Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Gold-catalyzed benzannulations of 2-alkenylindoles with alkynes: a protectinggroup-free regioselective approach to carbazoles

Pathan Mosim Amin, Weilin Wang, Chao Wang, Junrui Zhou, and Youliang Wang*

School of Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of

Condensed Matter, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an

Jiaotong University (XJTU), Xi'an, 710049, P. R. China. E-mail: youliangwang@xjtu.edu.cn.

Contents	Page number
General	S2
Scope of the 2-alkenylindole substrate	S3
Scope of the alkyne substrate	S13
Scale up reaction	S34
Synthetic applications	S35
Control experiments	S40
Spectra	S42

General

NMR spectra were recorded on a Bruker-400 MHz or JEOL-400 MHz. ¹H NMR spectra were recorded at 400 MHz or JEOL-400 MHz and data are reported as follows: chemical shift in ppm using residue solvent peak as internal standard (CDCl₃ δ 7.26 ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or overlap of nonequivalent resonances), integration. ¹³C NMR spectra were recorded at 101 MHz and data are reported as follows: chemical shift in ppm using solvent residue peak as internal indicator (CDCl₃ δ 77.15 ppm). ¹⁹F NMR spectra were recorded at 376 MHz. High resolution mass spectra were performed on a WATERS I-Class VION IMS QTof at the Instrumental Analysis Center of Xi'an Jiaotong University and are given in m/z. All reactions were carried out in flame dried glasswares. Commercial reagents and solvents were purchased from Energy Chemicals, China (purities ranging from 97% to 99.5%) and are used without further purification unless stated otherwise. TLC was performed on pre-coated glass plates visualized either with a UV lamp (254 nm), or using solutions of KMnO₄-K₂CO₃ in water followed by heating. Flash chromatography was performed on silica gel (230-400 mesh).

Scope of the 2-alkenylindole substrate

Ethyl 4-phenyl-9*H*-carbazole-2-carboxylate (3a)

(*E*)-Ethyl 3-(1*H*-indol-2-yl)acrylate (43.5 mg, 0.2 mmol), phenylacetylene (26.6 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:1) to get the target product (51.9 mg, 81% yield).

 $R_f 0.50$ (Petroleum ether/EtOAc = 10/2).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.47 (s, 1H), 8.19 (s, 1H), 7.83 (s, 1H), 7.64 (d, J = 7.0 Hz, 2H), 7.57 – 7.41 (m, 6H), 7.02 (d, J = 7.2 Hz, 1H), 4.45 (q, J = 6.8 Hz, 2H), 1.44 (t, J = 6.5 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 167.4, 141.1, 140.7, 139.4, 137.5, 129.3, 128.6, 128.0, 127.6, 127.1, 124.6, 123.2, 122.4, 122.1, 119.6, 111.4, 110.9, 61.2, 14.6.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{21}H_{18}NO_2^+$ 316.1332; Found 316.1343.

Ethyl 6-methyl-4-phenyl-9H-carbazole-2-carboxylate (3b)

(*E*)-Ethyl 3-(5-methyl-1*H*-indol-2-yl)acrylate (45.8 mg, 0.2 mmol), phenylacetylene (26.6 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:1) to get the target product (48.8 mg, 74% yield).

 $R_f 0.55$ (Petroleum ether/EtOAc = 10/2).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.42 (s, 1H), 8.19 (s, 1H), 7.83 (s, 1H), 7.66 (d, J = 6.5 Hz, 2H), 7.57 – 7.55 (m, 3H), 7.37 (d, J = 8.0 Hz, 1H), 7.30 -7.25 (m, 2H), 4.47 (q, J = 7.1 Hz, 2H), 2.34 (s, 3H), 1.46 (t, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.5, 140.7, 139.7, 139.4, 137.4, 129.3, 128.8, 128.6, 128.5, 127.9, 127.3, 124.4, 123.0, 122.5, 121.9, 111.4, 110.6, 61.2, 21.6, 14.6.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₂H₂₀NO₂⁺ 330.1489; Found 330.1499.

Ethyl 6-methoxy-4-phenyl-9H-carbazole-2-carboxylate (3c)

(*E*)-Ethyl 3-(5-methoxy-1*H*-indol-2-yl)acrylate (49.0 mg, 0.2 mmol), phenylacetylene (26.6 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol)) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:1) to get the target product (51.5 mg, 75% yield).

 $R_f 0.6$ (Petroleum ether/EtOAc = 10/2).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.47 (s, 1H), 8.17 (s, 1H), 7.81 (s, 1H), 7.63 (d, J = 6.8 Hz, 2H), 7.59 – 7.43 (m, 3H), 7.34 (d, J = 8.5 Hz, 1H), 7.06 (d, J = 8.7 Hz, 1H), 6.92 (s, 1H), 4.45 (q, J = 6.6 Hz, 2H), 3.61 (s, 3H), 1.44 (t, J = 6.5 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 167.5, 153.5, 140.5, 140.1, 137.3, 136.1, 129.4, 128.5, 128.0, 127.3, 124.4, 122.7, 121.4, 116.7, 111.7, 111.6, 105.4, 61.2, 55.6, 14.5.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{22}H_{20}NO_3^+$ 346.1438; Found 346.1447.

Ethyl 6-chloro-4-phenyl-9*H*-carbazole-2-carboxylate (3d)

(*E*)-Ethyl 3-(5-chloro-1*H*-indol-2-yl)acrylate (49.9 mg, 0.2 mmol), phenylacetylene (26.6 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:1) to get the target product (48.8 mg, 70% yield).

 $R_f 0.45$ (Petroleum ether/EtOAc = 10/1).

¹**H NMR** (400 MHz, Chloroform-*d*) 8.52 (s, 1H), 8.17 (s, 1H), 7.82 (s, 1H), 7.73 – 7.47 (m, 5H), 7.44 (s, 1H), 7.37 (s, 2H), 4.45 (q, *J* = 6.7 Hz, 2H), 1.44 (t, *J* = 6.5 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 167.2, 140.1, 140.0, 139.3, 137.8, 129.1, 128.8, 128.3, 128.2, 127.2, 125.0, 123.7, 123.5, 122.7, 122.3, 111.9, 111.6, 61.3, 14.5.

HRMS (ESI) m/z: $[M + NH_4]^+$ Calcd for $C_{21}H_{20}ClN_2O_2^+$ 367.1208; Found 367.1172.

Ethyl 7-chloro-4-phenyl-9H-carbazole-2-carboxylate (3e)

(*E*)-Ethyl 3-(6-chloro-1*H*-indol-2-yl)acrylate (49.9 mg, 0.2 mmol), phenylacetylene (26.6 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:1) to get the target product (52.6 mg, 75% yield).

 $R_f 0.45$ (Petroleum ether/EtOAc = 10/2).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.50 (s, 1H), 8.17 (s, 1H), 7.83 (s, 1H), 7.61 – 7.53 (m, 5H), 7.44 (s, 1H), 7.38 (d, *J* = 8.3 Hz, 1H), 6.97 (d, *J* = 8.4 Hz, 1H), 4.64 – 4.37 (m, 2H), 1.44 (t, *J* = 6.4 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 167.2, 141.6, 140.3, 139.7, 137.4, 132.9, 129.2, 128.8, 128.1, 127.9, 124.0, 123.8, 122.6, 121.1, 120.3, 111.5, 110.9, 61.3, 14.5.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₁H₁₇ClNO₂⁺ 350.0942; Found 350.0961.

Ethyl 6-fluoro-4-phenyl-9H-carbazole-2-carboxylate (3f)

(*E*)-Ethyl 3-(5-fluoro-1*H*-indol-2-yl)acrylate (46.6 mg, 0.2 mmol), phenylacetylene (26.6 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:1) to get the target product (54.0 mg, 81% yield).

 $R_f 0.45$ (Petroleum ether/EtOAc = 10/2).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.41 (s, 1H), 8.18 (s, 1H), 7.81 (s, 1H), 7.73 – 7.45 (m, 5H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.15 (t, *J* = 11.7 Hz, 2H), 4.44 (q, *J* = 7.0 Hz, 2H), 1.43 (t, *J* = 6.9 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 167.2, 140.4, 140.1, 137.8, 137.4, 129.2, 128.8, 128.2, 128.1, 122.0, 115.3, 115.0, 111.7, 111.4, 108.8, 108.6, 61.3, 14.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -123.96 (dd, J = 8.4, 3.7, 1F).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{21}H_{16}CNFO_2^+$ 334.1238; Found 334.1246.

1-(4-Phenyl-9*H*-carbazol-2-yl)ethanone (3g)

(*E*)-4-(1*H*-indol-2-yl)but-3-en-2-one (37 mg, 0.2 mmol), phenylacetylene (26.6 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:2) to get the target product (40.4 mg, 71% yield).

 $R_f 0.30$ (Petroleum ether/EtOAc = 10/2).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.46 (s, 1H), 8.10 (s, 1H), 7.71 (s, 1H), 7.63 (d, J = 6.7 Hz, 2H), 7.58 – 7.42 (m, 6H), 7.01(t, J = 7.4 Hz, 1H), 2.72 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 198.5, 141.4, 140.5, 139.5, 137.5, 134.5, 129.3, 128.7, 128.1, 127.3, 124.9, 123.3, 122.3, 121.6, 119.7, 110.9, 109.8, 27.2.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₀H₁₆NO⁺ 286.1226; Found 286.1239.

Phenyl(4-phenyl-9*H*-carbazol-2-yl)methanone (3h)

(*E*)-3-(1*H*-indol-2-yl)-1-phenylprop-2-en-1-one (49.4 mg, 0.2 mmol), phenylacetylene (26.6 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:2) to get the target product (48.3 mg, 70% yield).

 $R_f 0.30$ (Petroleum ether/EtOAc = 10/2).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.59 (s, 1H), 8.09 – 7.79 (m, 3H), 7.76 – 7.34 (m, 12H), 7.05 (t, *J* = 7.0 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 197.2, 141.3, 140.5, 139.4, 138.4, 137.4, 134.7, 132.3, 130.2, 129.3, 128.7, 128.4, 128.0, 127.2, 124.4, 123.2, 122.4, 119.7, 112.0, 111.0.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₅H₁₈NO⁺ 348.1383; Found 348.1389.

2,4-Diphenyl-9H-carbazole (3i)

(*E*)-2-Styryl-1*H*-indole (43.8 mg, 0.2 mmol), phenylacetylene (26.6 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:1) to get the target product (50.1 mg, 79% yield). The titled compound is known. Its ¹H NMR is in accordance with the known literature: Lijun Shi, Xiang Zhong, Houde She, Ziqiang Lei and Fuwei Li. Manganese catalyzed C–H functionalization of indoles with alkynes to synthesize bis/trisubstituted indolylalkenes and carbazoles: the acid is the key to control selectivity. *Chem. Commun.*, **2015**, *51*, 7136.

2-Butyl-3,4-diphenyl-9H-carbazole (3j)

(*E*)-2-(hex-1-enyl)-1*H*-indole (19.9 mg, 0.1 mmol), 1,2-diphenylethyne (23.0 mg, 0.13 mmol) and IPrAuNTf₂ (1.74 mg, 0.002 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.1 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:2) to get the target product (27.3 mg, 72% yield).

 $R_f 0.35$ (Petroleum ether/EtOAc = 10/2).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.06 (s, 1H), 7.38 (d, J = 8.7, 2H), 7.29 (d, J = 7.8, 1H), 7.26 – 7.14 (m, 7H), 7.10 (t, J = 7.7, 3H), 6.86 (t, J = 7.5, 1H), 6.72 (d, J = 7.9, 1H), 2.71 – 2.33 (m, 2H), 1.51 (dd, J = 15.4, 7.9, 2H), 1.27 – 1.23 (m, 2H), 0.79 (t, J = 7.3, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 140.3, 140.1, 139.7, 139.0, 136.4, 133.4, 131.4, 130.2, 127.9, 127.3, 126.6, 126.0, 125.2, 123.7, 122.1, 120.0, 119.1, 110.3, 109.6, 34.3, 33.9, 22.7, 14.0.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₈H₂₅N⁺ 376.2059; Found 376.2061.

Scope of the alkyne substrate

Ethyl 4-m-tolyl-9*H*-carbazole-2-carboxylate (3k)

(*E*)-Ethyl 3-(1*H*-indol-2-yl)acrylate (43.5 mg, 0.2 mmol), 1-ethynyl-2-methylbenzene (30.0 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:1) to get the target product (40.2 mg, 60% yield).

 $R_f 0.6$ (Petroleum ether/EtOAc = 10/2).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.53 (s, 1H), 8.21 (dd, J = 1.7 Hz, 0.8 Hz, 1H), 7.78 (dd, J = 1.4 Hz, 0.8 Hz, 1H), 7.46 – 7.35 (m, 6H), 7.02 – 6.95 (m, 2H), 4.51 – 4.38 (m, 2H), 2.08 (s, 3H), 1.44 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.6, 141.0, 140.1, 139.0, 136.6, 136.5, 130.2, 129.6, 128.2, 127.5, 127.0, 126.2, 125.2, 122.7, 122.5, 121.6, 120.0, 111.3, 110.8, 61.2, 19.9, 14.5.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{22}H_{20}NO_2^+$ 330.1489; Found 330.1496.

(*E*)-Ethyl 3-(1*H*-indol-2-yl)acrylate (43.5 mg, 0.2 mmol), 1-tert-butyl-4ethynylbenzene (41.1 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:1) to get the target product (54.4 mg, 72% yield).

 $R_f 0.60$ (Petroleum ether/EtOAc = 10/2).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.48 (s, 1H), 8.17 (s, 1H), 7.83 (s, 1H), 7.59-7.57 (m, 5H), 7.47 – 7.41 (m, 2H), 7.03 (s, 1H), 4.44 (q, *J* = 6.9 Hz, 2H), 1.60 – 1.36 (m, 12H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.5, 150.9, 141.1, 139.5, 137.6, 137.5, 128.9, 127.5, 127.0, 125.5, 124.6, 123.3, 122.5, 122.3, 119.5, 111.2, 110.9, 61.2, 34.9, 31.6, 14.6.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₅H₂₆NO₂⁺ 372.1958; Found 372.1957.

Ethyl 4-(3-methoxyphenyl)-9H-carbazole-2-carboxylate (3m)

(*E*)-Ethyl 3-(1*H*-indol-2-yl)acrylate (43.5 mg, 0.2 mmol), 1-ethynyl-3methoxybenzene (34.3 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:1) to get the target product (48.9 mg, 70% yield).

 $R_{\rm f}0.55$ (Petroleum ether/EtOAc = 10/2).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.70 (s, 1H), 8.28 (s, 1H), 7.93 (s, 1H), 7.64 (d, J = 7.7 Hz, 1H), 7.54 – 7.49 (m, 3H), 7.36 – 7.28 (m, 2H), 7.21 – 7.01 (m, 2H), 4.54 (q, J = 5.8 Hz, 2H), 3.95 (s, 3H), 1.52 (t, J = 6.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.5, 159.8, 142.0, 141.1, 139.4, 137.3, 129.7, 127.4, 127.1, 124.5, 123.3, 122.3, 121.9, 121.7, 119.6, 114.4, 113.9, 111.5, 110.9, 61.2, 55.5, 14.5.

HRMS (ESI) m/z: $[M + NH_4]^+$ Calcd for $C_{22}H_{23}N_2O_3^+$ 363.1703; Found 363.1731.

(*E*)-Ethyl 3-(1*H*-indol-2-yl)acrylate (43.5 mg, 0.2 mmol), 1-ethynyl-4methoxybenzene (34.0 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:1) to get the target product (59.1 mg, 84% yield).

 $R_f 0.55$ (Petroleum ether/EtOAc = 10/2).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.49 (s, 1H), 8.16 (s, 1H), 7.81 (s, 1H), 7.57 – 7.56 (m, 3H), 7.46 – 7.41 (m, 2H), 7.17 – 6.93 (m, 3H), 4.72 – 4.28 (m, 2H), 3.94 (s, 3H), 1.44 (t, *J* = 7.0 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 167.5, 159.5, 141.1, 139.5, 137.2, 131.3, 130.4, 127.5, 127.0, 124.7, 123.2, 122.5, 122.2, 119.6, 114.1, 111.1, 110.9, 61.2, 55.5, 14.6.

HRMS (ESI) m/z: $[M + NH_4]^+$ Calcd for C₂₂H₂₃N₂O₃⁺ 363.1703; Found 363.1731.

Ethyl 4-(3-chlorophenyl)-9H-carbazole-2-carboxylate (30)

(*E*)-Ethyl 3-(1*H*-indol-2-yl)acrylate (43.5 mg, 0.2 mmol), 1-chloro-3-ethynylbenzene (35.4 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:1) to get the target product (53.9 mg, 76% yield).

 $R_f 0.45$ (Petroleum ether/EtOAc = 10/2).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.44 (s, 1H), 8.19 (d, *J* = 1.4 Hz, 1H), 7.79 (d, *J*=1.4 Hz, 1H), 7.63 (dd, *J* = 2.9 Hz, 1.0 Hz, 1H), 7.59 – 7.37 (m, 6H), 7.05 (ddd, *J* = 8.1 Hz, 6.9 Hz, 1.3 Hz, 1H), 4.45 (q, *J* = 7.1 Hz, 2H), 1.44 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.3, 142.4, 141.1, 139.4, 135.8, 134.5, 129.9, 129.4, 128.1, 127.6, 127.5, 124.3, 123.0, 122.0, 121.9, 119.8, 111.9, 111.1, 61.3, 14.6.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₁H₁₇ClNO₂⁺ 350.0942; Found 350.0941.

4-(2-Chlorophenyl)-2-phenyl-9*H*-carbazole (3p)

(*E*)-Ethyl 3-(1*H*-indol-2-yl)acrylate (43.5 mg, 0.2 mmol), 1-chloro-2-ethynylbenzene (35.4 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:1) to get the target product (43.1 mg, 61% yield).

 $R_f 0.45$ (Petroleum ether/EtOAc = 10/2).

¹**H NMR** (400 MHz, Chloroform-*d*) 8.47 (s, 1H), 8.23 (s, 1H), 7.81 (s, 1H), 7.62 (d, J = 7.6 Hz, 1H), 7.55 – 7.35 (m, 5H), 7.07 (d, J = 7.8, 1H), 7.01 (d, J = 7.7, 1H), 4.44 (q, J = 7.0 Hz, 2H), 1.44 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.3, 141.0, 139.2, 139.0, 134.0, 133.8, 131.5, 129.8, 129.5, 127.4, 127.2, 127.1, 125.2, 122.6, 122.3, 121.9, 120.0, 112.1, 110.9, 61.2, 14.5.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{21}H_{16}NO_2Cl^+ 372.7612$; Found 372.7847.

Ethyl 4-(4-bromophenyl)-9H-carbazole-2-carboxylate (3q)

(*E*)-Ethyl 3-(1*H*-indol-2-yl)acrylate (43.5 mg, 0.2 mmol), 1-bromo-4-ethynylbenzene (47.1 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:1) to get the target product (51.3 mg, 64% yield).

 $R_f 0.45$ (Petroleum ether/EtOAc = 10/2).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.49 (s, 1H), 8.19 (s, 1H), 7.80 (s, 1H), 7.68 (d, J = 7.1 Hz, 2H), 7.58 – 7.38 (m, 5H), 7.05 (t, J = 7.2 Hz, 1H), 4.45 (q, J = 7.0 Hz, 2H), 1.44 (t, J = 6.3 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 167.2, 141.1, 139.6, 139.4, 136.1, 131.8, 131.0, 127.6, 127.3, 124.3, 123.0, 122.2, 122.0, 119.8, 111.8, 111.0, 61.3, 14.6.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₂₁H₁₆BrNNaO₂⁺416.0257; Found 416.0262.

Ethyl 4-(4-(methoxycarbonyl)phenyl)-9*H*-carbazole-2-carboxylate (3r)

(*E*)-Ethyl 3-(1*H*-indol-2-yl)acrylate (43.5 mg, 0.2 mmol), methyl 4-ethynylbenzoate (41.7 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:2) to get the target product (46.2 mg, 61% yield).

 $R_{\rm f}0.35$ (Petroleum ether/EtOAc = 10/2).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.56 (s, 1H), 8.22 – 8.20 (m, 3H), 7.80 (d, *J* = 1.3 Hz, 1H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.48 – 7.39 (m, 3H), 7.00 (dd, *J* = 8.0 Hz, 7.0 Hz, 1H), 4.44 (q, *J* = 7.1 Hz, 2H), 3.99 (s, 3H), 1.43 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.24, 167.19, 145.4, 141.1, 139.4, 136.3, 130.0, 129.7, 129.5, 127.6, 127.3, 124.2, 123.0, 122.1, 121.9, 119.8, 112.0, 111.1, 61.3, 52.4, 14.6.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₃H₂₀NO₄⁺ 374.1387; Found 374.1387.

Diethyl 4,4'-(1,3-phenylene)bis(9H-carbazole-2-carboxylate) (3s)

(*E*)-Ethyl 3-(1*H*-indol-2-yl)acrylate (43.5 mg, 0.2 mmol), 1,3-diethynylbenzene (11.4 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:2) to get the target product (26.1 mg, 52% yield).

 $R_f 0.30$ (Petroleum ether/EtOAc = 10/2).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.42 (s, 2H), 8.19 (s, 2H), 7.91 (d, J =13.5, 2H), 7.80 - 7.72 (m, 5H), 7.47 - 7.41 (m, 5H), 7.01 (s, 2H), 4.44 (dd, J = 12.9, 6.2, 4H), 1.43 (t, J = 6.8, 6H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.4, 141.1, 139.4, 137.2, 130.1, 128.8, 127.6, 127.1, 124.7, 123.2, 122.4, 122.1, 119.7, 111.6, 111.0, 61.2, 14.6.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{36}H_{28}N_2NaO_4^+$ 575.1941; Found 575.1958.

Ethyl 4-(thiophen-2-yl)-9H-carbazole-2-carboxylate (3t)

(*E*)-Ethyl 3-(1*H*-indol-2-yl)acrylate (43.5 mg, 0.2 mmol), 2-ethynylthiophene (28.1 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:1) to get the target product (61.1 mg, 94% yield).

 $R_f 0.55$ (Petroleum ether/EtOAc = 10/2).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.45 (s, 1H), 8.19 (d, J = 1.4 Hz, 1H), 7.93 (d, J = 1.4 Hz, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.54 – 7.40 (m, 3H), 7.35 (dd, J = 3.5 Hz, 1.2 Hz, 1H), 7.24 (dd, J = 5.1 Hz, 3.5 Hz, 1H), 7.08 (ddd, J = 8.1 Hz, 6.6 Hz, 1.6 Hz, 1H), 4.44 (q, J = 7.1 Hz, 2H), 1.44 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.2, 141.5, 141.1, 139.3, 129.6, 127.4, 127.3, 127.1, 126.1, 125.4, 123.4, 123.1, 122.3, 119.8, 112.2, 111.0, 61.3, 14.5.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₉H₁₉N₂O₂S⁺ 339.1162; Found 339.1163.

Ethyl 4-(thiophen-3-yl)-9H-carbazole-2-carboxylate (3u)

(*E*)-Ethyl 3-(1*H*-indol-2-yl)acrylate (43.5 mg, 0.2 mmol), 3-ethynylthiophene (28.1 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:1) to get the target product (59.9 mg, 92% yield).

 $R_{\rm f}0.55$ (Petroleum ether/EtOAc = 10/2).

¹**H NMR** (400 MHz, Chloroform-*d*) 8.44 (s, 1H), 8.16 (s, 1H), 7.86 (s, 1H), 7.65 (d, *J* = 7.8 Hz, 1H), 7.61 – 7.28 (m, 5H), 7.07 (t, *J* = 6.6 Hz, 1H), 4.80 – 4.32 (m, 2H), 1.44 (t, *J* = 6.3 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.3, 141.1, 139.4, 132.2, 129.1, 127.5, 127.2, 125.8, 124.9, 123.4, 123.1, 122.4, 122.2, 119.8, 111.6, 110.9, 61.2, 14.6.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₉H₁₉N₂O₂S⁺ 339.1162; Found 339.1163.

N-(2-butyl-9H-carbazol-4-yl)-*N*,4-dimethylbenzenesulfonamide (3v)

(*E*)-2-(hex-1-enyl)-1*H*-indole (19.9 mg, 0.1 mmol), *N*-ethynyl-*N*,4dimethylbenzenesulfonamide (27.0 mg, 0.13 mmol) and IPrAuNTf₂ (1.74 mg, 0.002 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.1 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:4) to get the target product (37.1 mg, 91% yield).

 $R_f 0.40$ (Petroleum ether/EtOAc = 10/3).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.40 (d, J = 7.9, 1H), 8.05 (s, 1H), 7.69 (d, J = 8.2, 2H), 7.41 – 7.34 (m, 2H), 7.30 (d, J = 8.0, 2H), 7.25 – 7.21 (m, 1H), 7.13 (s, 1H), 6.32 (d, J = 1.0, 1H), 3.34 (s, 3H), 2.70 – 2.52 (m, 2H), 2.46 (s, 3H), 1.57 – 1.47 (m, 2H), 1.32 (d, J = 7.7, 2H), 0.93 (t, J = 7.3, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 140.3, 140.1, 139.7, 139.0, 136.4, 133.4, 131.4, 130.2, 127.9, 127.3, 126.6, 126.0, 125.2, 123.7, 122.1, 120.0, 119.1, 110.3, 109.6, 34.3, 33.9, 22.7, 14.0.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₄H₂₆N₂S₂⁺ 407.1787; Found 407.1786.

3-Ethyl-4-methyl-2-phenyl-9*H***-carbazole (3w)**

(*E*)-2-styryl-1*H*-indole (43.8 mg, 0.2 mmol), 1-dodecyne (46.3 mg, 0.26 mmol) and IPrNTf₂ (3.5 mg) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:2) to get the target product (54.1 mg, 71% yield).

 $R_f 0.40$ (Petroleum ether/EtOAc = 10/2).

¹**H** NMR (400 MHz, Chloroform-*d*) 8.27 (d, J = 8.0 Hz, 1H), 7.99 (s, 1H), 7.72 – 7.27 (m, 8H), 7.13 (s, 1H), 2.92 (s, 3H), 2.80 – 2.53 (m, 2H), 1.44 (m, 2H), 1.29 – 1.15 (m, 12H), 0.88 (t, J = 2.3 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 143.9, 141.1, 140.2, 137.4, 131.6, 130.6, 129.7, 127.9, 126.7, 125.1, 124.3, 123.0, 119.4, 110.5, 109.7, 32.0, 31.5, 29.9, 29.6, 29.4, 29.3, 22.8, 17.1, 14.3.

HRMS (ESI) m/z: $[M + NH_4]^+$ Calcd for $C_{28}H_{37}N_2^+$ 401.2951; Found 401.2960.

2,3,4-Triphenyl-9*H*-carbazole (3x)

(*E*)-2-Styryl-1*H*-indole (43.8 mg, 0.2 mmol), 1,2-diphenylethyne (46.3 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:2) to get the target product (54.5 mg, 65% yield).

 $R_f 0.40$ (Petroleum ether/EtOAc = 10/2).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.17 (s, 1H), 7.51 – 7.48 (m, 1H), 7.40 (d, *J* = 8.1 Hz, 1H), 7.36 – 7.25 (m, 6H), 7.22 – 7.13 (m, 5H), 6.98 – 6.85 (m, 6H), 6.81 (d, *J* = 8.0 Hz, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 142.9, 140.4, 140.2, 140.1, 140.0, 138.7, 136.7, 132.4, 132.2, 130.4, 130.3, 128.1, 127.6, 126.9, 126.2, 125.7, 125.4, 123.5, 122.5, 121.3, 119.4, 111.3, 110.5.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{30}H_{22}N^+$ 396.1747; Found 396.1753.

Ethyl4-(4-methoxyphenyl)-6-methyl-3-phenyl-9*H*-carbazole-2-carboxylate (3y)

(*E*)-ethyl 3-(5-methyl-1*H*-indol-2-yl)acrylate (45.8 mg, 0.2 mmol), 1-methoxy-4-(phenylethynyl)benzene (54.0 mg, 0.26 mmol) and IPrNTf₂ (3.67 mg, 0.004 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:3) to get the regioisomeric mixture of product (55.1 mg, 63% yield, regioselectivity 7.5/1). (Regioselectivity was determined by ¹H NMR.)

 $R_f 0.35$ (Petroleum ether/EtOAc = 10/3).

¹**H NMR** (400 MHz, Chloroform-*d*) 8.21 (s, 1H), 7.91 (s, 1H), 7.33 (d, J = 8.3, 1H), 7.24 – 7.16 (m, 1H), 7.14 – 7.05 (m, 7H), 6.91 – 6.78 (m, 2H), 6.64 (s, 1H), 4.00 (q, J = 7.1, 2H), 3.83 (s, 3H), 2.24 (s, 3H), 0.89 (t, J = 7.2, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 169.8, 158.6, 140.6, 139.3, 138.2, 136.7, 132.7, 131.6, 131.3, 130.7, 130.0, 128.8, 128.1, 127.1, 125.9, 124.5, 123.3, 122.9, 113.5, 111.0, 110.4, 61.0, 55.4, 21.7, 13.7.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₉H₂₅NO₃⁺ 435.1907; Found 435.1905.

NOESY experiment:

4-Butyl-3-(4-methoxyphenyl)-2-phenyl-9H-carbazole (3z)

0.1 mmol 0.13 mmol

(*E*)-2-styryl-1*H*-indole (21.9 mg, 0.1 mmol), 1-(hex-1-ynyl)-4-methoxybenzene (27.0 mg, 0.13 mmol) and IPrNTf₂ (1.74 mg, 0.002 mmol) were added to a dried vial under air in dry toluene (1 mL, 0.1 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:2) to get the regioisomeric mixture of product (25.1 mg, 62% yield, regioselectivity 2.5/1). (Regioselectivity was determined by ¹H NMR.)

 $R_f 0.40$ (Petroleum ether/EtOAc = 10/3).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.08 (*s*, 1H), 8.05 (d, *J* =8.0, 1H), 7.39 (dd, *J* = 6.2, 3.7, 2H), 7.21 (d, *J* =3.9, 3H), 7.12 – 7.06 (m, 4H), 7.01 – 6.96 (m, 2H), 6.76 – 6.66 (m, 2H), 3.73 (s, 3H), 3.22 – 2.78 (m, 2H), 1.63 (d, *J* = 7.6, 2H), 1.35 – 1.30 (m, 2H), 0.79 (t, *J* = 7.4, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 158.9, 143.5, 140.9, 140.2, 137.3, 136.4, 133.0, 130.9, 130.7, 129.8, 127.9, 126.7, 125.3, 123.7, 122.3, 122.1, 119.2, 114.1, 111.4, 110.3, 55.5, 33.8, 29.3, 22.7, 13.5.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₉H₂₇NO⁺ 406.2165; Found 406.2149.

NOESY experiment:

3-((*Z***)-dec-5-en-5-yl)-2-styryl-1***H***-indole (3aa)**

(*E*)- (*E*)-2-styryl-1*H*-indole (21.9 mg, 0.1 mmol), dec-5-yne (18.0 mg, 0.13 mmol) and IPrNTf₂ (1.74 mg, 0.002 mmol) were added to a dried vial under air sequentially in dry toluene (1 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:1) to get the target product (21.9 mg, 61% yield).

 $R_f 0.40$ (Petroleum ether/EtOAc = 10/1).

¹**H NMR** (400 MHz, Chloroform-*d*) 8.18 (s, 1H), 7.46 (dd, J = 15.8, 7.7, 3H), 7.36 (dd, J = 15.3, 7.6, 3H), 7.21 (dd, J = 14.9, 7.7, 2H), 7.06 (dd, J = 19.1, 11.9, 2H), 6.83 (d, J = 16.7, 1H), 5.74 (t, J = 7.1, 1H), 2.37 (s, 2H), 1.86 (dd, J = 14.5, 7.2, 2H), 1.33 – 1.18 (m, 8H), 0.83 (t, J = 6.9, 3H), 0.73 (t, J = 7.2, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 137.4, 136.8, 133.1, 132.4, 131.2, 131.0, 128.9, 127.6, 126.3, 125.9, 123.2, 123.1, 120.2, 119.8, 118.4, 110.6, 39.4, 39.2, 32.2, 31.0, 22.6, 22.42, 14.3, 14.1.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₂₆H₃₁N⁺ 358.2529; Found 358.2530.

NOESY experiment:

Scale up reaction

Ethyl 4-phenyl-9H-carbazole-2-carboxylate (3a)

(*E*)-Ethyl 3-(1*H*-indol-2-yl)acrylate (215 mg, 1 mmol), phenylacetylene (132.0 mg, 1.3 mmol) and IPrAuNTf₂ (17.3 mg, 0.02 mmol) were added to a dried vial under air sequentially in dry toluene (10 mL, 0.2 M). The reaction was stirred at 90 °C for 12 h and then 130 °C until complete consumption of the intermediate was observed by TLC. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:1) to get the target product (261.0 mg, 83% yield).

Synthetic applications

A solution of *N*-bromosuccinimide (9.35 mg, 0.053 mmol, 1.1 equiv.) in 0.25 mL DMF was slowly added to a solution of 4-phenyl-9*H*-carbazole-2-carboxylate (15.0 mg, 0.047 mmol, 1.0 equiv.) in DMF (0.75 mL) in a dry vial under nitrogen. The reaction mixture was stirred at room temperature until complete consumption of starting material was observed by TLC. To the reaction mixture was then added water and extracted with ethyl acetate for three times. The combined organic layers were dried over MgSO₄ and concentrated in vacuo. The resulting residue was separated on silica gel by PE/EA gradient (10:1) to get the target product (15.0 mg, 80%).

 $R_f 0.4$ (Petroleum ether/EtOAc = 10/2).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.49 (s, 1H), 8.17 (d, J = 1.4 Hz, 1H), 7.83 (d, J = 1.4 Hz, 1H), 7.63 – 7.47 (m, 7H), 7.34 (d, J = 8.6 Hz, 1H), 4.44 (q, J = 7.1 Hz, 2H), 1.43 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.1, 140.0, 139.7, 137.8, 129.8, 129.1, 128.8, 128.4, 125.7, 124.2, 123.6, 122.4, 112.4, 112.3, 111.6, 61.3, 14.5.

HRMS (ESI) m/z: $[M + Li]^+$ Calcd for C₂₁H₁₆BrLiNO₂⁺ 400.0519; Found 400.0566.

(4-Phenyl-9H-carbazol-2-yl)methanol (6)

In a dry Schlenk tube charged with nitrogen ethyl 4-phenyl-9*H*-carbazole-2carboxylate (22.0 mg, 0.07 mmol, 1.0 equiv.) was taken in THF (1 mL). To this was added LiAlH₄ (65.0 mg, 1.75 mmol, 2.5 equiv.) at 0°C. The rection mixture was warmed to room temperature and stirred for 1 h. The reaction mixture was quenched with 0.2 mL aq KOH (3 M) at 0°C.The reaction mixture was extracted with ethyl acetate for three times. The combined organic layers were dried over MgSO₄ and concentrated in vacuo. The resulting residue was separated on silica gel by PE/EA gradient (10:3) to get the target product (17.0 mg, 91%).

 $R_f 0.25$ (Petroleum ether/EtOAc = 10/4).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.08 (s, 1H), 7.54 (d, J = 6.3 Hz, 2H), 7.45 – 7.37 (m, 4H), 7.29 – 7.19 (m, 3H), 7.01 (s, 1H), 6.93 (d, J = 5.5 Hz, 1H), 4.76 (s, 2H), 1.94 (s, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 141.1, 140.2, 140.1, 138.8, 137.9, 129.2, 128.6, 127.7, 125.8, 122.8, 122.4, 120.3, 119.2, 110.6, 108.1, 65.8.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₉H₁₆NO⁺ 274.1226; Found 274.1228.
(*R*)-Methyl 3-(1*H*-indol-3-yl)-2-(4-phenyl-9*H*-carbazole-2carboxamido)propanoate (8)

To a solution of ethyl 4-phenyl-9*H*-carbazole-2-carboxylate (73.0 mg, 0.23 mmol, 1 equiv.) in ethanol (5 mL) and H₂O (1 mL) was added NaOH (136.0 mg, 3.48 mmol, 15 equiv.). The reaction mixture was refluxed under air until complete consumption of starting material was observed by TLC. The pH was adjusted to 4 with 6 N HCl. The ethanol was evaporated and resulting precipitate was filtered. The residue was washed with H₂O (5 mL) to obtain 4-phenyl-9*H*-carbazole-2-carboxylic acid 7 which is used without further purification (52.0 mg, 78%).

HOBt (8.5 mg, 0.063 mmol, 1.2 equiv.), EDCI (12.1 mg, 0.063 mmol, 1.2 equiv.), Et_3N (15.8 mg, 0.156 mmol, 3 equiv.) and D-Tryptophan methyl ester hydrochloride (16.1 mg, 0.063 mmol, 1.2 equiv.) were added to a solution of 4-phenyl-9*H*-carbazole-2-carboxylic acid **7** (15.0 mg, 0.052 mmol, 1 equiv.) in DMF (1 mL). The reaction mixture was stirred under nitrogen at room temperature until complete consumption of starting material was observed by TLC. To the reaction mixture was then added water and extracted with ethyl acetate for three times. The combined organic layers were dried over MgSO₄ and concentrated in vacuo. The resulting residue was separated on silica gel by PE/EA gradient (10:4) to get the target product (22.0 mg, 88%).

 $R_f 0.2$ (Petroleum ether/EtOAc = 10/4).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 8.98 (s, 1H), 8.40 (s, 1H), 7.88 (s, 1H), 7.62 (d, J = 7.2, 1H), 7.57 – 7.44 (m, 6H), 7.41 – 7.28 (m, 4H), 7.16 (s, 1H), 7.10 - 6.89 (m, 4H), 5.26 (s, 1H), 3.74 (s, 3H), 3.51 (s, 2H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 172.8, 167.9, 141.1, 140.5, 139.7, 137.6, 136.2, 130.6, 129.3, 128.6, 127.9, 127.7, 126.8, 123.6, 123.1, 122.9, 122.4, 122.2 120.0, 119.4, 119.0, 118.6, 111.5, 111.0, 110.0, 109.6, 53.8, 52.5, 27.6.

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{31}H_{25}N_3NaO_3^+$ 510.1788; Found 510.1800.

Diphenyl(4-phenyl-9H-carbazol-2-yl)methanol (9)

To a solution of phenyl(4-phenyl-9*H*-carbazol-2-yl)methanone (20.0 mg, 0.057 mmol, 1 equiv.) in THF (2 mL) at 0°C was added phenylmagnesium bromide (1.3 equiv.) under nitrogen. The resulting solution was allowed to stir at 60 °C for 2 h. The reaction mixture was then cooled to 0°C and quenched with saturated aqueous ammonium chloride solution. The aqueous layer is extracted with EtOAc and the organic layer was washed with brine, dried over Na₂SO₄. The solvent was removed under reduced pressure and the residue was separated on silica gel by PE/EA gradient (30:1) to get the target product as a colourless liquid (19.0 mg, 78% yield).

 $R_f 0.48$ (Petroleum ether/EtOAc = 30/1).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.00 (s, 1H), 7.62 – 7.55 (m, 2H), 7.51 – 7.42 (m, 4H), 7.38 – 7.28 (m, 12H), 7.24 (d, *J* = 1.6 Hz, 1H), 7.09 (d, *J* = 1.6 Hz, 1H), 6.97 (ddd, *J* = 8.1 Hz, 6.4 Hz, 1.8 Hz, 1H), 2.94 (s, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 147.2, 145.0, 141.2, 140.3, 139.6, 137.2, 129.4, 128.5, 128.15, 128.07, 127.6, 127.4, 125.8, 122.7, 122.5, 121.5, 119.9, 119.3, 110.6, 109.6, 82.6.

HRMS (ESI) m/z: $[M + Li]^+$ Calcd for C₃₁H₂₃NO⁺ 432.1934; Found 432.2016.

Control experiments

(E)-ethyl 3-(3-(1-phenylvinyl)-1H-indol-2-yl)acrylate (10)

(*E*)-ethyl 3-(1*H*-indol-2-yl)acrylate (43.5 mg, 0.2 mmol), phenylacetylene (26.6 mg, 0.26 mmol) and IPrAuNTf₂ (3.5 mg, 0.004 mmol) were added to a dried vial sequentially in dry toluene (1 mL, 0.2 M) under air. The reaction was stirred at 90 $^{\circ}$ C for 12 h. Then the reaction mixture was concentrated under reduced pressure with the aid of a rotary evaporator and separated on silica gel by PE/EA gradient (10:1) to get the target product (61.0 mg, 95% yield).

 $R_f 0.50$ (Petroleum ether/EtOAc = 10/1).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.96 (s, 1H), 7.80 (d, J = 16.1 Hz, 1H), 7.42 – 7.39 (m, 2H), 7.34 – 7.30 (m, 3H), 7.25 (ddd, J = 8.1 Hz, 5.1 Hz, 1.0 Hz, 1H), 7.16 (d, J = 8.0 Hz, 1H), 7.07 – 6.93 (m, 1H), 6.35 (d, J = 16.1 Hz, 1H), 5.90 (d, J = 1.5 Hz, 1H), 5.35 (d, J = 1.5 Hz, 1H), 4.29 (q, J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 167.3, 141.1, 137.3, 133.3, 131.5, 128.4, 128.0, 127.4, 125.0, 123.6, 121.5, 120.4, 117.9, 115.5, 111.2, 77.4, 60.7, 14.5.

HRMS (ESI) m/z: $[M + NH_4]^+$ Calcd for $C_{21}H_{23}N_2O_2^+$ 335.1754; Found 335.1717.

Condition A: To a solution of the intermediate **10** (10.9 mg, 0.05 mmol) in toluene (0.25 mL) was added IPrAuNTf₂ (0.9 mg, 0.001 mmol) under air and then the reaction mixture was allowed to stir at 130 °C until complete consumption of the starting material monitored by TLC (6 h). The yield was determined by ¹H NMR using dibutyl phthalate as the internal standard (96% yield).

Condition B: The solution of the intermediate **10** (10.9 mg, 0.05 mmol) in toluene (0.25 mL) was allowed to stir under air at 130 °C until complete consumption of the starting material monitored by TLC (36 h). The yield was determined by ¹H NMR using dibutyl phthalate as the internal standard (78% yield).

$$\begin{array}{c} & 8.42 \\ & 7.67 \\ & 7.65 \\ & 7.65 \\ & 7.65 \\ & 7.55 \\ & 7.75 \\ & 7.73 \\ & 7.24 \\ & 7.25 \\ & 7.24 \\ & 7.25 \\ & 7.$$

8.52 8.17 7.59 7.56 7.56 7.56 7.54 7.54 7.54 7.54 7.54 4.45 4.45 4.43 4.43 1.45 1.43 1.42 1.26

$$\begin{array}{c} -8.70\\ -8.70\\ 8.28\\ 8.28\\ 7.53\\ 7.55\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.53\\ 7.1$$

$$-8.47$$

 -8.23
 -8.23
 -8.23
 -8.23
 -8.23
 -8.23
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.63
 -7.74
 -7.74
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 -7.73
 $-$

<4.45 <4.44 $\overbrace{1.45}^{1.45}$

```
\overbrace{1.46}^{1.46}
```


 $\overbrace{1.41}^{1.44}$

S N H 3t OEt

 $\overbrace{1.42}^{1.46}$

Br Ph OEt 5

 $\overbrace{1.41}^{1.45}$

-1.94

1.20-1.00-1.09-1.28 6.06 4.28 1.32 4.00 9.5 9.0 5.5 5.0 4.5 f1 (ppm) 8.5 4.0 3.0 2.5 1.5 7.0 6.5 2.0 1.0 0.5 8.0 7.5 6.0 - 27.7

-3.74 -3.51

0.0

$$-8.96 - 8.06 -$$

