Photo-induced Tungsten-catalyzed Cascade Synthesis of Pyrrolo[2,1-a]isoquinoline-1,3-dicarboxylate and its Reaction Mechanism

Yongshun Wen,^a Hong-Xian Jin,^a Yan-Hua Qiu,^a Yingtong Zong,^a Wenjun Luo^a Zhengwang Chen^a and Daohong Yu^{a*}

Key Laboratory of Organo-Phamaceutical Chemistry of Jiangxi Province, Gannan Normal University,

34100, China

Email: yudh@gnnu.edu.cn

Supporting Information

Table of contents

Table of contents	S1
General information	S2
Fig. S1. Reaction setup with cooling by running water	S3
Fig. S2. The distance from the light source to the irradiation	S3
Fig. S3. Wavelength of peak intensity and broadband source	S4
Scheme S1: Unsuccessful results	S4
Mechanistic experiments	S4
Table S1: The formation of (Z)-4-methoxy-4-oxobut-2-enoic acid (2b)	S7
Fig. S4: Reaction progress detected by ¹ H NMR	S7
General procedure for tungsten catalyzed cycloaddition aromatization reactions	S9
X-ray of 5'	S17
Reference	S18
NMR spectra	S19

General Information

All chemicals, unless otherwise noted, were purchased from commercial sources and used without further purification. All solvents for reactions and measurements were purified by standard methods. ¹H and proton-decoupled ¹³C NMR spectra were recorded respectively on Brucker 400 M or 500 M spectrometers. ¹⁹F NMR spectra were recorded respectively on Brucker 400 M spectrometers. ¹H NMR and ¹³C NMR chemical shifts (δ) were determined relative to TMS at δ 0.0 ppm. Coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. All reactions were monitored by TLC or ¹H NMR analysis. Flash column chromatography was carried out using 300–400 mesh silica-gel at medium pressure.

High resolution mass spectra were recorded using a Q Exactive mass spectrometer (Thermo Fisher Scientific, USA. Gas chromatography-mass spectrometry (GC-MS) analyses were performed with an Agilent Technologies 7890A Network GC System equipped with an Agilent Technologies 5975C Network Mass Selective Detector (MSD).

Unless stated otherwise, visible light irradiation was performed using 24 W 450 nm LEDs (3 $W \times 8$) under O₂ atmosphere. All the reaction vessels used are the ordinary borosilicate glass test tubes. The illumination instruments were purchased from Hefei Hanhai Star Technology Co. Ltd. The photoreactor model is JH-3B14P45-T2A-M455, light 24 W (3 W × 8)). In all the reactions, the filters were not used.

All the substrates were purchased from Bide Pharmatech. Co., Ltd., Energy Chemical, Titan Chemical Co. Ltd or prepared according to previous literatures.¹ Figure S1. Reaction setup with cooling by running water.

Figure S2. the distance from the light source to the irradiation vessel. The distance is about 3 mm from light source

Wavelength (nm)

Mechanistic experiments

In a 20 mL reaction tube with a magnetic stirring bar, dihydroisoquinoline derivative (219.0 mg, 1.0 mmol), maleic anhydride (392.2 mg, 4.0 mmol, 4 equiv) and WO₂PC (5.0 mg, 0.5 mol%) were dissolved in DMF/MeOH (v/v; 5 mL/5 mL). The test tube was screwed with a stopper. The mixture was purged with oxygen for fifteen minutes. Then the mixture was irradiated at room temperature with 450 nm LEDs for 5 h. Water (10 mL) was added, then the

mixture was extracted with EtOAc (15 mL) three times. The combined organic fractions were washed with brine, dried over anhydrous Na_2SO_4 . The solvent was removed under vacuum and the residue was purified by flash column chromatography (PE:EA = 10:1 to 1:1) to give the product **3a** (108.1 mg, 36%), **6** (176.2 mg, 50%) and **2b** (120.4 mg, 23%).

3-Ethyl 1-methyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-1,3-dicarboxylate (3a)²

¹H NMR (500 MHz, CDCl₃) δ 8.45 (d, *J* = 7.8 Hz, 1 H), 7.51 (s, 1 H), 7.36 (t, *J* = 7.5 Hz, 1 H), 7.32 (t, *J* = 7.4 Hz, 1 H), 7.26 (d, *J* = 7.3 Hz, 1 H), 4.62 (t, *J* = 6.6 Hz, 2 H), 4.34 (q, *J* = 7.1 Hz, 2 H), 3.88 (s, 3 H), 3.04 (t, *J* = 6.6 Hz, 2 H), 1.40 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 165.0, 160.9, 137.9, 134.1, 128.9, 128.5, 127.3, 127.1, 127.0, 121.3, 121.2, 111.9, 60.4, 51.5, 42.3, 29.5, 14.4 ppm. HRMS (ESI) Calcd for [C₁₇H₁₇NO₄ + H]⁺: 300.1230, found: 300.1230.

Ion-pair intermediate 6

¹H NMR (500 MHz, CDCl₃) δ 10.32 (br, 1 H), 7.19 – 7.12 (m, 3 H), 7.04 (d, *J* = 6.7 Hz, 1 H), 6.35 (d, *J* = 12.2 Hz, 1 H), 6.11 (d, *J* = 12.2 Hz, 1 H), 4.23 (q, *J* = 7.1 Hz, 2 H), 4.08 (s, 2 H), 3.73 (s, 3 H), 3.66 (s, 2 H), 3.20 (t, *J* = 6.1 Hz, 2 H), 3.02 (t, *J* = 6.0 Hz, 2 H), 1.29 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 168.74, 168.06, 166.77, 135.24, 132.70, 131.85, 128.77, 126.86, 126.71, 126.21, 126.17, 61.20, 56.69, 53.69, 52.30, 49.66, 27.22, 14.17 ppm. **Monoester maleate 2b**

¹H NMR (500 MHz, CDCl₃) δ 8.61 (br, 1 H), 6.34 (d, *J* = 12.2 Hz, 1 H), 6.15 (d, *J* = 12.2 Hz, 1 H), 3.75 (s, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 167.96, 166.79, 134.50, 126.97, 52.43 ppm.

In a 10 mL reaction tube with a magnetic stirring bar, ion-pair intermediate (96.9 mg, 0.28 mmol) and WO₂PC (1.4 mg, 0.5 mol%) were dissolved in MeCN/MeOH (v/v; 1 mL/1 mL). The test tube was screwed with a stopper. The mixture was purged with oxygen for fifteen minutes. Then the mixture was irradiated at room temperature with 450 nm LEDs for 48 h. The solvent was removed under reduced pressure. The residue was purified by flash column chromatography (PE:EA = 10:1) to give the product **3a** (26.5 mg, 32%).

^{*a*}yields were determinded by ¹H NMR using dibromomethane as internal standard; ^{*b*}isolated yield

In a 10 mL reaction tube with a magnetic stirring bar, dihydroisoquinoline derivative (65.8 mg, 0.30 mmol), (Z)-4-methoxy-4-oxobut-2-enoic acid (**2b**) or (E)-4-methoxy-4-oxobut-2-enoic acid (**2b**') (156.1 mg, 1.2 mmol, 4 equiv) and WO₂PC (1.5 mg, 0.5 mol%) were dissolved in MeCN/MeOH (v/v; 1.5 mL/1.5 mL). The test tube was screwed with a stopper. The mixture was purged with oxygen for fifteen minutes. Then the mixture was irradiated at room temperature with 450 nm LEDs for 24 h. The solvent was removed under reduced pressure. The residue was purified by flash column chromatography (PE:EA = 10:1) to give the product **3a** in 55% or 24% yields.

	0		1.5 eq HOAc MeCN/MeOH (1:1)	HO ₂ CCO ₂ Me
	2a		RT, time	2b
_	Entry	Time	Substrate	Product
	1	0.5 h	63%	36%
	2	1 h	24%	76%
	3	4 h	12%	88%
	4	16 h	1%	97% ^a

Table S1: The formation of (Z)-4-methoxy-4-oxobut-2-enoic acid (2b)

^ayields were determinded by ¹H NMR using CH_2Br_2 as internal standard.

Figure S4. Reaction progress detected by ¹H NMR.

1.0 7.5 6.0 5.5 5.0 10.5 10.0 7.0 6.5 f1 (ppm) 4.5 4.0 3.0 9.5 9.0 8.5 8.0 3.5

In a 10 mL reaction tube with a magnetic stirring bar, dihydroisoquinoline derivative (65.5 mg, 0.20 mmol), Monomethyl fumarate **2b'** or Monomethyl maleate **2b** (56.0 mg, 0.4 mmol, 2.0 equiv) and WO₂PC (1.0 mg, 0.5 mol%) were dissolved in DMF (3 mL). The test tube was screwed with a stopper. The mixture was purged with oxygen for fifteen minutes. Then the mixture was irradiated at room temperature with 450 nm LEDs for 24 h. The solvent was removed under reduced pressure. The residue was purified by flash column chromatography (PE:EA = 10:1) to give the product **3a** and **3a'**.

3-Ethyl 2-methyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-2,3-dicarboxylate (3a')

¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.4 Hz, 1 H), 7.35 – 7.25 (m, 1 H), 7.25 (d, *J* = 4.1 Hz, 2 H), 4.48 (t, *J* = 6.6 Hz, 2 H), 4.39 (q, *J* = 7.1 Hz, 2 H), 3.88 (s, 3 H), 3.10 (t, *J* = 6.7 Hz, 2 H), 1.40 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 165.44, 161.21, 133.39, 131.48, 127.92, 127.79, 127.43, 123.65, 121.34, 106.17, 61.11, 51.83, 42.67, 28.77, 14.15 ppm. HRMS (ESI) Calcd for [C₁₇H₁₇NO₄ + H]⁺: 314.1387, found: 314.1393.

In a 10 mL reaction tube with a magnetic stirring bar, 3,4-dihydroisoquinoline 7 (51.8 mg, 0.39 mmol) and ethyl 2-bromoacetate (65.9 mg, 0.39 mmol) were dissolved in MeCN (2 mL).

The mixture was stirred at room temperature for 3 h. Maleic anhydride (38.7 mg, 0.39 mmol, 1 equiv), trimethylamine (40.0 mg, 0.39 mmol) and MeOH (2 mL) were added. The mixture was. The mixture was stirred at room temperature for 12 h. The mixture was extracted with DCM (15 mL) three times. The combined organic fractions were washed with brine, dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by flash column chromatography (PE:EA = 1:1, DCM : MeOH = 10:1) to give the product 5' (27.4 mg, 20%).

In a 10 mL reaction tube with a magnetic stirring bar, 5' (12.4 mg, 0.035 mmol) and WO₂PC (0.5 mg, 0.5 mol%) were dissolved in MeCN/MeOH (0.5/0.5 mL). The reaction tube was screwed with a stopper. The mixture was purged with oxygen for fifteen minutes. Then the mixture was irradiated at room temperature with 450 nm LEDs for 12 h. The solvent was removed under reduced pressure. The residue was purified by flash column chromatography (PE:EA = 10:1) to give the product 3a' (7.5 mg, 70%).

(1R,2S,3S)-3-(ethoxycarbonyl)-2-(methoxycarbonyl)-1,2,3,5,6,10b-

hexahydropyrrolo[2,1-a]isoquinoline-1-carboxylic acid (5')

¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.12 (m, 4 H), 4.68 (d, *J* = 4.5 Hz, 1 H), 4.52 (d, *J* = 5.6 Hz, 1 H), 4.28 (qd, *J* = 7.2, 4.5 Hz, 2 H), 3.89 – 3.82 (m, 2 H), 3.75 (s, 3 H), 3.45 – 3.28 (m, 1 H), 3.22 – 2.95 (m, 2 H), 2.93 – 2.72 (m, 1 H), 1.35 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 171.35, 170.19, 134.24, 132.29, 128.92, 127.34, 126.62, 126.33, 63.79, 62.67, 61.68, 52.82, 50.80, 49.23, 44.68, 28.96, 14.31 ppm. HRMS (ESI) Calcd for [C₁₈H₂₁NO₆ + H]⁺: 348.1442, found: 348.1448.

General procedure for tungsten catalyzed decarboxylative aromatization with 3a as an example

In a 10 mL reaction tube with a magnetic stirring bar, dihydroisoquinolines derivatives (0.30 mmol), maleic anhydride (1.20 mmol, 4 equiv) and WO₂PC (0.5 mol%) were dissolved in MeCN/MeOH (v/v; 2 mL/2 mL). The test tube was screwed with a stopper. The mixture was purged with oxygen for fifteen minutes. Then the mixture was irradiated at room temperature with 450 nm LEDs for 5 h. Water (10 mL) was added, then the mixture was extracted with EtOAc (15 mL) three times. The combined organic fractions were washed with brine, dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by flash column chromatography (PE:EA = 20:1 to 10:1) to give the product..

3-Ethyl 1-methyl 9-bromo-5,6-dihydropyrrolo[2,1-a]isoquinoline-1,3-dicarboxylate (3b)

¹H NMR (500 MHz, CDCl₃) δ 8.67 (s, 1 H), 7.48 (s, 1 H), 7.40 (d, *J* = 8.0 Hz, 1 H), 7.11 (d, *J* = 8.0 Hz, 1 H), 4.59 (t, *J* = 6.6 Hz, 2 H), 4.31 (q, *J* = 7.1 Hz, 2 H), 3.87 (s, 3 H), 2.96 (t, *J* = 6.6 Hz, 2 H), 1.38 (t, *J* = 7.2 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 164.64, 160.80, 136.12, 132.75, 131.56, 131.24, 128.93, 128.80, 121.60, 121.40, 120.68, 112.56, 60.50, 51.62, 42.19, 29.01, 14.39 ppm. HRMS (ESI) Calcd for [C₁₇H₁₆BrNO₄ + H]⁺: 378.0335 , found: 378.0338. **3-Ethyl 1-methyl 8,9-dimethoxy-5,6-dihydropyrrolo[2,1-a]isoquinoline-1,3-dicarboxylate (3c)**

¹H NMR (500 MHz, CDCl₃) δ 8.36 (s, 1 H), 7.51 (s, 1 H), 6.75 (s, 1 H), 4.61 (t, *J* = 6.6 Hz, 2 H), 4.32 (q, *J* = 7.1 Hz, 2 H), 3.99 (s, 3 H), 3.94 (s, 3 H), 3.87 (s, 3 H), 2.98 (t, *J* = 6.7 Hz, 2 H), 1.39 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 165.09, 161.00, 149.37, 147.49, 138.29, 127.25, 121.65, 120.69, 119.84, 112.14, 110.93, 110.19, 60.30, 56.15, 55.95, 51.47, 42.45, 28.98, 14.41 ppm. HRMS (ESI) Calcd for [C₁₉H₂₁NO₆ + H]⁺: 360.1442 , found: 360.1440. **Methyl 3-benzoyl-9-bromo-5,6-dihydropyrrolo[2,1-a]isoquinoline-1-carboxylate (3d)**

¹H NMR (500 MHz, Chloroform-*d*) δ 8.73 (d, *J* = 2.0 Hz, 1H), 7.88 – 7.86 (m, 2H), 7.63 (tt, *J* = 6.9, 1.2 Hz, 1H), 7.54 (t, *J* = 7.7 Hz, 2H), 7.49 (dd, *J* = 8.1, 2.0 Hz, 1H), 7.29 (s, 1H), 7.19 (d, *J* = 8.0 Hz, 1H), 4.69 (t, *J* = 6.6 Hz, 2H), 3.88 (s, 3H), 3.06 (t, *J* = 6.6 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 185.25, 163.50, 138.00, 136.47, 132.35, 131.16, 130.96, 130.53, 128.29, 128.03, 127.86, 127.57, 127.34, 124.93, 119.68, 111.73, 50.64, 41.68, 28.05 ppm. HRMS (ESI) Calcd for [C₂₁H₁₆BrNO₃ + H]⁺: 410.0386, found: 410.0388.

Methyl 3-(3,4-dimethoxybenzoyl)-5,6-dihydropyrrolo[2,1-a]isoquinoline-1-carboxylate (3e)

¹H NMR (500 MHz, CDCl₃) δ 8.50 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.59 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.49 (d, *J* = 2.0 Hz, 1H), 7.41 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.37 (dd, *J* = 7.3, 1.5 Hz, 1H), 7.32 (d, *J* = 8.0 Hz, 2H), 6.99 (d, *J* = 8.3 Hz, 1H), 4.65 (t, *J* = 6.7 Hz, 2H), 4.02 (s, 3H), 4.00 (s, 3H), 3.88 (s, 3H), 3.11 (t, *J* = 6.6 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 184.96, 164.97, 152.73, 148.97, 138.94, 134.67, 131.87, 129.27, 128.97, 128.73, 127.44, 127.04, 126.87, 125.12, 124.13, 111.99, 111.74, 109.93, 56.14, 56.09, 51.52, 42.88, 29.61 ppm. HRMS (ESI) Calcd for [C₂₃H₂₁NO₅ + H]⁺: 392.1492, found: 392.1494.

Methyl 3-cyano-5,6-dihydropyrrolo[2,1-a]isoquinoline-1-carboxylate (3f)

¹H NMR (500 MHz, CDCl₃) δ 7.60 (d, *J* = 7.3 Hz, 1H), 7.35 (td, *J* = 7.3, 1.7 Hz, 2H), 7.32 (dd, *J* = 7.4, 1.4 Hz, 1H), 7.30 – 7.29 (m, 2H), 4.30 (t, *J* = 6.8 Hz, 2H), 3.95 (s, 3H), 3.20 (t, *J* = 6.8 Hz, 2H); ¹³C NMR (126 MHz, CDCl₃) δ 162.75, 134.90, 130.99, 128.70, 128.35, 127.85, 126.76, 124.47, 123.89, 112.19, 106.69, 105.90, 51.99, 43.23, 28.35. HRMS (ESI) Calcd for [C₁₅H₁₂N₂O₂ + Na]⁺: 275.0791, found: 275.0795.

1-(Methoxycarbonyl)-5,6-dihydropyrrolo[2,1-a]isoquinoline-3-carboxylic acid (3g)

¹H NMR (400 MHz, DMSO-*d*₆) δ 8.28 (dd, *J* = 5.2, 3.2 Hz, 1H), 7.34 – 7.29 (m, 3H), 4.52 (t, *J* = 6.3 Hz, 2H), 3.76 (s, 3H), 3.00 (t, *J* = 6.6 Hz, 2H); ¹³C NMR (101 MHz, DMSO-*d*₆) δ 169.36, 166.81, 141.78, 139.59, 134.04, 133.05, 132.75, 131.80, 131.74, 127.14, 125.30, 116.26, 56.53, 47.22, 33.75 ppm. HRMS (ESI) Calcd for [C₁₅H₁₃NO₄ + Na]⁺: 294.0737, found: 294.0741.

3-Ethyl 1-methyl 6,7-dihydro-5H-benzo[c]pyrrolo[1,2-a]azepine-1,3-dicarboxylate (3h)

¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.67 (m, 1 H), 7.52 (s, 1 H), 7.40 – 7.36 (m, 2 H), 7.30 – 7.26 (m, 1 H), 5.24 (br, 1 H), 4.34 (q, *J* = 7.1 Hz, 2 H), 3.77 (br, 3 H), 3.42 (br, 1 H), 2.68 (br, 1 H), 2.50 (br, 2 H), 2.09 (br, 1 H), 1.41 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 164.36, 161.03, 143.47, 139.24, 131.63, 130.09, 129.55, 128.53, 126.01, 121.65, 119.78, 111.89, 60.32, 51.13, 43.24, 32.28, 30.33, 14.41 ppm. HRMS (ESI) Calcd for [C₁₈H₁₉NO₄ + H]⁺: 314.1387, found: 314.1389.

3-Ethyl 1-phenyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-1,3-dicarboxylate (3i)

¹H NMR (400 MHz, CDCl₃) δ 8.58 – 8.55 (m, 1 H), 7.76 (s, 1 H), 7.47 (d, *J* = 7.6 Hz, 1 H), 7.45 (d, *J* = 7.7 Hz), 7.33 (m, 2 H), 7.31 – 7.28 (m, 2 H), 7.27 – 7.22 (m, 2 H), 4.68 (t, *J* = 6.6 Hz, 2 H), 4.38 (q, *J* = 7.1 Hz, 2 H), 3.08 (t, *J* = 6.6 Hz, 2 H), 1.43 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 163.01, 160.91, 150.92, 139.07, 134.15, 129.46, 129.24, 128.81, 127.32, 127.08, 126.84, 125.67, 122.00, 121.83, 121.45, 111.04, 60.55, 42.46, 29.47, 14.44 ppm. HRMS (ESI) Calcd for $[C_{22}H_{19}NO_4 + H]^+$: 362.1387, found: 362.1387.

1-(2-Bromophenyl) 3-ethyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-1,3-dicarboxylate (3j)

¹H NMR (400 MHz, CDCl₃) δ 8.59 – 8.55 (m, 1 H), 7.82 (s, 1 H), 7.68 (dd, *J* = 8.0, 1.5 Hz, 1 H), 7.40 (td, *J* = 7.7, 1.5 Hz, 1 H), 7.33 (d, *J* = 3.4 Hz, 11 H), 7.32 (d, *J* = 3.5 Hz, 1 H) 7.30 – 7.27 (m, 2 H), 7.18 (td, *J* = 7.8, 1.5 Hz, 1 H), 4.69 (t, *J* = 6.6 Hz, 2 H), 4.38 (q, *J* = 7.1 Hz, 2 H), 3.08 (t, *J* = 6.7 Hz, 2 H), 1.43 (t, *J* = 7.1 Hz, 2 H); ¹³C NMR (101 MHz, CDCl₃) δ 161.96, 160.88, 148.51, 139.41, 134.12, 133.35, 129.32, 128.74, 128.48, 127.31, 127.19, 127.13, 126.75, 124.24, 121.94, 121.59, 116.82, 110.30, 60.56, 42.50, 29.42, 14.44 ppm. HRMS (ESI) Calcd for [C₂₂H₁₈BrNO₄ + H]⁺: 440.0492, found: 440.0496.

1-Butyl 3-ethyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-1,3-dicarboxylate (3k)

¹H NMR (500 MHz, CDCl₃) δ 8.46 (dd, *J* = 7.8, 1.5 Hz, 1 H), 7.50 (s, 1 H), 7.36 (td, *J* = 7.6, 1.6 Hz, 1 H), 7.31 (td, *J* = 7.4, 1.5 Hz, 1 H), 7.26 (d, *J* = 6.5 Hz, 1 H), 4.62 (t, *J* = 6.6 Hz, 2 H), 4.35 (q, *J* = 7.1 Hz, 2 H), 4.30 (t, *J* = 6.6 Hz, 2 H), 3.04 (t, *J* = 6.6 Hz, 2 H).1.79 – 1.74 (m, 2 H), 1.53 – 1.40 (m, 2 H), 1.41 (t, *J* = 7.1 Hz, 3 H), 1.00 (t, *J* = 7.4 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 164.65, 160.99, 137.77, 134.06, 128.87, 128.56, 127.27, 127.13, 126.92, 121.27, 121.08, 112.37, 64.19, 60.38, 42.36, 30.87, 29.50, 19.34, 14.44, 13.83 ppm. HRMS (ESI) Calcd for [C₂₀H₂₃NO₄ + H]⁺: 342.1700, found: 342.1702.

1-Benzyl 3-ethyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-1,3-dicarboxylate (3l)

¹H NMR (500 MHz, CDCl₃) δ 8.47 – 8.45 (m, 1 H), 7.55 (s, 1 H), 7.49 (d, *J* = 7.1 Hz, 2 H), 7.42 (t, *J* = 7.3 Hz, 2 H), 7.37 (d, *J* = 7.2 Hz, 1 H), 7.35 – 7.29 (m, 2 H), 7.29 – 7.23 (m, 1 H), 5.36 (s, 2 H), 4.63 (t, *J* = 6.5 Hz, 2 H), 4.34 (q, *J* = 7.1 Hz, 2 H), 3.04 (t, *J* = 6.6 Hz, 2 H), 1.40 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 164.28, 160.95, 138.08, 136.44, 134.09, 128.95, 128.61, 128.56, 128.26, 128.10, 127.29, 127.04, 126.97, 121.40, 121.19, 111.89, 65.98, 60.41, 42.38, 29.48, 14.45 ppm. HRMS (ESI) Calcd for [C₂₃H₂₁NO₄ + H]⁺: 376.1543, found: 376.1542.

1-Allyl 3-ethyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-1,3-dicarboxylate (3m)

¹H NMR (500 MHz, CDCl₃) δ 8.46 (dd, *J* = 7.7, 1.4 Hz, 1 H), 7.54 (s, 1 H), 7.36 (td, *J* = 7.6, 1.5 Hz, 1 H), 7.32 (td, *J* = 7.4, 1.4 Hz, 1 H), 7.27 (d, *J* = 7.2 Hz, 1 H), 6.11 – 6.03 (m, 1 H), 5.42 (dd, *J* = 17.2, 1.5 Hz, 1 H), 5.30 (dd, *J* = 10.4, 1.3 Hz, 1 H), 4.81 (dt, *J* = 5.7, 1.4 Hz, 1 H), 4.63 (t, *J* = 6.5 Hz, 2 H), 4.34 (q, *J* = 7.1 Hz, 2 H), 3.04 (t, *J* = 6.6 Hz, 2 H), 1.41 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 164.12, 160.96, 138.03, 134.08, 132.63, 128.95, 128.56, 127.29, 127.05, 126.97, 121.36, 121.16, 118.01, 111.88, 64.94, 60.39, 42.36, 29.48, 14.43 ppm. HRMS (ESI) Calcd for [C₁₉H₁₉NO₄ + H]⁺: 326.1387, found: 326.1386.

Diethyl 2-(trifluoromethyl)-5,6-dihydropyrrolo[2,1-a]isoquinoline-1,3-dicarboxylate (3n)

¹H NMR (500 MHz, CDCl₃) δ 7.74 – 7.65 (m, 1 H), 7.32 – 7.30 (m, 2 H), 7.27 (d, *J* = 5.0 Hz, 1 H), 4.53 (t, *J* = 6.6 Hz, 2 H), 4.42 (q, *J* = 7.2 Hz, 2 H), 4.40 (q, *J* = 7.2 Hz, 2 H), 3.08 (t, *J* = 6.6 Hz, 2 H), 1.41 (t, *J* = 7.2 Hz, 3 H), 1.39 (t, *J* = 7.2 Hz, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -54.47; ¹³C NMR (126 MHz, CDCl₃) δ 165.84, 160.15, 133.15, 131.61, 128.83, 127.91, 127.51, 126.28, 125.32, 122.36 (q, *J* = 268.7 Hz), 121.13 (q, *J* = 3.2 Hz), 117.51 (q, *J* = 36.8 Hz), 113.28

(q, J = 2.6 Hz), 61.97, 61.65, 42.77, 28.98, 13.87, 13.77 ppm. HRMS (ESI) Calcd for $[C_{19}H_{18}F_3NO_4 + H]^+$: 382.1261, found: 382.1263.

Ethyl 1-formyl-5,6-dihydropyrrolo[2,1-a]isoquinoline-3-carboxylate (30)

¹H NMR (500 MHz, CDCl₃) δ 10.17 (s, 1 H), 8.09 (d, J = 6.7, 1.9 Hz, 1 H), 7.54 (s, 1 H), 7.47 – 7.36 (m, 2 H), 7.34 (d, J = 6.5 Hz, 1 H), 4.67 (t, J = 6.6 Hz, 2 H), 4.36 (q, J = 7.1 Hz, 2 H), 3.10 (t, J = 6.6 Hz, 2 H), 1.41 (t, J = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 185.53, 160.94, 139.07, 134.15, 129.56, 127.95, 127.81, 127.62, 126.84, 122.77, 121.66, 120.00, 60.61, 42.28, 29.11, 14.37 ppm. HRMS (ESI) Calcd for [C₁₆H₁₅NO₃ + H]⁺: 270.1125, found: 270.1125.

Ethyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-3-carboxylate (3p)³

¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.5 Hz, 1 H), 7.33 – 7.26 (m, 1 H), 7.26 – 7.20 (m, 2 H), 7.05 (d, *J* = 4.1 Hz, 1 H), 6.56 (d, *J* = 4.1 Hz, 1 H), 4.66 (t, *J* = 6.8 Hz, 2 H), 4.33 (q, *J* = 7.1 Hz, 2 H), 3.10 (t, *J* = 6.8 Hz, 2 H), 1.39 (t, *J* = 7.1 Hz, 2 H); ¹³C NMR (126 MHz, CDCl₃) δ 161.44, 136.07, 131.76, 128.42, 127.90, 127.41, 127.18, 123.65, 122.15, 118.25, 104.43, 59.86, 42.21, 28.97, 14.52 ppm. HRMS (ESI) Calcd for [C₁₅H₁₅NO₂ + H]⁺: 242.1176, found: 242.1176.

Diethyl 5,6-dihydropyrrolo[2,1-a]isoquinoline-1,3-dicarboxylate (3q)⁴

¹H NMR (400 MHz, CDCl₃) δ 8.45 (dd, J = 7.7, 1.7 Hz, 1 H), 7.51 (s, 1 H), 7.36 (td, J = 7.7, 1.8 Hz, 1 H), 7.32 (td, J = 7.5, 1.7 Hz, 1 H), 7.26 (d, J = 7.1 Hz, 1 H), 4.62 (t, J = 6.6 Hz, 2 H), 4.35 (q, J = 7.1 Hz, 2 H), 4.34 (q, J = 7.1 Hz, 2 H), 3.04 (t, J = 6.6 Hz, 2 H), 1.42 (t, J = 7.1 Hz, 3 H), 1.40 (t, J = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 164.57, 160.99, 137.76, 134.08,

128.88, 128.55, 127.29, 127.13, 126.91, 121.33, 121.08, 112.36, 60.37, 60.25, 42.35, 29.49, 14.44, 14.42 ppm. HRMS (ESI) Calcd for $[C_{18}H_{19}NO_4 + H]^+$: 314.1387, found: 314.1387.

Ethyl 1-methyl-5,6-dihydropyrrolo[2,1-a]isoquinoline-3-carboxylate (3r)

¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 7.7 Hz, 1 H), 7.33 (td, *J* = 7.5, 1.6 Hz, 1 H), 7.26 (m, 1 H), 7.12 (td, *J* = 7.3, 1.1 Hz, 1 H), 6.87 (s, 1 H), 4.62 (t, *J* = 6.6 Hz, 2 H), 4.31 (q, *J* = 7.1 Hz, 2 H), 3.04 (t, *J* = 6.6 Hz, 2 H), 2.40 (s, 3 H), 1.38 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 161.38, 133.00, 131.99, 129.55, 127.90, 126.98, 126.65, 124.41, 119.89, 116.66, 59.77, 42.01, 29.82, 14.52, 14.00 ppm. HRMS (ESI) Calcd for [C₁₆H₁₇F₃NO₂ + H]⁺: 256.1332, found: 256.1333.

Ethyl 1-phenyl-5,6-dihydropyrrolo[2,1-a]isoquinoline-3-carboxylate (3s)

¹H NMR (400 MHz, CDCl₃) δ 7.47 (dd, *J* = 8.2, 1.3 Hz, 2 H), 7.40 (t, *J* = 7.3 Hz, 2 H), 7.36 – 7.30 (m, 2 H), 7.26 (d, *J* = 7.4 Hz, 1 H), 7.17 (td, *J* = 7.4, 1.1 Hz, 1 H), 7.05 (s, 1 H), 7.04 (t, J = 8.6 Hz, 1 H), 4.66 (t, *J* = 6.5 Hz, 2 H), 4.35 (q, *J* = 7.1 Hz, 2 H), 3.12 (t, *J* = 6.6 Hz, 2 H).1.40 (t, *J* = 7.1 Hz, 3 H); ¹³C NMR (126 MHz, CDCl₃) δ 161.40, 136.50, 133.26, 131.24, 129.08, 128.53, 128.49, 127.80, 127.23, 126.71, 126.58, 125.31, 122.94, 121.14, 119.34, 59.98, 42.39, 29.66, 14.51 ppm. HRMS (ESI) Calcd for [C₂₁H₁₉NO₂ + H]⁺: 318.1489, found: 318.1489. **Ethyl 1-(trifluoromethyl)-5,6-dihydropyrrolo[2,1-***a***]isoquinoline-3-carboxylate (4a)^{1e}**

¹H NMR (500 MHz, CDCl₃) δ 7.73 (d, *J* = 7.6 Hz, 1 H), 7.26 (t, *J* = 7.1 Hz, 1 H), 7.22 (t, *J* = 7.5 Hz, 1 H), 7.18 (d, *J* = 7.7 Hz, 1 H), 7.17 (s, 1 H), 4.56 (t, *J* = 6.6 Hz, 2 H), 4.24 (q, *J* = 7.1 Hz, 2 H), 2.96 (t, *J* = 6.7 Hz, 2 H), 1.30 (t, *J* = 7.1 Hz, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ - 55.70; ¹³C NMR (126 MHz, CDCl₃) δ 159.70, 132.52, 132.32 (q, *J* = 3.5 Hz), 127.67, 126.78,

126.48, 125.45, 125.15 (q, *J* = 4.3 Hz), 122.73 (q, *J* = 267.1 Hz), 119.82, 116.03 (q, *J* = 4.4 Hz), 109.49 (q, *J* = 37.3 Hz), 59.40, 41.25, 28.19, 13.34 ppm.

X-ray of 5' (CCDC Number: 2079259)

Reference:

- (a) M. Matziari, M. Nasopoulou and A. Yiotakis, *Org. Lett.* 2006, *8*, 2317; (b) J. Magalhães, N. Franko, G. Annunziato, M. Pieroni, R. Benoni, A. Nikitjuka, A. Mozzarelli, S. Bettati, A. Karawajczyk, , A. Jirgensons, B. Campanini and G. Costantino, *J. Enzyme Inhib. Med. Chem.* 2019, *34*, 31; (c) J. C. de Mendonça Cavalcanti, M. O. Fonseca Goulart, E. Léonel and J.-Y. Nédélec, *Tetrahedron Lett.*, 2002, *43*, 6343; (d) H.-Y. Zhou, L.-Q. Fei, J.-L. Zhang, Y.-M. Pan and H.-T. Tang, *Adv. Synth. Catal.*, 2023, *365*, 1591; (e) Yu, D. Yu; Liu, Y. and C.-M. Che, Org. Chem. Front., 2022, *9*, 2779.
- 2. C. Yu, Y. Zhang, S. Zhang, H. Li and W. Wang, Chem. Commun. 2011, 47, 1036.
- 3. S. M. Allin, W. R. Bowman, M. R. J. Elsegood, V. McKee, R. Karim and S. S. Rahman, *Tetrahedron* 2005, 61, 2689.
- 4. A. Fujiya, M. Tanaka, E. Yamaguchi, N. Tada and A. Itoh, J. Org. Chem. 2016, 81, 7262.

NMR Spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR of 3b

¹H NMR of 3c

¹H NMR of 3f

¹³C NMR of 3f

¹³C NMR of 3g

¹H NMR of 3i

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹H NMR of 3k

¹H NMR of 3l

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR of 3n

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

¹³C NMR of 3n

12.512.011.511.010.510.09.59.08.58.07.57.06.56.56.04.54.03.53.02.52.01.51.00.50.0-0.5-1.0 fl (ppm) ¹³C NMR of 30

¹³C NMR of 3q

¹H NMR of 3r

¹³C NMR of 3s

¹³C NMR of 3a'

¹H NMR of 6

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)