Supporting Information

Light-Induced Arylation (Alkylation) of *N*-Sulfonylhydrazones with Boronic Acids

Mohammad Junaid, Sharma Happy and Dongari Yadagiri*

Laboratory of Organic Synthesis and Catalysis, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.

E-mail: yadagiri.dongari@cy.iitr.ac.in

Table of Contents

1. General Information	S2
2. Synthesis of Starting Materials	S3
3. Reaction Optimization	S 8
4. General procedure for Visible Light-Induced Arylation (Alkylation)	S17
5. Synthetic application	S31
7. UV-Vis spectra	S33
8. References	S34
9. Spectral data	S35

1. General Information

All chemicals were purchased from Aldrich, TCI, GLR Innovations and Avra chemicals in analytical grade and were used as supplied. All reaction were carried out under nitrogen atmosphere using oven dried reaction vials. Dry solvents were prepared by distilling over sodium metal with benzophenone, Calcium hydride and stored over molecular sieves 4 Å under N₂ atmosphere. All compounds were purified by column chromatography using silica gel (60-120 mesh). Thin layer chromatography was performed on 0.25 mm thick aluminium-baked silica gel plates purchased from Merck and visualized with ultraviolet ($\lambda = 254$ nm). ¹H, ¹³C{¹H}, ¹¹B and ¹⁹F NMR spectra were recorded on JEOL ECZ500R/S1 (500, 126, 160 and 471 MHz respectively) instrument. ¹H signals are referenced to residual CDCl₃ at 7.26 ppm. ¹³C signals are referenced to CDCl₃ at 77.16 ppm. IR spectra were recorded on Bruker Alpha II compact FT-IR spectrophotometer. High resolution mass spectra quadrupole time-of-flight (HRMS-QTOF) was obtained in ESI mode. The UV-Vis spectrum of compounds was recorded using a UV-Vis spectrophotometer (Shimadzu-2600). The reaction vials were purchased from Aldrich. The small Air Circulator fan Vornado 133 were purchased from amazon.com. The 40W Purple LED lamps were used Kessil LED photoreaction lighting PR160L.

2. Synthesis of Starting Materials

General procedure 2.1: Synthesis of N-sulfonylhydrazones 1 derived from aldehydes

To a stirred solution of 2-mesitylenesulfonyl hydrazide **B** (1.5 mmol, 1.0 equiv) in MeOH (0.5 M), corresponding aldehydes **A** (1.5 mmol, 1.0 equiv) in MeOH (0.25 M) solution were added dropwise. The reaction mixture was stirred at room temperature until complete conversion was observed by TLC. Solvent was removed under reduced pressure by rotary evaporator and crude compound was recrystallized with hot methanol to get the desired product. Starting material is prepared from the reported literature.^[1]

(E)-N'-(4-Methoxybenzylidene)-2,4,6-trimethylbenzenesulfonohydrazide (1a)

1a was prepared according to the general procedure 2.1 in 75% (359.0 mg) white solid compound. Purification done by recrystallization with hot MeOH. TLC (30% ethyl acetate in hexanes): $R_f = 0.30$; MP: 167-168 °C; IR neat (cm⁻¹): 3245, 2915, 1645, 1150; ¹H NMR (500 MHz, CDCl₃): δ 8.05 (br s, 1H), 7.69 (s, 1H), 7.45 (d, J = 9.0 Hz, 2H), 6.98 (s, 2H), 6.85 (d, J = 9.1 Hz, 2H), 3.80 (s, 3H), 2.73 (s, 6H), 2.29 (s, 3H); ¹³C NMR (126 MHz,

CDCl₃): δ 161.4, 146.9, 143.1, 140.3, 132.4, 132.0, 128.9, 126.1, 114.2, 55.4, 23.4, 21.1; **HRMS** (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₂₁N₂O₃S 333.1267, Found 333.1267.

(E)-N'-(4-(Dimethylamino)-benzylidene)-2,4,6-trimethylbenzenesulfonohydrazide (1b)

1b was prepared according to the general procedure 2.1 in 69% (357.0 mg) yellow solid compound. Purification done by recrystallization with hot MeOH. TLC (30% ethyl acetate in hexanes): $R_f = 0.33$; MP: 157–158°C; IR neat (cm⁻¹): 3215, 2945, 1595, 1270; ¹H NMR (500 MHz, DMSO-d₆): δ 7.60 (s, 1H), 7.30 (d, J = 6.81 Hz, 2H), 6.96 (s, 2H), 6.60 (d, J = 9.30 Hz, 2H), 2.97 (s, 6H), 2.73 (s, 6H), 2.28 (s, 3H) (The -NH proton is not visible);

¹³C NMR (126 MHz, DMSO-d₆): δ 190.5, 142.8, 140.2, 132.0, 128.8, 125.2, 112.1, 111.1, 40.5, 40.2, 23.4, 21.10; HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₈H₂₄N₃O₂S 346.1584, Found 346.1589.

(E)-N'-Benzylidene-2,4,6-trimethylbenzenesulfonohydrazide (1c)

1c was prepared according to the general procedure 2.1 in 60% (271.0 mg) white solid compound. Purification done by recrystallization with hot MeOH. TLC (20% ethyl acetate in hexanes): $R_f = 0.35$; MP: 155-156 °C; IR neat (cm⁻¹): 3208, 2989, 1603, 1364; ¹H NMR (500 MHz, CDCl₃): δ 7.76 (br s, 1H), 7.52-7.50 (m, 2H), 7.34-7.32 (m, 3H), 6.97 (s, 2H), 2.74 (s, 6H), 2.29 (s, 3H) (The -NH proton is not visible); ¹³C NMR (126 MHz, CDCl₃): δ 146.7,

143.2, 140.3, 133.4, 132.3, 132.1, 130.3, 128.7, 127.3, 23.4, 21.1; **HRMS** (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₉N₂O₂S 303.1162, Found 303.1157.

(E)-N'-(4-Hydroxybenzylidene)-2,4,6-trimethylbenzenesulfonohydrazide (1d)

1d was prepared according to the general procedure 2.1 in 72% (343.0 mg) yellow solid compound. Purification done by recrystallization with hot MeOH. TLC (10% methanol in DCM): $R_f = 0.30$; MP: 182-184°C; IR neat (cm⁻¹): 3224, 2934, 2319, 1604, 1326; ¹H NMR (500 MHz, DMSO-d₆): δ 11.22 (s, 1H), 9.84 (s, 1H), 7.76 (s, 1H), 7.28 (d, J = 9 Hz, 2H), 6.97 (s, 2H), 6.70 (d, J = 8.8 Hz, 2H), 2.59 (s, 6H), 2.19 (s, 3H); ¹³C NMR

(126 MHz, DMSO-d₆): δ 159.7, 146.3, 142.6, 139.7, 133.9, 132.1, 128.7, 125.5, 116.1, 23.3, 20.9; **HRMS** (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₉N₂O₃S 319.1111, Found 303.1112.

(E)-N'-(4-Chlorobenzylidene)-2,4,6-trimethylbenzenesulfonohydrazide (1e)

1e was prepared according to the general procedure 2.1 in 55% (277.0 mg) white solid compound. Purification done by recrystallization with hot MeOH. TLC (30% ethyl acetate in hexanes): $R_f = 0.28$; MP: 144-145 °C; IR neat (cm⁻¹): 3309, 2942, 1601, 1372; ¹H NMR (500 MHz, CDCl₃): δ 7.70 (s, 1H), 7.43 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.8 Hz, 2H), 6.98 (s, 2H), 2.73 (s, 6H), 2.30 (s, 3H) (The -NH proton is not visible);

¹³C NMR (126 MHz, CDCl₃): δ 191.2, 145.4, 143.42, 140.4, 136.3, 132.16, 131.8, 131.4, 131.1, 129.6, 129.0, 128.5, 23.4, 21.1; **HRMS** (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₈ClN₂O₂S 337.0772, Found 337.0777.

(E)-2,4,6-Trimethyl-N'-(naphthalen-2-ylmethylene)benzenesulfonohydrazide (1f)

1f was prepared according to the general procedure 2.1 in 68% (359.0 mg) white solid compound. Purification done by recrystallization with hot MeOH. TLC (20% ethyl acetate in hexanes): $R_f = 0.35$; MP: 190-191 °C; IR neat (cm⁻¹): 3216, 2949, 1596, 1319; ¹H NMR (500 MHz, CDCl₃): (500 MHz CDCl_3) : $\delta 8.0$ (s, 1H), 7.82-7.79 (m, 2H), 7.76 (d, J = 1.75 Hz, 2H), 7.52-7.47 (m, 2H), 6.99 (s, 2H), 2.77 (s, 6H), 2.29 (s, 3H); ¹³C NMR

(126 MHz CDCl₃): δ 146.9, 143.3, 140.4, 134.4, 132.46, 132.44, 133.0, 132.1, 131.0, 129.2, 128.7, 128.5, 128.0, 127.3, 126.8, 122.8, 23.4, 21.1; HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₂₀H₂₁N₂O₂S 353.1318, Found 353.1321.

(E)-2,4,6-Trimethyl-N'-(pyridin-3-ylmethylene) benzenesulfonohydrazide (1g)

1g was prepared according to the general procedure 2.1 in 68% (309.0 mg) white solid compound. Purification done by recrystallization with hot MeOH. TLC (10% Methanol in DCM): $R_f = 0.28$; MP: 188 – 189 °C; IR neat (cm⁻¹): 3309, 2388, 1606, 1326; ¹H NMR (500 MHz, DMSO-d₆): δ 11.80 (br s, 1H), 8.61 (d, J = 3 Hz, 1H), 8.49 (dd, J = 1.8, 4.9 Hz, 1H), 7.91 (s, 1H), 7.83-7.81 (m, 1H), 7.38-7.35 (m, 1H), 7.00 (s, 2H), 2.60 (s, 6H), 2.19 (s, 3H); ¹³C NMR (126 MHz, DMSO-d₆): δ 151.0, 148.6, 142.95, 142.93, 139.7, 133.7, 133.4, 132.1, 130.2, 124.4, 23.2,

20.9; **HRMS** (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₈N₃O₂S 304.1114, Found 304.1113.

(E)-4-((2-(Mesitylsulfonyl)hydrazineylidene)methyl)phenyl 2-(4-isobutylphenyl)propanoate (1h)

1h was prepared according to the general procedure 2.1 in 68% (516.0 mg) white solid compound. Purification done by recrystallization with hot MeOH. TLC (30% ethyl acetate in hexanes): $R_f = 0.32$; MP: 162-163 °C; IR neat (cm⁻¹): 3309, 2388, 1606, 1326; ¹H NMR (500 MHz, CDCl₃): δ 7.4 (d, J = 9 Hz, 2H), 7.20 (d, J = 8.3 Hz, 2H), 7.11 (d, J = 8.3 Hz, 2H), 6.96 (d, J = 7.3 Hz, 2H), 6.94 (s, 2H), 3.9 (q, 1H),2.71 (s, 6H), 2.4 (d, J = 7.1 Hz, 2H), 2.2 (s, 3H), 1.90-1.82 (m, 1H),

1.60 (d, J = 6.5 Hz, 3H), 0.9 (d, J = 6.2 Hz, 6H) (The -NH proton is not visible); ¹³C NMR (126 MHz, CDCl₃): δ 173.2, 152.3, 145.5, 143.2, 141.0, 140.3, 137.0, 132.3, 132.1, 131.0, 129.7, 128.3, 127.3, 121.9, 45.3, 45.1, 30.3, 23.4, 22.5, 21.1, 18.5; HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₂₉H₃₅N₂O₄S 507.2312, Found 507.2315.

General procedure 2.2: Synthesis of N-sulfonylhydrazones 4 derived from ketones

To a stirred solution of 2-mesitylenesulfonyl hydrazide **B** (1.5 mmol, 1.0 equiv) in MeOH (0.5 M), corresponding ketones **C** (1.5 mmol, 1.0 equiv) in MeOH (0.25 M) solution were added dropwise. The reaction mixture was stirred at room temperature until complete conversion was observed by TLC. Solvent was removed under reduced pressure by rotary evaporator and crude compound was recrystallised with hot methanol to get the desired product. Starting material is prepared from the reported literature.^[1]

If crude product is sticky then washed two to three times with minimum amount of hexane and diethyl ether. Solvent was removed under reduced pressure by rotary evaporator and then recrystallized with hot MeOH.

(E)-2,4,6-trimethyl-N'-(1-phenyl-ethylidene)-benzenesulfonohydrazide (4a)

4a was prepared according to the general procedure **2.2** in 68% (321.0mg) white solid compound. Purification done by recrystallisation with hot MeOH. **TLC** (20% ethylacetate in hexanes): $R_f = 0.33$; MP: 110-112 °C; IR neat (cm⁻¹): 3325, 3130, 2940, 1603, 1358, 1140; ¹H NMR: δ 7.04 (br s, 1H), 7.58-7.55 (m, 2H), 7.32-7.29 (m, 3H), 6.90 (s, 2H), 2.75 (s, 6H), 2.28(s, 3H), 2.16 (s, 3H); ¹³C

NMR (126 MHz CDCl₃): δ 151.0, 143.0, 140.4, 137.4, 132.4, 131.9, 129.5, 128.3, 126.2, 23.4, 21.1, 13.0; **HRMS** (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₃H₂₁N₂O₂S 317.1323, Found 317.1323.

(E)-N'-(1-(4-methoxyphenyl)ethylidene)-2,4,6-trimethylbenzenesulfonohydrazide (4b)

4b was prepared according to the general procedure 2.2 in 68% (352.0 mg) white solid compound. Purification done by recrystallization with hot MeOH. TLC (30% ethylacetate in hexanes): $R_f = 0.30$; MP: 125-127 °C; ¹H NMR (500 MHz, CDCl₃): δ 7.50 (d, J = 8.5 Hz, 2H), 6.92 (s, 2H), 6.80 (d, J = 9.0 Hz, 2H), 3.81 (s, 3H), 2.70 (s, 6H), 2.22 (s, 3H), 2.10 (s, 3H) (The -NH proton is not visible); ¹³C NMR (126 MHz, CDCl₃): δ 160.8,

151.1, 143.0, 140.4, 132.0, 130.7, 130.0, 127.7, 113.7, 55.4, 23.4, 21.1, 13.01; **HRMS** (ESI/Q-TOF) m/z: $[M+H]^+$ Calcd for $C_{18}H_{22}N_2O_3S$ 347.1427, Found 347.1427.

(E)-N'-(1-(1H-indol-2-yl)ethylidene)-2,4,6-trimethylbenzenesulfonohydrazide (4c)

4c was prepared according to the general procedure 2.2 in 70% (533.0 mg) yellow solid compound. Purification done by recrystallization with methanol. TLC (10% Methanol in DCM): $R_f = 0.30$; MP: 220-221 °C; IR neat (cm⁻¹): 3362, 3226, 2944, 1603, 1358; ¹H NMR (500 MHz, CDCl₃): δ 11.36 (s, 1H), 10.14 (s, 1H), 7.74 (d, J = 3.0 Hz, 1H), 7.66 (d, J = 8.7 Hz, 1H), 7.31 (d, J = 8.4 Hz, 1H), 7.09-7.05 (m, 3H), 6.87 (t, J = 8.25 Hz, 1H),

2.66 (s, 6H), 2.26 (s, 3H), 2.22 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 153.5, 143.12, 140.2, 136.4, 132.5, 132.1, 132.0, 130.2, 129.9, 129.8, 128.4, 128.2, 127.5, 23.27, 21.15; HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₉H₂₂N₃O₂S 356.1427, Found 356.1429.

General procedure 2.3: Synthesis of *N*-sulfonylhydrazones 6 derived from terephthaldehdye.

To a stirred solution of 2-mesitylenesulfonyl hydrazide **B** (1.0 mmol, 1.0 equiv) in MeOH (0.5 M), solution of corresponding terephthaldehdye **D** (0.5 mmol, 0.5 equiv) in MeOH (0.25 M) solution were added dropwise. The reaction mixture was stirred at room temperature until complete conversion was observed by TLC. Solvent was removed in under reduced pressure by rotary evaporator and crude compound was washed two times with MeOH to obtained the desired product. Starting material is prepared from the reported literature.^[1]

N', N''-((*IE*, *I'E*)-1,4-phenylenebis(methaneylylidene))bis(2,4,6-trimethylbenzenesulfonohydrazide) (6)

6 was prepared according to the general procedure **2.3** in 70% (368.0 mg) white solid compound. Purification done by washing with methanol. **TLC** (10% Methanol in DCM): $R_f = 0.28$; MP: 203-204 °C; IR neat (cm⁻¹): 3219,

2945, 1695, 1101; ¹H NMR (500 MHz DMSO-d₆): δ 11.66 (s, 2H), 7.83 (s, 2H), 7.45 (s, 4H), 7.00 (s, 4H), 2.59 (s, 12H), 2.19 (s, 6H) (The -NH proton is visible,) ; ¹³C NMR (126 MHz, DMSO-d₆): δ 149.9, 142.8, 139.7, 135.5, 133.8, 132.1, 127.3, 23.26, 20.9; HRMS (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₂₆H₃₁N₄O₄S₂ 527.1781, Found 527.1784.

N'-(Diphenylmethylene)-2,4,6-trimethylbenzenesulfonohydrazide (8)

8 was prepared according to the general procedure **2.2** in 64% (362.8 mg) white solid compound. Purification done by recrystallization with methanol. **TLC** (20% ethyl acetate in hexanes): $R_f = 0.35$; MP: 130-131 °C; IR neat (cm⁻¹): 3335, 2926, 2900, 1706, 1457; ¹H NMR (500 MHz, CDCl₃): δ 7.68 (br s, 1H), 7.54-7.51 (m, 3H), 7.38-7.36 (m, 2H), 7.30-7.24 (m, 3H), 7.16-7.14 (m, 2H), 6.97 (s, 2H), 2.65 (s, 6H), 2.29 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 153.5,

143.1, 140.1, 136.5, 132.5, 132.0, 131.1, 130.2, 129.9, 129.8, 128.3, 128.2, 127.5, 23.2, 21.1; **HRMS** (ESI/Q-TOF) m/z: $[M+H]^+$ Calcd for C₂₂H₂₃N₃O₂S 379.1475, Found 379.1470.

3. Reaction optimization

3.1 Optimization of diarylmethanes (3)

3.1.1 Solvent optimization.

To an oven dried 5 mL glass vial was charged with magnetic stir bar, *N*-mesitylenesulfonylhydrazone **1a** (33.2 mg, 0.1 mmol, 1.0 equiv) derived from aldehyde was added, then Cs_2CO_3 (81.5 mg, 0.25 mmol, 2.5 equiv) and arylboronic acid **2a** (18.3 mg, 0.15 mmol, 1.5 equiv) were added followed by dry solvent (0.1 M, 1mL) under nitrogen atmosphere. The reaction mixture was stirred in presence of 370 nm LEDs at room temperature using fan (we control the temperature by using the fan, temperature of the reaction reaching ~35 °C) for 10 h. Upon the complete consumption of the starting materials, the reaction mixture was diluted with ethyl acetate and then passed through the celite pad the solvents were removed under reduced pressure and residue submitted for ¹H NMR, yield of **3aa** was determined by using CH₂Br₂ as an internal standard.

Entry	Dry Solvents (0.1 M)	NMR Yield (3aa) ^[a]
1	DCM	63%
2	DCE	93% (90%) ^b
3	1,4-dioxane	69%

4	CH ₃ CN	4.0%
5	Toluene	60%
6	Mesitylene	62%
7	Trifluoro- toluene	60%
8	DMF	ND
9	THF	62%
10	Chlorobenzene	56%
11	Benzene	56%

^[a]Crude yield and ^[b]isolated yield of **3aa**

3.1.2: Base optimization.

To an oven dried 5 mL glass vial was charged with magnetic stir bar, *N*-mesitylenesulfonylhydrazone **1a** (33.2 mg, 0.1 mmol, 1.0 equiv) derived from aldehyde was added, then base (xx mg, 0.25 mmol, 2.5 equiv) and arylboronic acid **2a** (18.3 mg, 0.15 mmol, 1.5 equiv) were added followed by DCE solvent (0.1 M, 1mL) under nitrogen atmosphere. The reaction mixture was stirred in presence of 370 nm LEDs at room temperature using fan (we control the temperature by using the fan the temperature of the reaction reaching ~35 ° C) for 10 h. Upon the complete consumption of the starting materials, the reaction mixture was diluted with ethyl acetate and then passed through the celite pad the solvents were removed under reduced pressure and residue submitted for ¹H NMR, yield of **3aa** was determined by using CH₂Br₂ as an internal standard.

Entry	Base	NMR Yield (3aa) ^[a]
1	No base	ND
2	Na ₂ CO ₃	ND
3	K ₂ CO ₃	26%
4	Cs ₂ CO ₃	93% (90%) ^b

5	K ₃ PO ₄	80%
6	KHCO ₃	2.0%
7	NaOH	32%
8	КОН	24%
9	NaOMe	19%
10	NaNH ₂	45%
11	CH ₃ CO ₂ K	12%
12	NaH	15%
13	CsF	28%
14	Li'BuO	6%
15	DIPEA	8%
16	DMAP	16%
17	Et ₃ N	24%
18	DBU	10%

^[a]Crude yield and ^[b]isolated yield of **3aa**

3.1.3: Optimization of light source (LEDs nm)

To an oven dried 5 mL glass vial was charged with magnetic stir bar, *N*-mesitylenesulfonylhydrazone **1a** (33.2 mg, 0.1 mmol, 1.0 equiv) derived from aldehyde was added, then Cs_2CO_3 (81.5 mg, 0.25 mmol, 2.5 equiv) and arylboronic acid **2a** (18.3 mg, 0.15 mmol, 1.5 equiv) were added followed by DCE solvent (0.1 M, 1mL) under nitrogen atmosphere. The reaction mixture was stirred in presence of various light sources LEDs at room temperature using fan (we control the temperature by using the fan the temperature of the reaction reaching ~35°C) for 10 h and we also tried the reaction under dark condition in presence of 370 nm LEDs by covering of two layers of aluminium foil upon glass vial. Upon the complete consumption of the starting materials, the reaction mixture was diluted with ethyl acetate and then passed through the celite pad the solvents were removed under reduced pressure and residue submitted for ${}^{1}\text{H}$ NMR, yield of **3aa** was determined by using CH₂Br₂ as an internal standard.

Entry	LEDs (nm)	NMR Yield (3aa) ^[a]
1	370 nm	93% (90%) ^b
2	390 nm	72%
3	427 nm	5%
4	440 nm	5%
5	456 nm	ND
6	Dark and 40 °C	20%

^[a]Crude yield and ^[b]isolated yield of **3aa**

3.2. Optimization of diarylalkylmethanes (5)

3.2.1. Optimization of solvents.

To an oven dried 5 mL glass vial was charged with magnetic stir bar, *N*-mesitylenesulfonylhydrazone **4a** (31.6 mg, 0.1 mmol, 1.0 equiv) derived from aldehyde was added, then Cs_2CO_3 (81.5 mg, 0.25 mmol, 2.5 equiv) and arylboronic acid **2a** (18.3 mg, 0.15 mmol, 1.5 equiv) were added followed by dry solvent (0.1 M, 1mL) under nitrogen atmosphere. The reaction mixture was stirred in presence of 370 nm LEDs at room temperature using fan (we control the temperature by using the fan the temperature of the reaction reaching ~35°C) for 10 h. Upon the complete consumption of the starting materials, the reaction mixture was diluted with ethyl acetate and then passed through the celite pad the solvents were removed under reduced pressure and residue submitted for ¹H NMR, yield of **5aa** was determined by using CH₂Br₂ as an internal standard.

Entry	Dry Solvents (0.1 M)	NMR Yield (5aa) ^[a]
1	DCM	64% (63%) ^b
2	DCE	35%

3	1,4-dioxane	10%
4	Toluene	50%
5	Mesitylene	32%
6	THF	12%

^[a]Crude yield and ^[b]isolated yield of **3aa**

- **3.3** Optimization of bis(1,4-diaryl/napthylmethyl)benzenes (7).
- **3.3.1** Optimization of solvents.

To an oven dried 5 mL glass vial was charged with magnetic stir bar, *N*-mesitylenesulfonylhydrazone **6a** (52.7 mg, 0.1 mmol, 1.0 equiv) derived from aldehyde was added, then Cs_2CO_3 (163.0 mg, 0.5 mmol, 5 equiv) and arylboronic acid **2a** (36.6 mg, 0.3 mmol, 3.0 equiv) were added followed by dry solvent (0.1 M, 1mL) under nitrogen atmosphere. The reaction mixture was stirred in presence of 370 nm LEDs at room temperature using fan (we control the temperature by using the fan the temperature of the reaction reaching ~35°C) for 15 h. Upon the complete consumption of the starting materials, the reaction mixture was diluted with ethyl acetate and then passed through the celite pad the solvents were removed under reduced pressure and residue submitted for ¹H NMR, yield of **7aa** was determined by using CH₂Br₂ as an internal standard.

Entry	Solvents	NMR Yield (7aa) ^a
1	Mesitylene	ND
2	Toluene	22%
3	DCM	3.0 %

4	1,4-dioxane	ND
5	DMF	ND
6	THF	12%
7	CHCl ₃	17%
8	Toluene: H ₂ O	18%

10	a 1	• •	
a	('mida	3710	
	Ciuue	VIC	IU
		J ·	

Scheme 3.3.2: Base optimization.

To an oven dried 5 mL glass vial was charged with magnetic stir bar, *N*-mesitylenesulfonylhydrazone **6a** (52.7 mg, 0.1 mmol, 1.0 equiv) derived from aldehyde was added, then base (163.0 mg, 0.25 mmol, 2.5 equiv) and arylboronic acid **2a** (36.6 mg, 0.3 mmol, 3.0 equiv) were added followed by toluene solvent (0.1 M, 1mL) under nitrogen atmosphere. The reaction mixture was stirred in presence of 370 nm LEDs at room temperature using fan (we control the temperature by using the fan the temperature of the reaction reaching ~35 °C) for 15 h. Upon the complete consumption of the starting materials, the reaction mixture was diluted with ethyl acetate and then passed through the celite pad the solvents were removed under reduced pressure and residue submitted for ¹H NMR, yield of **7aa** was determined by using CH₂Br₂ as an internal standard.

Entry	Mixture of base (1:1)	NMR Yield (7aa) ^a
1	Cs ₂ CO ₃	25%
2	Cs ₂ CO ₃ : DBU	ND
3	Cs ₂ CO ₃ : H ₂ O	33%

Scheme 3.3.3: Optimization of light source (LEDs nm).

To an oven dried 5 mL glass vial was charged with magnetic stir bar, *N*-mesitylenesulfonylhydrazone **6a** (52.7 mg, 0.1 mmol, 1.0 equiv) derived from aldehyde was added, then Cs_2CO_3 (163.0 mg, 0.5 mmol, 5 equiv) and arylboronic acid **2a** (36.6 mg, 0.3 mmol, 3.0 equiv) were added followed by toluene solvent (0.1 M, 1mL) under nitrogen atmosphere. The reaction mixture was stirred in presence of various light sources LEDs at room temperature using fan (we control the temperature by using the fan the temperature of the reaction reaching ~35 °C) for 15 h. Upon the complete consumption of the starting materials, the reaction mixture was diluted with ethyl acetate and then passed through the celite pad the solvents were removed under reduced pressure and residue submitted for ¹H NMR, yield of **7aa** was determined by using CH₂Br₂ as an internal standard.

Entry	LEDs (nm)	NMR Yield (7aa) ^a
1	370 nm	30%
2	390 nm	70%
3	427 nm	ND
4	440 nm	ND
5	456 nm	ND

^[a]Crude yield

3.4 Synthesis of triarylmethanes (9).

3.4.1: Optimization of solvents.

To an oven dried 5 mL glass vial was charged with magnetic stir bar, *N*-mesitylenesulfonylhydrazone **8a** (37.8 mg, 0.1 mmol, 1.0 equiv) derived from aldehyde was added, then Cs_2CO_3 (81.5 mg, 0.25 mmol, 2.5 equiv) and aryl boronic acid **2a** (18.3 mg, 0.15 mmol, 1.5 equiv) were added followed by dry solvent (0.1 M, 1 mL) under nitrogen atmosphere. The reaction mixture was stirred in presence of 370 nm LEDs at room temperature using fan (we control the temperature by using the fan the temperature of the reaction reaching ~35°C) for 7 h. Upon the complete consumption of the starting materials, the reaction mixture was diluted with ethyl acetate and then passed through the celite pad the solvents were removed under reduced pressure and residue submitted for ¹H NMR, yield of **9aa** was determined by using CH₂Br₂ as internal standard.

Entry	Solvents	NMR Yield (9aa) ^a		
1	Mesitylene	15%		
2	Toluene	22%		
3	DCM	28%		
4	DCE	20%		
^[a] Crude yield				

3.4.2: Optimization of light source (LEDs nm).

To an oven dried 5 mL glass vial was charged with magnetic stir bar, *N*-mesitylenesulfonylhydrazone **8a** (37.8 mg, 0.1 mmol, 1.0 equiv) derived from aldehyde was added, then Cs_2CO_3 (0.25 mmol, 2.5 equiv) and aryl boronic acid **2a** (18.3 mg, 0.15 mmol, 1.5 equiv) were added followed by dry solvent (0.1 M, 1mL) under nitrogen atmosphere. The reaction mixture was stirred in presence of various LEDs at room temperature using fan (we control the temperature by using the fan the temperature of the reaction reaching ~35 °C) for 7 h. Upon the complete consumption of the starting materials, the reaction mixture was diluted with ethyl acetate and then passed through the celite pad the solvents were removed under reduced pressure and residue submitted for ¹H NMR, yield of **9aa** was determined by using CH₂Br₂ as internal standard.

Entry	LEDs (nm)	NMR Yield (9aa) ^a
1	370 nm	28%
2	390 nm	35%
3	427 nm	20%
4	440 nm	ND
5	456 nm	ND
^[a] Crude yield		

3.4.3: Optimization of equivalent of Cs₂CO₃

To an oven dried 5 mL glass vial was charged with magnetic stir bar, *N*-mesitylenesulphonylhydrazones **8a** (37.8 mg, 0.1 mmol, 1.0 equiv) derived from aldehyde was added, then Cs_2CO_3 (xx equiv) and arylboronic acid **2a** (18.3 mg, 0.15 mmol, 1.5 equiv) were added followed by dry solvent (0.1 M, 1mL) under nitrogen atmosphere. The reaction mixture was stirred in presence of 370 nm LEDs at room temperature using fan (we control the temperature by using the fan the temperature of the reaction reaching ~35 °C) for 7 h. Upon the complete consumption of the starting materials, the reaction mixture was diluted with ethyl

acetate and then passed through the celite pad the solvents were removed under reduced pressure and residue submitted for ¹H NMR, yield of **9aa** was determined by using CH_2Br_2 as internal standard.

Entry	Cs ₂ CO ₃ (equiv.)	NMR Yield (9aa) ^a
1	1.5	30%
2	2.0	65% (58%) ^b
3	2.5	35%

^[a]Crude yield

4.0 General procedure for Visible Light-Induced Arylation (Alkylation)

4.1 General procedure for light-induced synthesis of diarylmethanes (3)

General procedure A: To an oven dried 5 mL glass vial was charged with magnetic stir bar, *N*-mesitylene-sulfonylhydrazone **1** (0.1 mmol, 1.0 equiv) derived from aldehyde was added, then Cs_2CO_3 (0.25 mmol, 2.5 equiv) and aryl/alkylboronic acid **2** (0.15 mmol, 1.5 equiv) were added followed by DCE solvent (0.1 M, 1mL) under nitrogen atmosphere. The reaction mixture was stirred in presence of 370 nm LEDs at room temperature using fan (we control the temperature by using the fan the temperature of the reaction reaching ~35°C) for 10 h. Upon the complete consumption of the starting materials, the reaction mixture was diluted with ethyl acetate and then passed through the celite pad the solvents were removed under reduced pressure and residue submitted for ¹H NMR, yield of **3aa** was determined by using CH₂Br₂ as an internal standard.

Spectral data of Isolated compounds:

1-Benzyl-4-methoxybenzene (3aa)

3aa was prepared according to the general procedure **A** in 90% (35.0 mg) colorless oil. Purification done by column chromatography on silica gel using (hexane: EtOAc = 20:1) as an eluent, **TLC** (1% ethyl acetate in hexane); $R_f = 0.45$; ¹H NMR (500 MHz, CDCl₃): δ 7.35 - 7.33

(m, 2H), 7.26 - 7.24 (m, 3H), 7.19 (d, J = 7.1 Hz, 2H), 6.92 (d, J = 7.1 Hz, 2H), 4.00 (s, 2H), 3.86 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 158.1, 141.7, 133.4, 130.0, 128.9, 128.6, 126.1, 114.0, 55.4, 41.0. Spectral data matched with the reported literature.^[2]

4-Benzyl-*N*,*N*-dimethylaniline (**3ba**)

3ba was prepared according to the general procedure **A** in 76% (32.0 mg) yellow oil. Purification done by column chromatography on silica gel using (hexane: EtOAc =98:2) as an eluent, **TLC** (10% ethyl acetate in hexane); $R_f = 0.4$; ¹H NMR (500 MHz, CDCl₃): δ

7.28 (t, J = 7.4 Hz, 2H), 7.19 (d, J = 8.0 Hz, 3H), 7.08 (d, J = 8.5 Hz, 2H), 6.71 (d, J = 8.2 Hz, 2H), 3.90 (s, 2H), 2.91(s, 6H); ¹³C NMR (126 MHz, CDCl₃): δ 149.2, 142.1, 129.6, 128.9, 128.4, 126.9, 125.9, 113.1, 41.05, 41.01.

Spectral data matched with the reported literature.^[2]

Diphenylmethane (3ca)

3ca was prepared according to the general procedure **A** in 73% (31.0 mg) Colorless oil. Purification done by column chromatography on silica gel using (hexanes) as the eluent, **TLC** (hexanes): $R_f = 0.6$; ¹H NMR (500 MHz, CDCl₃): δ 7.40-7.29 (m, 5H), 7.25-7.19 (m, 5H), 4.01 (s, 2H); ¹³C NMR (126 MHz, CDCl₃): δ 141.2, 129.0, 128.5, 126.1, 42.0

Spectral data matched with the reported literature.^[4]

4-Benzylphenol (3da)

3da was prepared according to the general procedure **A** in 42% (15.0 mg) colorless oil. Purification done by column chromatography on silica gel using (hexane: EtOAc = 95:5) as an eluent, **TLC** (10% ethyl acetate in hexane); $R_f = 0.35$. ¹H NMR (500 MHz, CDCl₃): δ 7.30-

7.27(m, 2H), 7.21-7.17 (m, 3H), 7.07 (d, J = 8.7 Hz, 2H), 6.77 (d, J = 8.7 Hz, 2H), 3.92 (s, 2H); ¹³C **NMR** (126 MHz, CDCl₃): δ 153.8, 141.5, 133.5, 130.1, 128.8, 128.5, 126.0, 115.3, 41.1. Spectral data matched with the reported literature.^[5]

1-Chloro-4-(4-methoxybenzyl) benzene (**3eg**)

3eg was prepared according to the general procedure **A** in 75% (35.0 mg) Colorless oil. Purification done by column chromatography on silica gel using (hexanes: EtOAc = 98:2) as the eluent, **TLC** (5% ethyl acetate in hexanes): R_f = 0.28; ¹H NMR (500 MHz, CDCl₃): δ 7.25-7.22(m, 2H), 7.13-7.10 (m, 4H), 6.86- 6.80 (m, 2H), 3.88 (s, 2H), 3.77 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 158.2, 140.1, 132.7, 131.8, 130.2, 129.9, 128.6, 114.0, 55.3, 40.6.

Spectral data matched with the reported literature.^[3]

2-Benzylnaphthalene (3fa)

3fa was prepared according to the general procedure **A** in 78% (72.0 mg) white solid. Purification done by column chromatography on silica gel using (hexanes: EtOAc = 99:1) as the eluent, **TLC** (5% ethyl acetate in hexanes): $R_f = 0.45$; ¹H NMR (500 MHz, CDCl₃): δ 7.83-7.77 (m, 3H), 7.66 (s, 1H), 7.50-7.42 (m, 2H), 7.36-7.30 (m, 3H), 7.27-7.20 (m, 3H), 4.17 (s, 2H); ¹³C

NMR (126 MHz, CDCl₃): δ 141.0, 138.7, 133.7, 132.1, 129.1, 128.6, 128.1, 127.75, 127.73, 127.6, 127.2, 126.2, 126.0, 125.4, 42.2.1.

Spectral data matched with the reported literature.^[6]

3-(4-Methoxybenzyl)pyridine (3gg)

3gg was prepared according to the general procedure **A** in 42% (17.0 mg) Colorless oil. Purification done by column chromatography on silica gel using (hexanes: EtOAc = 97:3) as the eluent, **TLC** (10% ethyl acetate in hexanes): $R_f = 0.25$; ¹H NMR (500 MHz, CDCl₃): δ 7.25-7.23 (m, 2H), 7.12-7.06 (m, 4H), 6.85-6.81 (m, 2H), 3.89 (s, 2H), 3.79 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 158.1, 140.1, 132.7, 131.8, 130.2, 129.9, 128.6, 114.0, 55.3, 40.4.Spectral data matched with the reported literature.^[7] 4-Benzylphenyl 2-(4-isobutylphenyl)propanoate (3ha)

3ha was prepared according to the general procedure **A** in 90% (33.0 mg) colorless oil. Purification done by column chromatography on silica gel using (hexanes: EtOAc= 99:1) as the eluent, **TLC** (10% ethyl acetate in hexanes): $R_f = 0.55$; ¹H **NMR** (500 MHz, CDCl₃): 7.32-7.26 (m, 4H), 7.23-7.15 (m, 7H),

6.93 (d, J = 8.8 Hz, 2H), 3.97 (s, 2H), 3.96-3.92 (m, 1H), 2.40 (d, J = 7.1 Hz, 2H), 1.93-1.84 (m, 1H), 1.60 (d, J = 8.0 Hz, 3H), 0.9 (d, J = 7.5 Hz, 6H); ¹³**C** NMR (126 MHz, CDCl₃): δ 173.4, 149.2, 140.9, 140.8, 138.6, 137.4, 129.8, 129.6, 129.0, 128.6, 127.3, 126.2, 45.3, 45.1, 41.3, 30.2, 22.5, 18.6. HRMS (ESI/Q-TOF) *m/z*: [M+H]⁺ Calcd for C₂₆H₂₉O₂ 373.2162., Found 373.2164.

1-Methoxy-4-(4-(trifluoromethyl)benzyl) benzene (**3ab**)

3ab was prepared according to the general procedure **A** in 72% (38.0 mg) white solid. Purification done by column chromatography on silica gel using (hexane: EtOAc = 98:2) as an eluent, **TLC** (10%)

ethyl acetate in hexane); $R_f = 0.52$. ¹H NMR (500 MHz, CDCl₃): δ 7.55 (d, J = 8.1 Hz, 2H), 7.30 (d, J = 8.1 Hz, 2H), 7.10 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 3.98 (s, 2H), 3.80 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 158.3, 145.8, 132.2, 130.4, 129.1, 125.5(q, 15.5 Hz), 123.3, 114.1, 55.3, 40.9; ¹⁹F NMR (471 MHz, CDCl₃): δ -62.2.

Spectral data matched with the reported literature.^[6]

Methyl 4-(4-methoxybenzyl) benzoate (3ac)

3ac was prepared according to the general procedure A in 71% (36.0 mg) colorless oil. Purification done by column chromatography on silica gel using (hexane: EtOAc = 97:3) as an eluent, TLC (10% ethyl acetate in hexane); $R_f = 0.40$.

¹**H NMR** (500 MHz, CDCl₃): δ 7.96 (d, J = 8.5 Hz, 2H), 7.25 (d, J = 8.5 Hz, 2H), 7.10 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 3.97(s, 2H), 3.90 (s, 3H), 3.79 (s, 3H); ¹³**C NMR** (126 MHz, CDCl₃): δ 167.7, 158.2, 147.1, 132.3, 130.4, 129.9, 128.9, 128.1, 114.1, 58.3, 52.1, 41.1 **HRMS** (ESI/Q-TOF) *m/z*: [M+H]⁺ Calcd for C₁₆H₁₇O₃ 257.1172, Found 257.1175.

Spectral data matched with the reported literature.^[7]

4-(4-Methoxybenzyl)-1,1'-biphenyl (**3ad**)

3ad was prepared according to the general procedure **A** in 72% (37.0 mg) colorless oil. Purification done by column chromatography on silica gel using (hexanes: EtOAc = 99:1) as an eluent, **TLC** (10% ethyl acetate in hexanes): $R_f = 0.60$. ¹H

NMR (500 MHz, CDCl₃): δ 7.59-7.57 (m, 2H), 7.53 (d, *J* = 8.0 Hz, 2H), 7.44 (td, *J* = 8.5 Hz, 1Hz, 2H), 7.34 (tt, *J* = 7.5 Hz, 1Hz, 1H), 7.27 (dt, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 9.0 Hz, 2H), 6.87 (d, *J* = 8.5 Hz, 2H), 3.98 (s, 2H), 3.80(s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 158.1, 141.4, 140.8, 139.0, 133.2, 130.2, 129.3, 128.8, 127.3, 127.2, 127.1, 114.0, 55.3, 40.7.

Spectral data matched with the reported literature.^[7]

(4-Methoxybenzyl) benzaldehyde (**3ae**)

3ae was prepared according to the general procedure A in 45% (20.0 mg) colorless oil. Purification done by column chromatography on silica gel using (hexane: EtOAc = 98:2) as an eluent, TLC (10% ethyl acetate in hexane); $R_{\rm f} = 0.30$. ¹H NMR

(500 MHz, CDCl₃): δ 9.97 (s, 1H), 7.79 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 6.84 (d, J = 8.3 Hz, 2H), 4.00 (s, 2H), 3.79 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 192.1, 158.3, 149.1, 134.7, 131.9, 130.1, 130.0, 129.5, 114.2, 55.4, 41.3; HRMS (ESI/Q-TOF) *m/z*: [M+H]⁺ Calcd for C₁₅H₁₅O₂ 227.1056, Found 227.1056.

Spectral data matched with the reported literature.^[7]

4-(4-Methoxybenzyl) benzonitrile (3af)

3af was prepared according to the general procedure A in 58% (25.8 mg) colorless oil. Purification done by column chromatography on silica gel using (hexane: EtOAc = 97:3) as an eluent, **TLC** (10%)

ethyl acetate in hexane); $R_f = 0.42$; ¹H NMR (500 MHz, CDCl₃): δ 7.57 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 7.8 Hz, 2H), 7.06 (d, J = 7.8 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 3.97 (s, 2H), 3.79 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 158.4, 147.4, 132.4, 131.6, 130.1, 129.7, 119.2, 114.3, 110.1, 55.4, 41.2.

Spectral data matched with the reported literature.^[7]

Bis(4-Methoxyphenyl) methane (3ag)

3ag was prepared according to the general procedure **A** in 79% (36.0 mg) colorless oil. Purification done by column chromatography on silica gel using (hexane: EtOAc = 98:2) as an eluent, **TLC** (10% ethyl acetate in hexane); $R_f = 0.53$.

¹**H** NMR (500 MHz, CDCl₃): δ 7.11 (d, *J* = 8.5 Hz, 4H), 6.84 (d, *J* = 8.5 Hz, 4H), 3.88 (s, 2H), 3.79 (s, 6H); ¹³**C** NMR (126 MHz, CDCl₃): δ 158.0, 133.8, 129.8, 113.9, 55.3, 40.2; **HRMS** (ESI/Q-TOF) *m/z*: [M+NH₄]⁺ Calcd for C₁₄H₁₉NO₂ 245.1410, Found 246.1489.

Spectral data matched with the reported literature.^[9]

1-Chloro-3-(4-methoxybenzyl) benzene (3ah)

3ah was prepared according to the general procedure A in 92% (42.8 mg) colorless oil. Purification done by column chromatography on silica gel using (hexane: EtOAc = 97:3) as an eluent, TLC (10% ethyl acetate in hexane); $R_f = 0.45$.

¹**H** NMR (500 MHz, CDCl₃): δ 7.21 (dd, J = 7.0 Hz, 1.50 Hz, 3H), 7.11 (d, J = 9.0 Hz, 2H), 7.09-7.07 (m, 1H), 6.86 (d, J = 8.1 Hz, 2H), 3.90 (s, 2H), 3.80 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 158.6, 139.2, 134.6, 132.7, 130.3, 130.1, 129.3, 127.4, 126.6, 114.4, 55.7, 41.1.

Spectral data matched with the reported literature.^[10]

2-(4-Methoxybenzyl)-1,3-dimethylbenzene(3ai)

3ai was prepared according to the general procedure **A** in 55% (25.0 mg) colorless oil. Purification done by column chromatography on silica gel using (hexane: EtOAc = 99:1) as an eluent, **TLC** (10% ethyl acetate in hexane); $R_f = 0.45$; ¹H NMR (500 MHz, CDCl₃): δ 7.09-7.05 (m, 3H), 6.93 (d, J = 8.8 Hz, 2H), 6.79 (d, J = 8.8 Hz, 2H), 3.99 (s,

2H), 3.76 (s, 3H), 2.24 (s, 6H); ¹³C NMR (126 MHz, CDCl₃): δ 157.7, 137.3, 137.1, 131.7, 128.8, 128.1, 126.3, 113.8, 55.31, 34.18, 20.27; HRMS (ESI/Q-TOF) *m/z*: [M+H]⁺ Calcd for C₁₆H₁₉O 227.1430, Found 227.1421.

Spectral data matched with the reported literature.^[6]

1,4-Dimethoxy-2-(4-methoxybenzyl) benzene (3aj)

3aj was prepared according to the general procedure **A** in 52% (26.0 mg) white solid. Purification done by column chromatography on silica gel using (hexane: EtOAc = 96:4) as an eluent, **TLC** (10% ethyl acetate in hexane); $R_f = 0.33$; ¹H NMR (500 MHz, CDCl₃): δ 8.02-8.00 (m, 1H), 7.87-7.85 (m, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.47-7.40 (m, 3H), 7.29 (dd,

, *J* = 7 Hz, 1Hz, 1H), 7.13 (d, *J* = 8.75 Hz, 2H), 6.83 (d, *J* = 8.70 Hz, 2H) 4.40 (s, 2H), 3.77 (s, 3H); ¹³C **NMR** (126 MHz, CDCl₃): δ 158.4, 137.1, 134.0, 132.8, 132.2, 129.8, 128.8, 127.3, 127.2, 126.0, 125.8, 125.6, 124.4, 114.0, 55.4, 38.3.

Spectral data matched with the reported literature.^[11]

2,4-Difluoro-1-(4-methoxybenzyl) benzene (3ak)

3ak was prepared according to the general procedure **A** in 47% (22.0 mg) colorless oil. Purification done by column chromatography on silica gel using (hexane: EtOAc = 97:3) as an eluent, TLC (10% ethyl acetate in hexane); $R_f = 0.32$; ¹H NMR

(500 MHz, CDCl₃): δ 7.12 (d, J = 8.3 Hz, 2H), 7.08-7.06 (m, 1H), 6.84 (d, J = 8.8 Hz, 2H), 6.80-6.77 (m, 2H), 3.89 (s, 2H), 3.78 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 158.2, 131.7, 131.4, 131.5, 129.9, 129.8, 114.1, 111.2, 111.1, 104, 55.4, 33.5; ¹⁹F NMR (471 MHz, CDCl₃): δ -113.3, -113.7; HRMS (ESI/Q-TOF) *m/z*: [M+H]⁺ Calcd for C₁₄H₁₃F₂O 235.0929, Found 235.0987.

2-Fluoro-1-methoxy-3-(4-methoxybenzyl) benzene (3al)

3al was prepared according to the general procedure **A** in 49% (24.0 mg) colorless oil. Purification done by column chromatography on silica gel using (hexane: EtOAc = 95:5) as an eluent, TLC (10% ethyl acetate in hexane); $R_f = 0.31$; ¹H NMR

(500 MHz, CDCl₃): δ 8.01 (d, J = 2.5 Hz, 1H), 7.36 (dd, J = 8.5 Hz, 2.5 Hz, 1H), 7.08 (d, J = 8.7 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 6.67 (d, J = 8.4 Hz, 1H), 3.91 (s, 2H), 3.83 (s, 3H), 3.78 (s, 3H); ¹³C **NMR** (126 MHz, CDCl₃): δ 162.8, 158.2, 146.2, 139.5, 132.7, 129.8, 129.7 114.1, 114.0, 110.8, 55.4, 53.5, 37.3; ¹⁹F **NMR** (471 MHz, CDCl₃): δ -132.6; **HRMS** (ESI/Q-TOF) *m/z*: [M]⁺ Calcd for C₁₅H₁₅FO₂ 246.1056, Found 246.1030.

1-Chloro-2-(4-methoxybenzyl) benzene (3am)

3am was prepared according to the general procedure **A** in 90% (40.0 mg) colorless oil. Purification done by column chromatography on silica gel using (hexane: EtOAc = 97:3) as an eluent, **TLC** (10% ethyl acetate in hexane); $R_f = 0.45$; ¹H NMR (500 MHz, CDCl₃): δ 7.40-7.35 (m, 1H), 7.18-7.10 (m, 5H), 6.85 (dt, J = 9.1 Hz, 2.3 Hz, 2H), 4.04 (s,

2H), 3.79 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 139.6, 138.8, 134.5, 131.1, 129.1. 128.8, 127.5, 127.3, 126.9, 126.3, 39.2.

Spectral data matched with the reported literature.^[13]

1-Isopropyl-2-(4-methoxybenzyl) benzene (3an)

3an was prepared according to the general procedure **A** in 83% (40.0 mg) colorless oil. Purification done by column chromatography on silica gel using (hexane: EtOAc = 99:1) as an eluent, **TLC** (10% ethyl acetate in hexane); $R_f = 0.35$.

¹**H** NMR (500 MHz, CDCl₃): δ 7.32 (d, J = 7.8 Hz, 1H), 7.27 (t, J = 5.0 Hz, 1H), 7.16 (t, J = 7.2 Hz, 1H), 7.12 (d, J = 7.5 Hz, 1H), 7.05 (d, J = 8.2 Hz, 2H), 6.84 (d, J = 8.7 Hz, 2H), 4.02 (s, 2H), 3.79 (s, 3H), 3.18 (sept, J = 7.9 Hz, 1H), 1.17 (d, J = 7.9 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃): δ 158.2, 147.6, 138.1, 133.7, 130.9, 130.8, 129.9, 127.2, 125.9, 125.1, 114.2, 55.6, 38.3, 29.3, 24.2; **HRMS** (ESI/Q-TOF) *m/z*: [M+K]⁺ Calcd for C₁₇H₂₀KO 279.1146, Found 279.1179.

Spectral data matched with the reported literature.^[9]

2-(4-Methoxy-benzyl) naphthalene (3ao)

3ao was prepared according to the general procedure **A** in 82% (40.6 mg) colorless oil. Purification done by column chromatography on silica gel using (hexane: EtOAc = 99:1) as an eluent, TLC (10% ethyl acetate in hexane); $R_f = 0.52$; ¹H NMR (500 MHz, CDCl₃): δ 8.02-8.00 (m, 1H), 7.87-

7.85 (m, 1H), 7.77 (d, J = 8.1 Hz, 1H), 7.47-7.40 (m, 3H), 7.29 (dd, J = 7.0 Hz, 1H), 7.13 (d, J = 8.75 Hz, 2H), 6.83 (d, J = 8.7 Hz, 2H) 4.40 (s, 2H), 3.77 (s, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 158.4, 137.1, 134.0, 132.8, 132.2, 129.8, 128.8, 127.3, 127.2, 126.0, 125.8, 125.6, 124.4, 114.0, 55.4, 38.3; HRMS (ESI/Q-TOF) *m/z*: [M+NH₄]⁺ Calcd for C₁₈H₂₀NO 266.1539, Found 266.1537.

Spectral data matched with the reported literature.^[12]

1-Isopropyl-2-(4-methoxybenzyl) benzene (**3bp**)

3bp was prepared according to the general procedure A in 72% (40.0 mg) colorless oil. Purification done by column chromatography on silica gel using (hexane: EtOAc= 97:3) as an eluent, TLC (10% ethyl acetate in hexane); $R_f = 0.35$.

¹**H NMR** (500 MHz, CDCl₃): δ 7.30-7.18 (m, J = 7.8 Hz, 5H), 7.08 (d, J = 8.5 Hz, 2H), 6.70 (d, J = 8.5 Hz, 2H), 2.92 (s, 6H), 2.63 (t, J = 7.7 Hz, 2H), 2.57 (t, J = 7.7 Hz, 2H), 1.96-1.90 (m, 2H); ¹³**C NMR** (126 MHz,

 $CDCl_3): \delta \ 142.6, \ 129.10, \ 128.5, \ 128.3, \ 127.0, \ 125.7, \ 113.1, \ 41.0, \ 35.5, \ 34.4, \ 33.3.$

Spectral data matched with the reported literature.^[14]

4.2 Synthesis of diarylalkylmethanes (5)

General procedure B: To an oven dried 5 mL glass vial was charged with magnetic stir bar, *N*-mesitylene-sulfonylhydrazone **4a** (0.1 mmol, 1.0 equiv) derived from aldehyde was added, then Cs_2CO_3 (0.2 mmol, 2.5 equiv) and arylboronic acid **2a** (0.15 mmol, 1.5 equiv) were added followed by DCM solvent (0.1 M, 1mL) under nitrogen atmosphere. The reaction mixture was stirred in presence of 370 nm LEDs at room temperature using fan (we control the temperature by using the fan the temperature of the reaction reaching ~35 °C) for 10 h. Upon the complete consumption of the starting materials, the reaction mixture was diluted with ethyl acetate and then passed through the celite pad the solvents were removed under reduced pressure and residue submitted for ¹H NMR, yield of **5aa** was determined by using CH₂Br₂ as internal standard.

Ethane-1,1-diyldibenzene (5aa)

5aa was prepared according to the general procedure **B** in 63% (23.0 mg) Colorless oil. Purification done by column chromatography on silica gel using (hexanes: EtOAc = 99:1) as the eluent, **TLC** (hexanes): $R_f = 0.45$; ¹H NMR (500 MHz, CDCl₃): δ 7.31-7.26 (m, 6H), 7.25-7.17 (m, 4H), 4.19 (q, J = 7.2 Hz, 1H), 1.66 (d, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 146.5, 128.4, 127.7, 126.1, 44.9, 22.0.

Spectral data matched with the reported literature.^[15]

(R)-1-Methoxy-4-(1-(4-(trifluoromethyl)phenyl)ethyl)benzene (5bb)

5bb was prepared according to the general procedure **B** in 48% (27.0 mg) Colorless oil. Purification done by column chromatography on silica gel using (hexanes: EtOAc = 98:2) as the eluent, **TLC** (10% ethyl acetate in hexanes): $R_f = 0.45$; ¹H NMR (500 MHz, CDCl₃): δ 7.53 (d, *J*=8 Hz, 2H), 7.32 (d, *J* = 8 Hz, 2H), 7.13 (d, *J* = 8.2 Hz, 2H), 6.85 (d, *J* = 8.2 Hz, 2H), 4.17 (q, *J* = 7.1 Hz 1H), 3.78 (s, 3H), 1.63 (d, *J* = 7.1 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 158.2, 141.7, 133.4, 130.0, 128.9, 128.6, 126.1,

114.0, 55.4, 41.1; ^{19}F NMR (471 MHz, CDCl₃): δ -62.09.

Spectral data matched with the reported literature.^[8]

Methyl (R)-4-(1-(4-methoxyphenyl) ethyl) benzoate (5bc)

5bc was prepared according to the general procedure **B** in 71% (38.0 mg) Colorless oil. Purification done by column chromatography on silica gel using (hexanes: EtOAc = 98:2) as the eluent, **TLC** (10% ethyl acetate in hexanes): $R_f = 0.35$; ¹H NMR (500 MHz, CDCl₃): δ 7.95 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 8.6 Hz, 2H), 6.84 (d, J = 8.6Hz, 2H), 4.16 (q, J = 7.2 Hz 1H), 3.78 (s, 3H), 1.63 (d, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 167.2, 158.1, 152.3, 137.7, 129.8, 128.6,

127.7, 113.9, 55.3, 52.1, 44.1, 21.9.

Spectral data matched with the reported literature.^[8]

4,4'-(Ethane-1,1-diyl) bis(methoxybenzene) (5bg)

5bg was prepared according to the general procedure **B** in 72% (35.0 mg) white solid. Purification done by column chromatography on silica gel using (hexanes: EtOAc = 70:30) as the eluent, **TLC** (10% ethyl acetate in hexanes): $R_f = 0.32$.

¹**H NMR** (500 MHz, CDCl₃): 7.61 (d, *J* = 7.6 Hz, 2H), 7.55 (d, *J* = 7.6 Hz, 2H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.37-7.31 (m, 3H), 7.22 (d, *J* = 7.2 Hz, 2H), 6.89 (d, *J* = 6.89 Hz, 2H), 4.19 (q, *J* = 7.2 Hz, 1H), 3.81 (s, 3H), 1.68 (d,

J=7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 158.0, 146.0, 141.0, 138.9, 138.5, 128.8, 128.6, 128.0, 127.7, 127.2, 127.1, 113.9, 43.3, 22.2.

Spectral data matched with the reported literature.^[8]

(S)-4-(1-(4-Methoxyphenyl) ethyl)-1,1'-biphenyl) (5bd)

5bd was prepared according to the general procedure **B** in 55% (30.0 mg) white solid. Purification done by column chromatography on silica gel using (hexanes: EtOAc = 70:30) as the eluent, **TLC** (10% ethyl acetate in hexanes): $R_f = 0.32$.

¹**H NMR** (500 MHz, CDCl₃): 7.60 (d, *J* = 7.60Hz, 2H), 7.56 (d, *J* = 7.6 Hz, 2H), 7.46 (t, *J* = 7.5 Hz, 2H), 7.37-7.31(m, 3H), 7.22 (d, *J* = 7.2 Hz, 2H), 6.89 (d, *J* = 6.89Hz, 2H), 4.19 (q, *J* = 7.2 Hz, 1H), 3.81(s, 3H), 1.68

(d, J = 7.2 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃): δ 158.0, 146.0, 141.0, 138.9, 138.5, 128.8, 128.6, 128.0, 127.7, 127.2, 127.1, 113.9, 43.3, 22.2; HRMS (ESI/Q-TOF) *m/z*: [M+H]⁺ Calcd for C₂₁H₂₁O 289.1611, Found 289.1611.

Spectral data matched with the reported literature.^[8]

(R)-3-(1-Phenylethyl)-1H-indole (5ca)

5ca was prepared according to the general procedure **B** in 82% (36.0 mg) yellow oil. Purification done by column chromatography on silica gel using (hexanes: EtOAc = 93:7) as the eluent, **TLC** (10% ethyl acetate in hexanes): $R_f = 0.3$; ¹H **NMR** (500 MHz, CDCl₃): δ 7.96 (s,1H), 7.37-7.32 (m, 2H), 7.30-7.26 (m, 2H), 7.20-7.13 (m, 2H), 7.02-6.98 (m, 2H), 4.38 (q, J = 7.38 Hz, 1H), 1.71 (d, J = 7.1Hz, 3H); ¹³C **NMR** (126 MHz, CDCl₃): δ 146.8, 136.7, 128.3, 127.5, 126.9, 125.9, 122.0, 121.5, 121.1, 119.7, 119.2, 37.0, 22.4; **HRMS** (ESI/Q-TOF) *m/z*: [M+H]⁺ Calcd for C₁₆H₁₆N 222.1277., Found 222.1272.

Spectral data matched with the reported literature.^[16]

4.3 Synthesis of bis(1,4-diaryl/naphthylmethyl)benzenes (7)

General procedure C: To an oven dried 5 mL glass vial was charged with magnetic stir bar, *N*-mesitylene-sulfonylhydrazone **6** (0.1 mmol, 1.0 equiv) was added, then Cs_2CO_3 (0.2 mmol, 2.0 equiv) and arylboronic acid **2** (0.3 mmol, 3 equiv) were added followed by toluene solvent (0.1 M, 1mL) under nitrogen atmosphere. The reaction mixture was stirred in presence of 390 nm LEDs at room temperature using fan (we control the temperature by using the fan the temperature of the reaction reaching ~35°C) for 15 h. Upon the complete consumption of the starting materials, the reaction mixture was diluted with ethyl acetate and then passed through the celite pad the solvents were removed under reduced pressure and residue submitted for ¹H NMR, yield of **7aa** was determined by using CH₂Br₂ as internal standard.

1,4-Dibenzylbenzene (7aa)

7aa was prepared according to the general procedure **C** in 70% (18 mg) yellow oil. Purification done by column chromatography on silica gel using (hexane: EtOAc = 99.5:0.5) as an eluent, **TLC** (5% ethyl acetate in hexane); $R_f = 0.50$; ¹H NMR (500 MHz, CDCl₃):

7.36-7.29 (m, 5H), 7.23-7.20 (m, 5H), 7.13 (s, 4H), 3.97 (s, 4H); ¹³C NMR (126 MHz, CDCl₃): δ 141.3, 138.9, 129.12, 129.04, 128.5, 126.1, 41.6.

Spectral data matched with the reported literature.^[17]

1,4-Bis(4-methoxybenzyl) benzene (7ag)

7ag was prepared according to the general procedure C in 68% (21.5 mg) yellow oil. Purification done by column chromatography on silica gel using (hexane: EtOAc = 98:2) as an eluent, TLC (10% ethyl acetate in hexane); $R_f = 0.35$;

¹**H** NMR (500 MHz, CDCl₃): 7.11-7.09 (m, 8H), 6.82 (d, J = 7.1 Hz, 4H), 3.89 (s, 4H), 3.79 (s, 6H); ¹³C NMR (126 MHz, CDCl₃): δ 158.0, 139.3, 133.5, 129.9, 120.0, 114.0, 55.4, 40.8; **HRMS** (ESI/Q-TOF) *m/z*: [M+H]⁺ Calcd for C₂₂H₂₃O₂ 319.1693, Found 319.1665.

1,4-Bis(naphthalen-2-ylmethyl) benzene (7an)

7an was prepared according to the general procedure **C** in 65% (17.0 mg) white solid. Purification done by column chromatography on silica gel using (hexane: EtOAc = 99.5:0.5) as an eluent, **TLC** (10% ethyl acetate

in hexane); $R_f = 0.52$; ¹H NMR (500 MHz, CDCl₃): 8.00-7.98(m, 2H), 7.86-7.84 ((m, 2H), 7.76 (d, J = 7.75 Hz, 2H), 7.46-7.39 (m, 6H), 7.29 (d, J = 7.3 Hz, 2H), 7.10 (s, 4H), 4.41 (s, 4H); ¹³C NMR (126 MHz, CDCl₃): δ 138.4, 136.8, 134.0, 132.0, 128.9, 128.7, 127.4, 127.2, 127.1, 125.6, 124.4, 38.7; HRMS (ESI/Q-TOF) *m/z*: [M+H]⁺ Calcd for C₂₈H₂₆N 376.2060, Found 376.2029.

4.4 Synthesis of triarylmethanes (9aa)

General procedure D: To an oven dried 5 mL glass vial was charged with magnetic stir bar, *N*-mesitylenesulphonylhydrazones **8a** (75.6 mg, 0.2 mmol, 1.0 equiv) derived from aldehyde was added, then Cs_2CO_3 (130.3 mg, 0.4 mmol, 2.0 equiv) and arylboronic acid **2a** (36.5 mg, 0.3 mmol, 1.5 equiv) were added followed by DCM solvent (0.1 M, 2mL) under nitrogen atmosphere. The reaction mixture was stirred in presence of 390 nm LEDs at room temperature using fan (we control the temperature by using the fan the temperature of the reaction reaching \sim 35 °C) for 7 h. Upon the complete consumption of the starting materials, the reaction mixture was diluted with ethyl acetate and then passed through the celite pad the solvents were removed under reduced pressure and residue submitted for ¹H NMR, yield of **9aa** was determined by using CH₂Br₂ as internal standard.

Triphenylmethane (9aa)

9aa was prepared according to the general procedure **D** in 58% (28 mg) white solid. Purification done by column chromatography on silica gel using (hexanes: DCM = 98:2) as the eluent, **TLC** (10% DCM in hexanes): $R_f = 0.55$; ¹**H NMR** (500 MHz, CDCl₃): δ 7.31-7.27(m, 6H), 7.24-7.20 (m, 3H), 7.14-7.11(m, 6H), 5.56 (s, 1H);
¹³**C NMR** (126 MHz, CDCl₃): δ 144.10, 129.6, **I**(126 Mz, CDCl₃): δ 144.10, 129.6, **I**

128.4, 126.4, 56.9; **HRMS** (ESI/Q-TOF) m/z: [M+H]⁺ Calcd for C₁₉H₁₇ 245.1341., Found 245.1341. Spectral data matched with the reported literature.^[18]

4.5 One-pot synthesis of diarylmethanes (3)

Procedure for the one-pot synthesis of diarylmethanes **3** from aldehydes and 2-mesitylenesulfonyl hydrazide.

To a stirred solution of 2-mesitylenesulfonyl hydrazide (43.0 mg, 0.2 mmol, 1.0 equiv) in MeOH (0.5 M), corresponding aldehydes (0.2 mmol, 1.0 equiv) in MeOH (0.25 M) solution were added dropwise. The reaction mixture was stirred at room temperature for 2 h followed by removal of MeOH under pressure. In the crude reaction mixture, Cs_2CO_3 (163.0 mg, 0.5 mmol, 2.5 equiv) and arylboronic acid (0.3 mmol, 1.5 equiv) were added followed by DCE solvent (0.1 M, 2 mL) under nitrogen atmosphere. The reaction mixture was stirred in presence of 370 nm LEDs at rt for 10 h. The reaction mixture was diluted with ethyl acetate and then passed through the celite pad. The organic solvent was removed under reduced pressure, and the crude obtained was separated by column chromatography on silica gel pad (1% EtOAc/hexanes) to afford the title product **3**.

Procedure for the gram scale synthesis of diarylmethanes 3aa from N-sulphonyl-hydrazones 1a

To an oven dried 25 mL round bottom flask charged with magnetic stir bar, *N*-mesitylenesulfonylhydrazone **1a** (332.4 mg, 1 mmol, 1.0 equiv) derived from aldehyde were added, then Cs_2CO_3 (814.5 mg, 2.5 mmol, 2.5 equiv) and arylboronic acid **2a** (182.8 mg, 1.5 mmol, 1.5 equiv) was added in DCE solvent (0.1 M) under nitrogen atmosphere. The reaction mixture was stirred in presence of 370 nm LEDs at rt for 10 h. Upon the complete consumption of the starting materials, the reaction mixture was diluted with ethyl acetate and then passed through the celite pad. The organic solvent was removed under reduced pressure, and the crude obtained was separated by column chromatography on silica gel pad (1% EtOAc/hexanes) to afford the title product **3aa** (168.0 mg, 85%).

5. Synthetic Application

5.1. Synthesis of (R)-2-(1-(4-Methoxyphenyl)-3-phenylpropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (12)

To an oven dried 5 mL glass vial was charged with magnetic stir bar, *N*-mesitylenesulfonylhydrazone **1a** (66.4 mg, 0.2 mmol, 1.0 equiv) was added, then Cs_2CO_3 (197.7 mg, 0.6 mmol, 3 equiv) and phenylethyl boronic acid **2p** (45.0 mg, 0.3 mmol, 1.5 equiv) were added followed by DCE solvent (0.1 M, 1mL) under nitrogen atmosphere. The reaction mixture was stirred in presence of 370 nm LEDs at room temperature using fan for 8 h. Upon the complete consumption of the starting materials, pinacol (118.0 mg, 1 mmol, 5 equiv) along with Et₃N (101.1 mg, 1 mmol, 5 equiv) and stirred at rt for 6 h. Upon the complete consumption of the starting materials, the reaction mixture was diluted with ethyl acetate and then passed through the celite pad. The organic solvent was removed under reduced pressure, and the crude obtained was separated by column chromatography on silica gel pad (2.5% EtOAc/hexanes) to afford the title product **12** (14 mg, 31%); ¹**H NMR** (500 MHz, CDCl₃): δ 7.28-7.24 (m, 2H), 7.18-7.13 (m, 5H), 6.83 (d, *J* = 7.7, 2H), 3.79 (s, 3H), 2.59-2.54 (m, 2H), 2.33-2.28 (m, 1H) 2.18-2.09 (m, 1H), 1.99-1.91 (m, 1H), 1.22 (s, 6H), 1.20 (s, 6H); ¹³**C NMR** (126 MHz, CDCl₃): δ 157.4, 142.7, 134.9, 129.3, 128.6, 128.3, 125.7, 113.8, 83.4, 55.2, 35.4, 34.7, 24.8, 24.7; δ ¹¹**B NMR** (160 MHz, CDCl₃): -32.9 (s).

Spectral data matched with the reported literature.^[19]

To an oven dried 5 mL glass vial was charged with magnetic stir bar, *N*-mesitylenesulfonylhydrazone **1a** (66.4 mg, 0.2 mmol, 1.0 equiv) was added, then Cs₂CO₃ (197.7 mg, 0.6 mmol, 3 equiv) and phenethyl boronic acid **2p** (45.0 mg, 0.3 mmol, 1.5 equiv) were added followed by DCE solvent (0.1 M, 1mL) under nitrogen atmosphere. The reaction mixture was stirred in presence of 370 nm LEDs at room temperature using fan for 8 h. Upon the complete consumption of the starting materials, the reaction mixture was set in 0°C, followed by addition of 30% H₂O₂:2N NaOH (1:2). The reaction mixture was warmed to rt and stirred for 4 h and extracted with CH₂Cl₂ and water, the combined organic layer was dried over anhydrous sodium sulphate and filtered the crude product was by chromatography on a column of silica gel eluted with (14% EtOAc/hexanes) to give **13** (35 mg ,73%). ¹H **NMR** (500 MHz, CDCl₃): δ 7.29-7.25(m, 4H), 7.20-7.16 (m, 3H), 6.88 (d, *J* = 7.88, 2H), 4.62 (q, *J* = 7.38, 1H), 3.80 (s, 3H), 2.75-2.60 (m, 2H), 2.17-2.09 (m, 1H), 2.02-1.96 (m, 1H), 1.91 (br s, 1H); ¹³C **NMR** (126 MHz, CDCl₃): δ 159.2, 140.9, 136.8, 128.58, 128.52, 127.3, 125.97, 114.02, 73.6, 55.4, 40.8, 32.2, 29.8.

Spectral data matched with the reported literature.^[19]

6. UV-Vis spectra

Figure S₁: UV-vis spectrum of *N*-mesitylene-sulfonylhydrazone 1a (0.1 M, red line) and $1a + Cs_2CO_3$ (0.1M, black) in MeCN.

7. References:

- 1. J. R. Fulton, V. K. Aggarwal and J. de Vicente, Eur. J. Org. Chem., 2005, 8, 1479-1492.
- S.-C. Sha, S. Tcyrulnikov, M. Li, B. Hu, Y. Fu, M. C. Kozlowski, and P. J. Walsh, J. Am. Chem. Soc., 2018, 140, 12415-12423.
- D. Zhang, Z. Xu, T. Tang, L. Le, C. Wang, N. Kambe and R. Qiu, Org. Lett., 2022, 24, 3155-3160.
- R. B. Bedford, P. B. Brenner, E. Carter, T. W. Carvell, P. M. Cogswell, T. Gallagher, J. H. Harvey, D. M. Murphy, E. C. Neeve, J. Nunn and D. R. Pye, *Chem.- Eur. J.*, 2014, 20, 7935-7938.
- 5. X. Li, Y. Feng, L. Lin and G. Zhou, J.Org. Chem., 2012, 77, 10991–10995.
- 6. J. Zhang, G. Lu, J. Xu, H. Sun and Q. Shen, Org. Lett., 2016, 18, 2860-2863.
- 7. Q.-L. Wang, Z. Sun, H. Huang, G. Mao and G. -J. Deng, *Green Chemistry*, 2022, 24, 3293-3299.
- Z. Z. Li, X, Y. Cheng, N, Y. Yang, J. J. Chen, W. Y. Tang, J. Q. Bian, Y. F. Cheng, Z. L. Li, Q. S. Gu and X. Y. Liu, *Organometallics*, 2021, 40, 2215-2219.
- P. Guo, K. Wang, W. J. Jin, H. Xie, L. Qi, X. Y. Liu and X. Z. Shu, J. Am. Chem. Soc., 2021, 143, 513-523.
- 10. P. Pan, S. Liu, Y. Lan, H. Zeng and C. -J. Li, Chem. Sci., 2022, 13, 7165-7171.
- 11. J. Shi, T. Yuan, R. Wang, M. Zheng and X. Wang, Green Chem., 2021, 23, 3945-3949.
- 12. P. Maity, D. M. Shacklady-McAtee, G. P. A. Yap, E. R. Sirianni and M. P. Watson, J. Am. Chem. Soc., 2013, 135, 280-285.
- 13. Z. He, F. Song, H. Sun and Y. Huang, J. Am. Chem. Soc., 2018, 140, 2693-2699.
- 14. S. Yang, W. Tang, Z. Yang and J. Xu, ACS Catal., 2018, 8, 9320-9326.
- 15. F. Schoenebeck, J. A. Murphy, S.-Z. Zhou, Y. Uenoyama, Y. Miclo and T. Tuttle, J. Am. Chem. Soc., 2007, **129**, 13368-13369.
- A, E. Putra, K. Takigawa, H. Tanaka, Y. Ito, Y. Oe and T. Ohta, *Chem.- Eur. J.*, 2013, 2013, 6344-6354.
- 17. X. Dan, Q. Yang, L. Xing, Y. Tang, W. Wang and Y. Cai, Org. Lett., 2023, 25, 4124-4129.
- 18. G. K. S. Prakash, C. Panja, A. Shakhmin, E. Shah, T. Mathew and G. A. Olah, *J.Org. Chem.*, 2009, **74**, 8659-8668.
- 19. C. Chunrui Sun, B. Potter and J. P. Morken, J. Am. Chem. Soc., 2014, 136, 6534-6537.

8. Spectral Data:

(E)-N'-(4-Methoxybenzylidene)-2,4,6-trimethylbenzenesulfonohydrazide (1a) 1 H NMR (500 MHz, CDCl₃, 24 °C)

(E)-N'-(4-(Dimethylamino)benzylidene)-2,4,6-trimethylbenzenesulfonohydrazide **(1b)** ¹ H NMR (500 MHz, CDCl₃, 24 °C)

(*E*)-*N*'-(4-Hydroxybenzylidene)-2,4,6-trimethylbenzenesulfonohydrazide (1d) 1 H NMR (500 MHz, DMSO-d₆, 24 °C)

(E)-N'-(4-Chlorobenzylidene)-2,4,6-trimethylbenzenesulfonohydrazide **(1e)** ¹ H NMR (500 MHz, CDCl₃, 24 °C)

(*E*)-2,4,6-Trimethyl-*N*'-(naphthalen-2-ylmethylene)benzenesulfonohydrazide (1f) 1 H NMR (500 MHz, CDCl₃, 24 °C)

(*E*)-2,4,6-Trimethyl-*N*-(pyridin-3-ylmethylene)benzenesulfonohydrazide (1g) 1 H NMR (500 MHz, DMSO-d₆, 24 °C)

(E)-4-((2-(Mesitylsulfonyl)hydrazineylidene)methyl)phenyl 2-(4-isobutylphenyl)propanoate (1h) 1 H NMR (500 MHz, CDCl₃, 24 °C)

(*E*)-2,4,6-Trimethyl-*N*'-(1-phenylethylidene)benzenesulfonohydrazide (4a) 1 H NMR (500 MHz, CDCl₃, 24 °C)

(E)-N'-(1-(4-Methoxyphenyl) ethylidene)-2,4,6-trimethylbenzenesulfonohydrazide (4b) 1 H NMR (500 MHz, CDCl₃, 24 °C)

(E)-N'-(1-(1H-Indol-2-yl)ethylidene)-2,4,6-trimethylbenzenesulfonohydrazide **(4c)** ¹ H NMR (500 MHz, DMSO-d₆, 24 °C)

N', N'''-((*1E*, *1'E*)-1,4-Phenylenebis(methaneylylidene))bis(2,4,6-trimethylbenzenesulfonohydrazide) (6)

N'-(diphenylmethylene)-2,4,6-trimethylbenzenesulfonohydrazide (8)

1-Benzyl-4-methoxybenzene (3aa)

¹³ C{¹H} NMR (126 MHz, CDCl₃, 24 °C)

4-Benzyl-N,N-dimethylaniline (3ba)

Diphenylmethane (3ca)

Benzylphenol (3da)

1-Chloro-4-(4-methoxybenzyl)benzene (3eg)

4-(4-Methoxybenzyl)pyridine (3gg)

4-Benzylphenyl 2-(4-isobutylphenyl)propanoate (3ha)

1-Methoxy-4-(4-(trifluoromethyl)benzyl)benzene (3ab)

Methyl 4-(4-methoxybenzyl)benzoate (3ac)

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (126 MHz, CDCl₃, 24°C

4-(4-Methoxybenzyl)-1,1'-biphenyl (3ad)

¹H NMR (500 MHz, CDCl₃, 24 °C)

 $^{13}C\{^1H\}$ NMR (126 MHz, CDCl₃, 24°C)

4-(4-methoxybenzyl)benzaldehyde (3ae)

4-(4-Methoxybenzyl) benzonitrile (3af)

Bis(4-methoxyphenyl) methane (3ag)

1-Chloro-3-(4-methoxybenzyl) benzene (3ah)

2-(4-Methoxybenzyl)-1,3-dimethylbenzene (3ai)

1,4-Dimethoxy-2-(4-methoxybenzyl) benzene (3aj)

¹³C{¹H} NMR (126 MHz, CDCl₃, 24 °C)

2,4-Difluoro-1-(4-methoxybenzyl) benzene (3ak)

2-Fluoro-1-methoxy-3-(4-methoxybenzyl) benzene (3al)

¹H NMR (500 MHz, CDCl₃, 24 °C)

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃, 24°C)

1-Chloro-2-(4-methoxybenzyl)benzene (3am)

1-Isopropyl-2-(4-methoxybenzyl)benzene (**3an**) ¹H NMR (500 MHz, CDCl₃, 24 °C)

2-(4-Methoxybenzyl) naphthalene (3ao)

¹³C{¹H} NMR (126 MHz, CDCl₃, 24 °C)

N,*N*-Dimethyl-4-(3-phenylpropyl)aniline (**3bp**)

Ethane-1,1-diyldibenzene (5aa)

(S)-1-Methoxy-4-(1-(4-(trifluoromethyl) phenyl) ethyl) benzene (5bb) ¹H NMR (500 MHz, CDCl₃, 24 °C)

¹³C{¹H} NMR (126 MHz, CDCl₃, 24 °C)

¹⁹F NMR (471 MHz, CDCl₃, 24 °C)

Methyl (S)-4-(1-(4-methoxyphenyl)ethyl)benzoate (5bc)

 ^{13}C {¹H} NMR (500 MHz, CDCl₃, 24 °C)

4,4'-(Ethane-1,1-diyl) bis(methoxybenzene) (5bg)

 ^{13}C {¹H} NMR (500 MHz, CDCl₃, 24 °C)

(S)-4-(1-(4-Methoxyphenyl) ethyl)-1,1'-biphenyl (5bd)

3-(1-Phenylethyl)-1H-indole (5ca)

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃, 24 °C)

1,4-Bis(4-methoxybenzyl)benzene (7ag)

1,4-Bis(naphthalen-2-ylmethyl) benzene (7an)

Triphenylmethane (9aa)

(R)-2-(1-(4-Methoxyphenyl)-3-phenylpropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (12) ¹H NMR (500 MHz, CDCl₃, 24 °C)

(*R*)-1-(4-Methoxyphenyl)-3-phenylpropan-1-ol (13)

