Synthesis of FeZn@NC-m

Fe@Zn-MOF added melamine (mass ratio: 1/10) was carbonized under N₂ atmosphere in a tube furnace, where the temperature was raised up from 30 °C to 800 °C at a heating rate of 5 °C/min. After holding at 800 °C for 2 hours, the temperature was cooled down to room temperature naturally to afford black powder. When the amount of Fc was tailored to 10, 25, and 40% of the mass of Zn-MOF, the corresponding products were marked as Fe(10)Zn@NC-m, Fe(25)Zn@NC-m, and Fe(40)Zn@NC-m, respectively. Zn@NC was synthesized by calcining Zn-MOF. Zn@NC-m was synthesized by calcining Zn-MOF and melamine.

Characterizations

Powder X-Ray diffraction (PXRD) patterns were recorded on a D8 DAVANCI X-ray powder diffractometer equipped with graphite monochromatized Cu K α radiation (λ = 1.5406 Å). The diffractometer was operated with working voltage and current of 40 kV and 40 mA, respectively. Transmission electron microscopy (TEM) and highresolution TEM (HRTEM) images were recorded on a JEM-2100 apparatus working at an accelerating voltage of 200 kV. Scanning electron microscopy (SEM) was carried out with a S-4800 (JEOL) apparatus working at an S4acceleration voltage of 2 kV. X-ray photon spectroscopy (XPS) was performed on an ESCA Lab250 X-ray microprobe corrected by C1s peak at 284.6 eV. Nitrogen sorption experiments and pore size distribution (PSD) were measured using an ASAP 2020 surface area detecting instrument by N₂ physisorption at 77 K. Prior to the measurement, the samples were degassed at 120°C for 6 h.

Electrochemical Measurements

All electrochemical experiments were conducted on a CHI 760 E electrochemical station (Shanghai Chenhua Co., China) in a standard three electrode cell in O₂-saturated 0.1 M KOH at room temperature. A glassy carbon electrode (GCE, 5 mm in diameter), a Hg/HgO electrode (SCE), and a Pt wire were used as the working, reference and counter electrode, respectively. All electrode potentials were expressed in reference to the reversible hydrogen electrode (RHE). 5 mg of the catalysts were dispersed in 1 mL of 1:1 v/v water/alcohol with 40 μ L Nafion by sonication to form a homogeneous suspension. Typically, 5 μ L well-dispersed suspension was dropped on the glassy carbon electrode and then dried in an ambient environment for measurements. Linear sweep voltammetry (LSV) was tested with a scan rate of 10 mV s⁻¹ at 1600 rpm on rotating disc electrode (RDE). The chronoamperometry (CA) was tested at an overpotential of 0.85 V vs RHE after equilibrium.

Fig. S1. XRD patterns of Zn-MOF and Fe(25)@Zn-MOF.

Fig. S2. SEM image of Fc.

Fig. S3. STEM and corresponding elemental mapping images of Fe(25)Zn@NC-m.

Fig. S4. (a) N_2 absorption-desorption isotherm and (b) pore size distribution of Zn@NC-m.

Fig. S5. High-resolution (a) Zn 2p, (b) C 1s, and (c) O 1s XPS spectra of Fe(25)Zn@NC-m.

Fig. S6. H₂O₂ yield and electron transfer number of Fe(25)Zn@NC-m.

Fig. S7. TEM image of (a) Zn@NC and (b) Zn@NC-m.

Fig. S8. (a) Discharge polarization and power density curves of primary Zn-air battery using Fe(25)Zn@NC-m and Pt/C. (b) Specific capacities of primary Zn-air battery.

Table S1. Comparison of ORR catalytic performances of reported Fe-containing catalysts in 0.1 M KOH solution.

Catalysts	<i>E</i> _{1/2} [V]	Reference
Fe(25)Zn@NC-m	0.868	This work
Fe ₁ /N-HCMs	0.88	Small, 2023 , 19, 2207991.
NiFe-LDH/Fe ₁ -N-C	0.90	Adv. Energy Mater., 2023 , 13, 2203609.
Fe—N—C HSs	0.90	Small, 2023 , 2305700
FeCu-SAC	0.926	J. Mater. Chem. A, 2023 ,11, 6191- 6197.
Mn-Fe@NCNTs	0.872	J. Alloys Compd., 2023, 953, 169992.
Fe/Fe ₃ C@C	0.831	<i>Electrochem. Commun.</i> , 2023 , 150, 107477.
Fe-NC-Gs	0.85	<i>Electron. Mater. Lett.</i> , 2023 , 285.
Po-FeCo-N-C	0.83	Materials Science and Engineering B, 2023 , 290, 116291.