Supporting Information

Contents

1. General Information S2
2. General Procedures S3
3. Experimental Procedures S4
3.1. Synthesis of Secondary Amide Starting Materials S4
3.2. Synthesis of Chloroamides and Evaluation of Configurational Stability S13
3.3. Synthesis of N -Alkyl Amides S42
3.4. Correlation of Racemization Rates with Charton Parameters and θ S47
4. X-Ray Crystallography S51
5. Computational Modelling S61
5.1. Computational Methods S61
5.2 Investigation of solvent effect on racemization and amide rotation barriers S61
5.3 Summary of additional geometrical parameters S62
5.4 Summary of the associated computational dataset contents S62
6. References S67
7. NMR Spectra S68

1. General Information

Reactions were carried out under an atmosphere of nitrogen unless stated otherwise. Temperatures of $0{ }^{\circ} \mathrm{C}$ were obtained using an ice/water bath. Heating was achieved using an oil bath equipped with a contact thermometer.

Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dimethylformamide (DMF) were purchased from Acros. All other solvents and reagents were used as supplied without prior purification.

Thin layer chromatography was performed on Merck Kieselgel $60 \mathrm{~F}_{254} 0.25 \mathrm{~mm}$ pre-coated aluminium plates. Product spots were visualized under UV light ($\lambda=254 \mathrm{~nm}$) and/or by staining with potassium permanganate solution. Flash chromatography was performed using VWR silica gel 60 ($40-63 \mu \mathrm{~m}$ particle size) using head pressure by means of a nitrogen line.
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded using a Bruker Avance III 300 MHz , Bruker Avance II 400 MHz , Bruker Avance 500 MHz , or a Bruker Avance III HD 700 MHz , in the deuterated solvent stated, using the residual nondeuterated solvent signal as an internal reference. Chemical shifts are quoted in ppm with signal splittings recorded as singlet (s), doublet (d), triplet (t), quartet (q), quintet (qn), sextet (sext), septet (sept), octet (oct), nonet (non) and multiplet (m). The abbreviation br denotes broad. Coupling constants, J, are measured to the nearest 0.1 Hz and are presented as observed.

Infrared spectra were recorded on a PerkinElmer UATR Two spectrometer with attenuated total reflectance. Absorption maxima $\left(\lambda_{\max }\right)$ are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$.

HRMS was recorded on a Waters Xevo G2-XS Quadrupole Time-of-Flight (QToF) spectrometer equipped with a Waters Acquity UPLC i-Class LC system, under conditions of electrospray ionisation (ESI). The mass reported is that containing the most abundant isotopes, with each value rounded to 4 decimal places and within 10 ppm of the calculated mass.

Chiral normal phase HPLC was performed on a Dionex Ultimate 3000 HPLC unit equipped with UV-vis diodearray detector, fitted with the appropriate Daicel Chiralpak column (dimensions: $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{~cm}$) along with the corresponding guard column ($0.4 \mathrm{~cm} \varnothing \times 1 \mathrm{~cm}$). Wavelengths (λ) are reported in $n m$, retention times $\left(t_{R}\right)$ are reported in minutes and solvent flow rates are reported in $\mathrm{mL} \mathrm{min}^{-1}$.

2. General procedures

2.1 General Procedure A: Chlorination of Secondary Amides

To a round bottomed flask, equipped with a stirrer bar was added trichloroisocyanuric acid (1.1 eq.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($9.1 \mathrm{~mL} / \mathrm{mmol}$). The resulting stirred suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and the appropriate secondary amide $\mathbf{1 a}$-I (1 eq.) was added portion wise. Following the addition, the ice-bath was removed and the reaction was stirred for 30 mins at room temperature. The reaction was then diluted with water, the layers separated, and the aqueous layer extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude residue was purified via column chromatography (see experimental methods section for details).

2.2 General Procedure B: Determination of Racemisation Barrier

According to the literature method, ${ }^{1}$ the appropriate racemic compound (1 mg) was dissolved in 2 mL HPLC grade n-hexane. The sample was subjected to semi-preparative normal-phase HPLC ($100 \mu \mathrm{~L}$ injection volume) under the specified conditions using an analytical normal phase chiral column (dimensions: $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{~cm}$) along with the corresponding guard column ($0.4 \mathrm{~cm} \varnothing \times 1 \mathrm{~cm}$). The slower eluting enantiomer was collected into a HPLC vial and the resulting solution was immediately analyzed by normal phase HPLC under identical conditions ($100 \mu \mathrm{~L}$ injection volume). The enantiomeric ratio and time were recorded and taken as the reference for initial time and enantiomeric ratio. The same sample was then allowed to stand at room temperature $\left(20^{\circ} \mathrm{C}\right.$, 293 K) reinjecting ($100 \mu \mathrm{~L}$ injection volumes) at regular intervals. The data obtained form these HPLC experiments is shown in the experimental methods section below.

A graph of $\ln (1 / \mathrm{ee})$ was plotted against time (s) to yield the rate constant of racemisation (k_{rac}) as the gradient. The half-life of racemisation ($t_{1 / 2} \mathrm{rac}$) was calculated according to equation (1) and the rate constant of enantiomerisation (kent) was calculated according to equation (2). The barrier to racemisation was then calculated according to the Eyring equation (3), where R is the gas constant ($8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$); T is the temperature in Kelvin; k_{B} is the Boltzmann constant $\left(1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}\right)$ and h is Planck's constant $\left(6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right)$.
(1) $\quad t_{\frac{1}{2}} r a c=\frac{\ln (2)}{k_{r a c}}$
(2) $\quad k_{e n t}=\frac{k_{r a c}}{2}$
(3) $\Delta G^{\ddagger}=-R T \ln \left(\frac{k_{\text {ent }} h}{k_{B} T}\right)$

3. Experimental Procedures

3.1 Synthesis of Secondary Amide Starting Materials

N-(2-(tert-Butyl)phenyl)-3-phenylpropanamide, 1a

A stirred solution of hydrocinnamic acid ($5.54 \mathrm{~g}, 36.9 \mathrm{mmol}, 1.1 \mathrm{eq}$) in $\mathrm{SOCl}_{2}(17 \mathrm{~mL}, 230 \mathrm{mmol}, 7 \mathrm{eq}$.) was heated to reflux for 3 hours. The solution was allowed to cool and the SOCl_{2} was removed in vacuo to yield the acid chloride as a yellow oil. In a separate flask, 2-tert-butyl aniline ($5.00 \mathrm{~g}, 33.5 \mathrm{mmol}, 1 \mathrm{eq}$.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(115 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. Triethylamine ($5.1 \mathrm{~mL}, 36.7 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added and the acid chloride was added to the stirred solution dropwise. The solution was warmed to room temperature and stirred for 16 h. The reaction was diluted with water, the layers separated and the aqueous layer extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude residue was purified by recrystallization (EtOAc/n-hexane) to afford compound $\mathbf{1 h}$ as an off white solid ($6.02 \mathrm{~g}, 64 \%$ yield). Spectral data is consistent with that reported previously. ${ }^{2}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.52\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.41-7.04\left(\mathrm{~m}, 9 \mathrm{H}, 8 \mathrm{H}_{\mathrm{Ar}}\right.$ and $\left.\mathrm{N}-\mathrm{H}\right), 3.10(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{H}_{10} / \mathrm{H}_{11}\right), 2.71\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{10} / \mathrm{H}_{11}\right), 1.32\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\boldsymbol{\delta c}_{\mathrm{c}} 170.5,142.8,140.8,135.1,128.7,128.6,128.2,126.9,126.7,126.5,126.3,39.7$, 34.6, 31.6, 30.8.

N-(2-(tert-Butyl)phenyl)propionamide, 1b

To a stirred solution of 2-tert-butylaniline ($1.00 \mathrm{~g}, 6.70 \mathrm{mmol}, 1 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{~mL})$, was added triethylamine ($1.0 \mathrm{~mL}, 7.2 \mathrm{mmol}, 1.1$ eq.). The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and propionyl chloride ($0.64 \mathrm{~mL}, 7.3 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added dropwise. The mixture was warmed to room temperature and stirred for 1 h . Water was then added, the layers separated, and aqueous layer extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude product was purified by recrystallization (EtOAc/ petrol 40-60) to afford compound $\mathbf{1 b}$ as a white solid ($995 \mathrm{mg}, 72 \%$ yield).

Spectral data is consistent with that previously reported. ${ }^{3}$
 and N-H), $2.46\left(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{1}\right), 1.31\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{11}\right)$.
${ }^{13}$ C NMR (75 MHz , CDCl3) סc 171.9, 142.5, 135.2, 128.1, 126.8, 126.5, 126.1, 34.6, 30.8, 30.7, 9.8.

N-(2-(tert-Butyl)phenyl)octanamide, 1c

To a stirred solution of 2-tert-butyl aniline (250 mg , 1.68 mmol , 1 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL}$) was added triethylamine ($0.26 \mathrm{~mL}, 1.8 \mathrm{mmol}, 1.1 \mathrm{eq}$.). The mixture was cooled to $0^{\circ} \mathrm{C}$ and octanoyl chloride ($0.31 \mathrm{~mL}, 1.8 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added dropwise. The reaction was warmed to room temperature and allowed to stir for 2 hours. The reaction was diluted with water, the layers separated, and the aqueous layer extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude residue was purified by column chromatography ($25 \% \mathrm{Et}_{2} \mathrm{O}$ / petrol $40-60$) to afford $\mathbf{1 c}$ as a white solid ($290 \mathrm{mg}, 63 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59\left(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 7.39\left(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 7.26-7.11\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{5}\right.$ and H_{6} and $N-H), 2.39\left(t, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 1.75\left(\mathrm{qn}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{11}\right), 1.50-1.18\left(\mathrm{~m}, 17 \mathrm{H}, \mathrm{H}_{1}, \mathrm{H}_{12}, \mathrm{H}_{13}, \mathrm{H}_{14}, \mathrm{H}_{15}\right)$, $0.88\left(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{16}\right)$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{c}} 171.5,142.5,135.4,128.1,127.0,126.6,126.2,38.0,34.7,31.8,30.9,29.5,29.2$, 25.8, 22.7, 14.2.

HRMS (ESI ${ }^{+}$): m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$276.2322; found 276.2308, $\Delta 5.1 \mathrm{ppm}$.
FTIR (neat) v/cm ${ }^{-1}$: 3262, 2958, 2915, 2849, 1649, 1517, 1286, 1182, 1052, 756, 698, 561.
Melting point (${ }^{\circ} \mathrm{C}$): 82-84.

N-(2-(tert-Butyl)phenyl)cyclopropanecarboxamide, 1d

A stirred solution of 2-tert-butylaniline ($1.00 \mathrm{~g}, 6.70 \mathrm{mmol}, 1 \mathrm{eq}$.$) and triethylamine (1.0 \mathrm{~mL}, 7.4 \mathrm{mmol}, 1.1 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$. Cyclopropane carbonyl chloride ($0.66 \mathrm{~mL}, 7.4 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added dropwise and the mixture was stirred at room temperature for 16 hours. The reaction was diluted with water, the layers separated and the aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried
over MgSO_{4}, filtered, and concentrated in vacuo. The crude residue was recrystallised (EtOAc/n-Hexane) to afford 1d as white crystals ($1.22 \mathrm{~g}, 84 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.67-7.33\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}_{\text {Ar }}\right), 7.27-7.11\left(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}_{\mathrm{Ar}}\right.$ and $\left.\mathrm{N}-\mathrm{H}\right), 1.61-1.34(\mathrm{~m}, 10 \mathrm{H}$, $\left.\mathrm{H}_{1}, \mathrm{H}_{10}\right), 1.14-0.57\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{11}\right)$.
${ }^{13}{ }^{13}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{Cc}_{\mathrm{c}} 171.9,142.4,135.6,128.1,126.9,126.6,126.0,30.8,15.9,8.7,7.6$.
HRMS (ESI ${ }^{+}$): m/z calc'd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$218.1539; found 218.1554, $\Delta 6.9 \mathrm{ppm}$.
FTIR (neat) $\mathbf{v / c m} \mathbf{c m}^{-1}=3242,3004,2957,1650,1524,1199,755$.
Melting point (${ }^{\circ}$ C) 151-154.

N-(2-(tert-Butyl)phenyl)cyclobutanecarboxamide, 1e

2-tert-butylaniline ($1.00 \mathrm{~g}, 6.70 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and cyclobutanecarboxylic acid ($1.0 \mathrm{~mL}, 10 \mathrm{mmol}, 1.5$ eq.) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$. The stirred solution was cooled to $\mathrm{O}^{\circ} \mathrm{C}$ and N -(3-dimethylaminopropyl)- N^{\prime} ethylcarbodiimide hydrochloride ($1.94 \mathrm{~g}, 10.1 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was charged portion wise. The mixture was warmed to room temperature and stirred for 16 h . The reaction was then poured into water, the layers separated, and the aqueous layer extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were sequentially washed with $\mathrm{NaHCO}_{3}, 1 \mathrm{M} \mathrm{HCl}$ and brine. The combined organic layer was dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude residue was recrystallised (EtOAc/n-hexane) to yield $\mathbf{1 e}$ as a white solid ($850 \mathrm{mg}, 55 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}_{\mathrm{H}} 7.65\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.37\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.25-6.87\left(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}_{\mathrm{Ar}}\right.$ and $N-H$), $3.21\left(q n, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 2.51-2.17\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{11}\right), 2.13-1.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{12}\right), 1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13}{ }^{1}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{Cc}_{\mathrm{c}} 173.0,142.1,135.5,127.5,126.9,126.6,125.9,41.0,34.7,30.8,25.4,18.2$. HRMS (ESI ${ }^{+}$): \mathbf{m} / \mathbf{z} calc'd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NNaO}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$254.1515; found 254.1494, $\Delta 8.3 \mathrm{ppm}$.

FTIR (neat) $\mathbf{v} / \mathrm{cm}^{-1}=3244,2998,2966,2865,1640,1515,1250,1228,746,671,488$.
Melting point (${ }^{\circ} \mathrm{C}$): 138-140.

N-(2-(tert-Butyl)phenyl)cyclopentanecarboxamide, 1f

A stirred solution of 2-tert-butylaniline ($1.00 \mathrm{~g}, 6.70 \mathrm{mmol}, 1 \mathrm{eq}$.) and triethylamine ($1.0 \mathrm{~mL}, 7.4 \mathrm{mmol}, 1.1 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(22 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$. Cyclopentanecarbonyl chloride ($0.90 \mathrm{~mL}, 7.4 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added dropwise and the mixture was warmed to room temperature and stirred for 16 h . The reaction was diluted with water, the layers separated and the aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude residue was recrystallised (EtOAc/nhexane) to afford $\mathbf{1 f}$ as a white solid ($826 \mathrm{mg}, 50 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.64\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.38\left(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.29-7.08(\mathrm{~m}, 3 \mathrm{H}$, $2 \mathrm{H}_{\text {Ar }}$ and $\mathrm{N}-\mathrm{H}$), 2.73 (qn, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}$), $2.13-1.55\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{11}\right.$ and $\left.\mathrm{H}_{12}\right), 1.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13}$ C NMR (75 MHz, CDCl 3) $\delta 174.3,142.1,135.6,127.7,126.9,126.6,125.9,47.2,34.7,30.8,30.4,26.0$.
HRMS (ESI ${ }^{+}$): m / z calc'd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NNaO}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$268.1672; found 268.1651, $\Delta 7.8 \mathrm{ppm}$.
FTIR (neat) v/cm ${ }^{-1}$: 3242, 2953, 2866, 1648, 1520, 756, 706.
Melting point(${ }^{\circ} \mathrm{C}$): 148-149.

N-(2-(tert-Butyl)phenyl)cyclohexanecarboxamide, 1g

2-tert-Butyl aniline ($1.00 \mathrm{~g}, 6.70 \mathrm{mmol}, 1 \mathrm{eq}$.) and cyclohexanecarboxylic acid ($1.3 \mathrm{~mL}, 10 \mathrm{mmol}, 1.5 \mathrm{eq}$.) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6.7 mL). The stirred solution was cooled to $0{ }^{\circ} \mathrm{C}$ and N -(3-dimethylaminopropyl)- N^{\prime} ethylcarbodiimide hydrochloride ($1.94 \mathrm{~g}, 10.1 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was charged portion wise. The mixture was warmed to room temperature and stirred for 16 h . The reaction was then poured into water, the layers separated, and the aqueous layer extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were washed sequentially with $\mathrm{NaHCO}_{3}, 1 \mathrm{M} \mathrm{HCl}$ and brine. The combined organics were dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude residue was recrystallised (EtOAc/n-hexane) to yield $\mathbf{1 g}$ as white crystals ($442 \mathrm{mg}, 25 \%$ yield). Spectral data is consistent with that reported previously. ${ }^{2}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.62\left(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.40\left(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.29-7.12\left(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}_{\mathrm{Ar}}\right.$ and N-H), $2.31\left(\mathrm{tt}, \mathrm{J}=11.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 2.11-1.20\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}_{11}, \mathrm{H}_{12}\right.$ and $\left.\mathrm{H}_{13}\right) 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{c} 174.2,142.5,135.5,128.0,126.9,126.6,126.0,46.7,34.7,30.8,29.8,25.9,25.9$.

N -(2-isopropylphenyl)-3-phenylpropanamide, 1h

A stirred solution of 2-isopropylaniline ($450 \mathrm{mg}, 3.33 \mathrm{mmol}, 1 \mathrm{eq}$.) and triethylamine ($0.51 \mathrm{~mL}, 3.7 \mathrm{mmol}, 1.1 \mathrm{eq}$.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11.3 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$. Freshly prepared hydrocinnamoyl chloride (0.55 mL , $3.7 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added dropwise and the mixture was warmed to room temperature and stirred for 16 hours. After this time, the reaction was diluted with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the layers separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined organics were dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude residue was purified by column chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O} /$ petrol $40-60$) to yield $\mathbf{1 h}$ as an off-white solid (739 mg, 83\% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.61$ - $7.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 7\right.$), 7.36 - 7.12 (m, 8H, $\mathrm{H}_{\text {ar }}$), $6.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 3.08(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $\left.2 H, H_{11}\right), 2.78-2.64\left(m, 3 H, H_{2}+H_{10}\right), 1.13\left(d, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{H}_{1}\right)$.

Diagnostic signals for the minor amide isomer were observed at; 2.99-2.89 ($\mathrm{m}, \mathrm{H}_{11}$) 2.43-2.35 ($\mathrm{m}, \mathrm{H}_{10}$),
${ }^{13}{ }^{2}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{Cc}_{\mathrm{c}} 170.9,140.9,140.7,133.9,128.8,128.5,126.5,126.4,126.3,125.7,125.2,39.3$, 31.8, 27.8, 23.2.

HRMS (ESI+): m/z calc'd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$290.1515; found 290.1526, $\Delta 3.8 \mathrm{ppm}$.
IR ($\mathbf{c m}^{-1}$): 3250, 2963, 1641, 1525, 753, 698
m.p (${ }^{\circ} \mathrm{C}$): 87-89

N-(2-Fluoro-6-methylphenyl)-3-phenylpropanamide, 1i

A stirred solution of 2-fluoro-6-methylaniline ($416 \mathrm{mg}, 3.33 \mathrm{mmol}, 1$ eq.) and triethylamine ($0.51 \mathrm{~mL}, 3.7 \mathrm{mmol}$, 1.1 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(11.3 \mathrm{~mL}\right.$) was cooled to $0{ }^{\circ} \mathrm{C}$. Freshly prepared hydrocinnamoyl chloride ($0.55 \mathrm{~mL}, 3.7 \mathrm{mmol}$, 1.1 eq.) was added dropwise and the mixture was warmed to room temperature and stirred for 16 hours. After this time, the reaction was diluted with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the layers separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined organics were dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude residue was purified by column chromatography ($50 \% \mathrm{Et}_{2} \mathrm{O} /$ petrol $40-60$) to yield $\mathbf{1 i}$ as an off-white solid ($643 \mathrm{mg}, 75 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $)^{2}$) $\boldsymbol{\delta}_{\mathrm{H}} 7.35-7.18\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{12}+\mathrm{H}_{13}+\mathrm{H}_{14}\right), 7.15-7.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 7.00-6.87(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}_{2}+\mathrm{H}_{4}\right), 6.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 3.06\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 2.72\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{9}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{6}\right)$.

Diagnostic signals for the minor amide isomer were observed at; $2.93\left(\mathrm{~s}, \mathrm{H}_{9} / \mathrm{H}_{10}\right), 2.15\left(\mathrm{~s}, \mathrm{H}_{6}\right)$.
${ }^{13}$ C NMR (101 MHz, CDCl 3) $\delta 171.0,157.7(\mathrm{~d}, \mathrm{~J}=246.9 \mathrm{~Hz}$), 140.7, 138.0, 128.7, 128.5, 127.9 ($\mathrm{d}, \mathrm{J}=8.9 \mathrm{~Hz}$), 126.5, 125.9 (d, $J=3.4 \mathrm{~Hz}$), 123.2 ($\mathrm{d}, \mathrm{J}=13.1 \mathrm{~Hz}$), 113.2 ($\mathrm{d}, \mathrm{J}=20.5 \mathrm{~Hz}$), 38.3, 31.8, 18.1.
${ }^{19}$ F NMR (376 MHz, CDCl 3) $\delta_{\text {F }}-121.94$ ($d d, J=9.6,5.5 \mathrm{~Hz}$).
A diagnostic signal for the minor amide isomer was observed at; -120.29 (s)
HRMS (ESI+): m / z calc'd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FNO}^{+}[\mathrm{M}+\mathrm{H}]^{+} 258.1289$; found 258.1291, $\Delta 0.8 \mathrm{ppm}$.
IR (cm $^{-1}$): 3243, 3029, 1657, 1525, 1275,774
m.p (${ }^{\circ}$ C): 117-119

N-(2-Chloro-4,6-dimethylphenyl)-3-phenylpropanamide, 1j

A stirred solution of hydrocinnamic acid ($849 \mathrm{mg}, 5.65 \mathrm{mmol}, 1.1$ eq.) in $\mathrm{SOCl}_{2}(2.6 \mathrm{~mL}, 36 \mathrm{mmol}, 7$ eq.) was heated to reflux for 3 hours. The solution was allowed to cool and the SOCl_{2} was removed in vacuo to yield the acid chloride as a yellow oil. In a separate flask, 2-chloro-4,6-dimethylaniline ($800 \mathrm{mg}, 5.14 \mathrm{mmol}, 1$ eq.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(18 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. Triethylamine ($0.79 \mathrm{~mL}, 5.7 \mathrm{mmol}, 1.1$ eq.) was added and the acid chloride was added to the stirred solution dropwise. The solution was warmed to room temperature and stirred for 16 h . The reaction was diluted with water, the layers separated and the aqueous layer extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude residue was purified by column chromatography ($40 \% \mathrm{Et}_{2} \mathrm{O} /$ petrol $40-60$) to yield $\mathbf{1 j}$ as an off white solid ($677 \mathrm{mg}, 46 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\text {н }} 7.33-7.19\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.06-7.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 6.93-6.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 6.86(\mathrm{br}$, $1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 3.08\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 2.76-2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{11}\right), 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{4}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{7}\right)$.

Diagnostic signals for the minor amide isomer were observed at; $7.14-7.08\left(\mathrm{~m}, \mathrm{H}_{\mathrm{Ar}}\right), 6.95\left(\mathrm{~s}, \mathrm{H}_{2} / \mathrm{H}_{5}\right) 6.60(\mathrm{br} \mathrm{s}$, $\mathrm{N}-\mathrm{H}), 2.99$ - $2.86\left(\mathrm{~m}, \mathrm{H}_{10} / \mathrm{H}_{11}\right), 2.29\left(\mathrm{~s}, \mathrm{H}_{4} / \mathrm{H}_{7}\right)$.
${ }^{13}{ }^{3}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta c}_{\mathrm{c}} 170.9,140.7,138.2,137.8,131.1,130.1,129.9,128.7,128.6,127.5,126.4,38.3$, 31.7, 20.9, 18.9.

HRMS (ESI ${ }^{+}$) m/z calcd. For $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClNO}^{+}[\mathrm{M}+\mathrm{H}]^{+} 288.1150$; found 288.1134, $\Delta 5.6 \mathrm{ppm}$.
FTIR (neat) v/cm ${ }^{-1}$: 3239, 3025, 2928, 1660, 1518, 971, 848, 696, 485.
Melting point (${ }^{\circ} \mathrm{C}$): 164-166.

N-(2-Bromo-4,6-dimethylphenyl)-3-phenylpropanamide, 1k

A stirred solution of 2-bromo-4,6-dimethylaniline ($666 \mathrm{mg}, 3.33 \mathrm{mmol}, 1 \mathrm{eq}$.) and triethylamine (0.51 mL , 3.7 mmol , 1.1 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (11.3 mL) was cooled to $0^{\circ} \mathrm{C}$. Hydrocinnamoyl chloride ($0.55 \mathrm{~mL}, 3.7 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added dropwise and the mixture was warmed to room temperature and stirred for 16 hours. After this time, the reaction was diluted with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the layers separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ twice. The combined organics were dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude residue was purified by column chromatography ($1: 1 \mathrm{Et}_{2} \mathrm{O} /$ petrol $40-60$) to yield $\mathbf{1 k}$ as an off-white solid (297 mg , 27% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}_{\mathrm{H}} 7.38-7.17\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.99-6.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 6.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 3.09(\mathrm{t}, \mathrm{J}=7.7$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{11}\right), 2.80-2.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 2.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{4}\right), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{7}\right)$.

Diagnostic signals for the minor amide isomer were observed at; 7.14 - 7.08 ($\mathrm{m}, \mathrm{H}_{\mathrm{Ar}}$), $7.00\left(\mathrm{~s}, \mathrm{H}_{5}\right), 6.62(\mathrm{~s}, \mathrm{~N}-\mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{c} 170.7,140.7,138.7,137.9,131.3,130.9,130.7,128.7,128.6,126.5,121.9,38.4$, 31.7, 20.8, 19.2.

HRMS (ESI+): m/z calc'd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NOBrNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$354.0464; found 354.0464, $\Delta 0.1 \mathrm{ppm}$.
IR (cm^{-1}): 3243, 3060, 1657, 1519, 1234, 697
m.p (${ }^{\circ} \mathrm{C}$): 157-160

N-(2-(tert-Butyl)phenyl)benzamide, 1l

A stirred solution of 2-tert-butylaniline ($0.957 \mathrm{~g}, 6.41 \mathrm{mmol}, 1 \mathrm{eq}$.) in EtOAc (6.4 mL) was cooled to $0{ }^{\circ} \mathrm{C}$. Benzoyl chloride ($0.74 \mathrm{~mL}, 6.4 \mathrm{mmol}, 1 \mathrm{eq}$.) was added dropwise followed by the dropwise addition of a saturated solution of aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(3.2 \mathrm{~mL})$. The reaction mixture was warmed to room temperature and stirred for 2 hours and then the reaction mixture was diluted with water and extracted three times with EtOAc. The combined organics were dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude solid was recrystallised (EtOAc/ petrol $40-60$) affording the title compound $\mathbf{1 I}$ as a white solid ($1.14 \mathrm{~g}, 70 \%$). Spectral data is consistent with that previously reported. ${ }^{4}$
${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.96-7.88\left(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}_{\mathrm{Ar}}+\mathrm{N}-\mathrm{H}\right), 7.74\left(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.62-7.47(\mathrm{~m}, 3 \mathrm{H}$, $3 H_{\text {ar }}$), 7.45 (dd, $J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {ar }}$), $7.34-7.16$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}$), 1.46 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{H}_{1}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\mathrm{\delta c}_{\mathrm{c}} 165.8,142.8,135.4,135.1,132.0,129.0,128.0,127.1,127.1,126.8,126.4,34.8$, 30.9.

N-(2-(tert-Butyl)phenyl)-4-trifluoromethylbenzamide, 1m

para-Trifluoromethylbenzoic acid ($1.40 \mathrm{~g}, 7.37 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was suspended in SOCl_{2} ($3.8 \mathrm{~mL}, 52 \mathrm{mmol}, 7.0 \mathrm{eq}$.) and heated to reflux for 3 hours, with stirring. The solution was allowed to cool and the SOCl_{2} was removed in vacuo to yield the acid chloride as a yellow oil. In a separate flask, 2-tert-butylaniline ($1.00 \mathrm{~g}, 6.70 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. Triethylamine ($1.0 \mathrm{~mL}, 7.4 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added and the acid chloride was added to the stirred solution dropwise. The reaction was warmed to room temperature and stirred for 16 h . The reaction was diluted with water, the layers separated and the aqueous layer extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude residue was purified by column chromatography (10% EtOAc/ petrol $40-60$) to yield $\mathbf{1 m}$ as an off white solid (403 $\mathrm{mg}, 19 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}_{\mathrm{H}} 8.02(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{Har}), 7.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 7.79\left(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}, 2 \mathrm{Har}^{\mathrm{r}}\right.$), 7.76 7.66 ($\mathrm{m}, 1 \mathrm{H} \mathrm{H}_{\mathrm{Ar}}$), 7.46 (dd, $J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}$), $7.34-7.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.28-7.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 1.45$ (s, 9H, H_{1}).
${ }^{13}$ C NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta c}_{\mathrm{c}} 164.5,142.8,138.4,135.0,133.7(\mathrm{q}, \mathrm{J}=33.6 \mathrm{~Hz}), 130.7,128.0,127.6,127.2,126.9$ ($q, J=16.1 \mathrm{~Hz}$), 126.2, 123.8 ($q, J=272.4 \mathrm{~Hz}$), 34.8, 31.0.
${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{F}}-63.0$.
HRMS (ESI ${ }^{+}$): m / z calc'd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NNaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$344.1233; found 344.1211, Δ-6.4.
FTIR (neat) $\mathbf{v} / \mathrm{cm}^{-1}=3252,2992,2965,1649,1529,1316,1125,758$.
Melting point (${ }^{\circ}$ C) 252-254.
N-(2-(tert-Butyl)phenyl)-4-methoxybenzamide, 1n

4-Methoxybenzoic acid ($1.12 \mathrm{~g}, 7.37 \mathrm{mmol}, 1.10$ eq.) was dissolved in $\mathrm{SOCl}_{2}(3.8 \mathrm{~mL}, 52 \mathrm{mmol}, 7.0 \mathrm{eq}$.) and heated to reflux for 3 hours, with stirring. After this time, the mixture was allowed to cool and the SOCl_{2} was
removed in vacuo to yield the acid chloride as a yellow oil. A stirred solution of 2-tert-butylaniline (1.00 g, 6.70 mmol, 1.0 eq.) and triethylamine ($1.0 \mathrm{~mL}, 7.4 \mathrm{mmol}, 1.1$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and the acid chloride was added dropwise. The solution was stirred at room temperature for 16 h . The reaction was diluted with water, the layers separated, and the aqueous layer extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude residue was purified by column chromatography (20% EtOAc/ petrol $40-60$) to yield $\mathbf{1 n}$ as a white solid ($1.39 \mathrm{~g}, 73 \%$ yield).

Spectral data is consistent with that previously reported in the literature. ${ }^{5}$
${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \boldsymbol{d}_{6}$-DMSO) $\delta_{H} 9.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\mathrm{H}), 7.99\left(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.50-7.41\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.32$ 7.21 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{\text {Ar }}$), $7.14-6.99\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\text {Ar }}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{14}\right), 1.34\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13}$ C NMR (75 MHz, d_{6}-DMSO) $\delta_{c} 165.6,161.8,147.1,136.4,132.2,129.4,127.1,126.8,126.7,126.4,113.6,55.4$, 34.9, 30.9 .

N-(2-(tert-Butyl)phenyl)cinnamamide, 10

To a stirred solution of 2-tert-butylaniline ($957 \mathrm{mg}, 6.41 \mathrm{mmol}, 1.00$ eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (21 ml) was added triethylamine ($1.0 \mathrm{ml}, 7.1 \mathrm{mmol}, 1.1 \mathrm{eq}$.). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and trans-cinnamoyl chloride (1.2 g , $7.1 \mathrm{mmol}, 1.1$ eq.) was added in small portions to the reaction. The reaction was stirred at room temperature for 16 h . The reaction was then diluted with water, the layers separated, and the aqueous layer was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The crude residue was purified by recrystallisation (EtOAc/ petrol 40-60) to afford $\mathbf{1 0}$ as a white solid ($1.29 \mathrm{~g}, 72 \%$ yield).

Spectral data is consistent with that previously reported. ${ }^{2}$
${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$): $\delta_{\mathrm{H}} 7.79\left(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 7.73-7.18\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}_{\text {Ar }}\right.$ and $\left.\mathrm{N}-\mathrm{H}\right), 6.61(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}_{10}\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{1}\right)$
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\mathrm{\delta c}_{\mathrm{c}} 164.3,142.8,142.4,135.2,134.7,130.0,128.9,128.2,128.0,126.9,126.7,126.4$, 121.0, 34.8, 30.8.

3.2 Synthesis of Chloroamides and Evaluation of Configurational Stability

rac-N-(2-(tert-Butyl)phenyl)-N-chloro-3-phenylpropanamide, 2a

According to a modification of general procedure A, a stirred suspension of trichloroisocyanuric acid (1.82 g, 7.82 mmol , 1.1 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and a solution of secondary amide 1 a ($2.00 \mathrm{~g}, 7.11 \mathrm{mmol}$, 1.0 eq.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added dropwise. Following the addition, the ice-bath was removed and the reaction was stirred for 30 mins at room temperature. The reaction was then diluted with water, the layers separated, and the aqueous layer extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organics were dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude residue was purified via column chromatography (15\% $\mathrm{Et}_{2} \mathrm{O} /$ petrol $40-60$) afforded $\mathbf{2 a}$ as an off white solid ($2.14 \mathrm{~g}, 95 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}_{\mathrm{H}} 7.50\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 7.35\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 7.26-7.16\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{14}\right.$, H_{15} and $\left.\mathrm{H}_{6}\right), 7.09-7.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{13}\right), 6.90\left(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 3.07-2.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{11}\right), 2.42-2.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}\right)$, 1.40 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13}$ C NMR (176 MHz, 298 K, CDCl 3) סc 171.2, 148.2, 141.4, 140.5, 131.9, 130.6, 129.3, 128.7, 128.6, 128.0, 126.4, 37.5, 36.3, 31.9, 31.7.
${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, 273 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} \delta 7.50\left(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 7.36\left(\mathrm{ddd}, J=8.2,7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}\right)$, $7.27-7.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 7.21-7.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{15}\right.$ and $\left.\mathrm{H}_{6}\right), 7.07\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{13}\right), 6.88(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$, H_{7}), $3.01\left(\mathrm{dt}, J=13.9,7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 2.91\left(\mathrm{ddd}, J=14.2,8.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}{ }^{\prime}\right), 2.43-2.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 1.39(\mathrm{~s}$, 9H, H_{1}). Diagnostic signals for the minor trans-isomer were observed at; 7.48 - $7.44\left(\mathrm{~m}, \mathrm{H}_{4}\right), 7.34-7.28\left(\mathrm{~m}, \mathrm{H}_{13}\right.$ and $\left.H_{\text {Ar }}\right), 7.16-7.13\left(m, H_{7}\right), 3.16-3.08\left(m, H_{10}\right), 1.35\left(\mathrm{~s}, \mathrm{H}_{1}\right)$. The identity of the major geometrical isomer was assigned as cis- on the basis of NOE correlations between H_{10} and H_{7} (see spectra). A ratio of 93:7 cis/trans was measured from ${ }^{1} \mathrm{H}$ NMR data collected at 233 K .
${ }^{13} \mathbf{C}$ NMR ($176 \mathrm{MHz}, 273 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta c}^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.0$ (min.), 171.3 (maj.), 148.3 (min.), 148.0 (maj.), 142.6 (min.), 141.2 (maj.), 140.7 (min.), 140.4 (maj.), 131.8 (maj.), 131.6 (min.), 130.6 (maj.), 129.8 (min.), 129.3 (maj.) , 128.7 (min.), 128.7 (maj.), 128.6 (maj.), 128.5 (min.), 128.2 (min.), 128.1 (maj.), 128.0 (min.), 126.4 (maj.), 126.4 (min.), 37.6 (maj.), 36.3 (min.), 36.2 (maj.), 35.7 (min.), 31.9 (maj.), 31.6 (maj.), 31.3 (min.), 30.9 (min.)

HRMS (ESI ${ }^{+}$): m / z calc'd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{ClNO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$316.1463; found 316.1452, $\Delta-3.5 \mathrm{ppm}$.
FTIR (neat) v/cm ${ }^{-1}=3252,2992,2965,1649,1529,1316,1125,758$.
Melting point (${ }^{\circ} \mathrm{C}$) 63-64.

Chiral HPLC: Chiralpak-IC column. Solvent ratio $=90: 10 n$-hexane: ${ }^{i}$ PrOH. Temperature $=25^{\circ} \mathrm{C}$. Flow rate $=$ $1 \mathrm{ml} / \mathrm{min}, \lambda=240 \mathrm{~nm}, \tau_{\mathrm{ret}}=9.4 \mathrm{~min}$ and 10.7 min .

Ret.Time min	Amount n.a.	Rel.Area $\%$	Area mAU*min	Height mAU
9.400	n.a.	50.04	91.8826	430.11
10.707	n.a.	49.96	91.7304	374.00

Ret.Time min	Amount n.a.	Rel.Area $\%$	Area mAU*min	Height mAU
9.430	n.a.	0.10	0.0605	0.29
10.730	n.a.	99.90	58.4978	228.49

Racemization study for 2a: According to general procedure B, and using the conditions specified immediately above, an analytical quantity of the slower eluting enantiomer was collected by semipreparative HPLC and reinjected successively over time intervals, shown below, to calculate the rate of racemization.

Time (s)	\% maj. enantiomer	\% min. enantiomer	$\ln (1 / \mathrm{ee})$
0.00	99.90	0.10	0.00200
84240	97.27	2.73	0.0561
174480	94.47	5.53	0.117
261360	91.88	8.12	0.177
347160	89.56	10.44	0.234

$$
\begin{gathered}
k_{r a c}=6.72 \times 10^{-7} \mathrm{~s}^{-1} \\
t_{\frac{1}{2}} r a c=11.9 \text { days } \\
\Delta G^{\ddagger}=108.0 \mathbf{~ k J} / \mathbf{m o l}
\end{gathered}
$$

rac-N-(2-(tert-Butyl)phenyl)-N-chloro-propionamide, 2b

Synthesised from 1b ($110 \mathrm{mg}, 0.536 \mathrm{mmol}, 1.00$ eq.), trichloroisocyanuric acid ($137 \mathrm{mg}, 0.589 \mathrm{mmol}, 1.10 \mathrm{eq}$.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.8 \mathrm{~mL})$ according to general procedure A. Column Chromatography ($5 \% \mathrm{EtOAc} /$ petrol $40-60$) afforded $\mathbf{2 b}$ as a yellow solid ($117 \mathrm{mg}, 91 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\delta_{\mathrm{H}}{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 7.38(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H}_{5}$), $7.31-7.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 7.17\left(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 2.22-2.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}\right) 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{1}\right), 1.17-$ $1.06\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{11}\right)$.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$) $\boldsymbol{\delta c} 172.9,148.3,141.7,131.8,130.5,129.3,128.0,36.3,31.7,28.9,9.8$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 263 \mathrm{~K}$) $\delta_{\mathrm{H}} 7.53\left(\mathrm{dd}, \mathrm{J}=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 7.48-7.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 7.36-7.23(\mathrm{~m}, 1 \mathrm{H}$, H_{6}), $7.18\left(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 2.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}+\mathrm{H}_{10^{\prime}}\right), 1.42\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{1}\right), 1.09\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{11}\right)$.

Diagnostic peaks for the minor trans isomer were observed at 7.50-7.43 (m, $\mathrm{H}_{\text {Ar }}$), 7.35-7.31 ($\mathrm{m}, \mathrm{H}_{\text {Ar }}$), 2.87-2.68 ($\mathrm{m}, \mathrm{H}_{10}+\mathrm{H}_{10}{ }^{\prime}$), $1.36\left(\mathrm{~s}, \mathrm{H}_{1}\right), 1.21\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, \mathrm{H}_{11}\right)$. A ratio of $88: 12$ cis/trans was measured from the ${ }^{1} \mathrm{H}$ NMR data collected at 263 K .
${ }^{13}{ }^{\mathbf{C}}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 263 \mathrm{~K}$) $\boldsymbol{\delta c}_{\mathrm{c}} 177.7$ (min.), 173.1 (maj.), 148.2 (min.), 147.9 (maj.), 142.8 (min.), 141.4 (maj.), 131.7 (maj.), 131.5 (min.), 130.6 (maj.), 129.7 (min.), 129.3 (maj.), 128.1 (min.), 128.1 (maj.), 128.0 (min.), 36.3 (maj.), 35.6 (min.), 31.6 (maj.), 31.2 (min.), 29.0 (maj.), 28.0 (min.), 9.9 (maj.), 9.2 (min.).

FTIR (cm^{-1}): 3059, 2992, 2970, 2875, 1692, 1458.
HRMS (ESI): m / z calc'd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{CINO}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$240.1150; found 240.1161, $\Delta 4.6 \mathrm{ppm}$.
Melting point (${ }^{\circ} \mathrm{C}$): 45-47.
Chiral HPLC: Chiralpak-IC column with guard; solvent ratio $=90: 10 n$-hexane: ${ }^{i} \operatorname{PrOH}$. Temperature $=25^{\circ} \mathrm{C}$. Flow rate $=1 \mathrm{ml} / \mathrm{min}, \lambda=240 \mathrm{~nm}, \tau_{\text {ret }}=10.4 \mathrm{~min}$ and 11.7 min .

Ret.Time min	Amount n.a.	Rel.Area $\%$	Area mAU*min	Height mAU
10.370	n.a.	0.27	0.0986	0.35
11.720	n.a.	99.73	35.7892	93.24

Racemization study for $\mathbf{2 b}$: According to general procedure B, and using the conditions specified immediately above, an analytical quantity of the slower eluting enantiomer was collected by semipreparative HPLC and reinjected successively over time intervals shown below to calculate the rate of racemization.

Time (s)	\% maj. enantiomer	\% min. enantiomer	$\ln (1 / \mathrm{ee})$
0	99.73	0.27	0.00542
88260	97.30	2.70	0.0555
168820	94.50	5.50	0.117
256440	91.55	8.45	0.185

rac-N-(2-(tert-Butyl)phenyl)-N-chloro-octanamide, 2c

Synthesised from 1c ($250 \mathrm{mg}, 0.908 \mathrm{mmol}, 1.00$ eq.), trichloroisocyanuric acid ($232 \mathrm{mg}, 1.00 \mathrm{mmol}, 1.10 \mathrm{eq}$.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.3 \mathrm{~mL})$ according to general procedure A. Column chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ petrol $40-60$) afforded 2c as a yellow oil ($218 \mathrm{mg}, 78 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}}: 7.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 7.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 7.27\left(\mathrm{td}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 7.16(\mathrm{dd}, J=7.8$, $\left.1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 2.08\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 1.69-1.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{11}\right), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{1}\right), 1.30-1.11\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{12}+\mathrm{H}_{13}+\mathrm{H}_{14}+\right.$ H_{15}), $0.88-0.82\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{16}\right)$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\mathrm{c}_{\mathrm{c}}{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,148.1,141.6,131.8,130.5,129.3,127.9$, $36.2,35.3,31.6,31.6,29.2,28.9,25.5,22.6,14.1$.

HRMS (ESI ${ }^{+}$: m / z calc'd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{ClNNaO}^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$332.1752; found 332.1758, $\Delta 1.8 \mathrm{ppm}$.
FTIR (neat) v/cm ${ }^{-1}$: 2957, 2926, 2855, 1692, 1485, 1364, 1159, 1051, 756.
Chiral HPLC: Chiralpak-IC column with guard; solvent ratio $=90: 10 n$-hexane: ${ }^{i} \mathrm{PrOH}$. Temperature $=25^{\circ} \mathrm{C}$. Flow rate $=1 \mathrm{ml} / \mathrm{min}, \lambda=240 \mathrm{~nm}, \tau_{\text {ret }}=7.0 \mathrm{~min}$ and 8.1 min .

Ret. Time \min	Amount n.a.	Rel.Area $\%$	Area mAU*min	Height mAU
7.020	n.a.	49.55	81.6236	452.89
8.053	n.a.	50.45	83.1033	380.51

Ret.Time min	Amount n.a.	Rel.Area $\%$	Area mAU*min	Height mAU
7.260	n.a.	0.27	0.1421	0.86
8.347	n.a.	99.73	51.6451	257.91

Racemization study for $\mathbf{2 c}$: According to general procedure B , and using the conditions specified immediately above, an analytical quantity of the slower eluting enantiomer was collected by semipreparative HPLC and reinjected successively over time intervals shown below to calculate the rate of racemization.

Time (s)	\% maj. enantiomer	\% min. enantiomer	$\ln (1 / \mathrm{ee})$
0.00	99.73	0.27	0.00541
248640	93.72	6.28	0.134
335640	90.77	9.23	0.204
422580	87.86	12.14	0.278
507660	85.68	14.32	0.337
596460	83.38	16.62	0.404

$$
\begin{gathered}
\text { Therefore; } k_{r a c}=6.79 \times 10^{-7} \mathrm{~s}^{-1} \\
t_{\frac{1}{2}} r a c=11.8 \text { days } \\
\Delta G^{\ddagger}=108.0 \mathrm{~kJ} / \mathrm{mol}
\end{gathered}
$$

rac-N-(2-(tert-Butyl)phenyl)-N-chloro-cyclopropanecarboxamide, 2d

Synthesised from 1d ($100 \mathrm{mg}, 0.460 \mathrm{mmol}, 1.00 \mathrm{eq}$.), trichloroisocyanuric acid ($118 \mathrm{mg}, 0.506 \mathrm{mmol}, 1.10 \mathrm{eq}$.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.2 \mathrm{~mL})$ according to the general procedure A . Column chromatography ($10 \% \mathrm{EtOAc} /$ petrol $40-60$) afforded $\mathbf{2 d}$ as an off white solid ($100 \mathrm{mg}, 86 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}}: 7.47\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.32\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.25-7.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right)$, $1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{1}\right), 1.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 1.15-0.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{11}\right.$ and $\left.\mathrm{H}_{11 \mathrm{a}}\right), 0.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{11}{ }^{\prime}\right.$ and $\left.\mathrm{H}_{11 \mathrm{a}}{ }^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) C_{c} : 173.5, 148.8, 142.0, 132.4, 130.4, 129.0, 128.1, 36.3, 31.7, 14.3, 10.4, 10.0.
HRMS (ESI ${ }^{+}$): m / z calc'd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClNNaO}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$274.0969; found 274.0963, $\Delta 2.2 \mathrm{ppm}$.
FTIR (neat) v/cm ${ }^{-1}$ 2996, 2948, 2870, 1680, 1483, 1163, 760, 523.
Melting point (${ }^{\circ} \mathrm{C}$) 92-94.
Chiral HPLC: Chiralpak-IH column with guard; solvent ratio $=95: 5 n$-hexane: ${ }^{i} \mathrm{PrOH}$. Temperature $=25{ }^{\circ} \mathrm{C}$. Flow rate $=1 \mathrm{ml} / \mathrm{min}, \lambda=240 \mathrm{~nm}, \tau_{\text {ret }}=6.2 \mathrm{~min}$ and 7.0 min .

Ret.Time min	Amount n.a.	Rel.Area $\%$	Area mAU*min	Height mAU
6.237	n.a.	49.95	53.5679	350.93
6.990	n.a.	50.05	53.6718	245.61

Ret.Time min	Amount n.a.	Rel.Area $\%$	Area mAU*min	Height mAU
6.210	n.a.	0.28	0.1907	1.18
6.923	n.a.	99.72	67.9289	281.58

Racemization study for 2d: According to general procedure B, and using the conditions specified immediately above, an analytical quantity of the slower eluting enantiomer was collected by semipreparative HPLC and reinjected successively over time intervals shown below to calculate the rate of racemization.

Time (s)	\% maj. enantiomer	\% min. enantiomer	$\ln (1 / \mathrm{ee})$
0.00	99.72	0.28	0.00602
2220.00	99.58	0.42	0.00844
85860.00	94.79	5.21	0.110
171960.00	89.76	10.24	0.229
262380.00	85.23	14.77	0.350

rac-N-(2-(tert-Butyl)phenyl)-N-chloro-cyclobutanecarboxamide, 2e

Synthesised from 1e ($150 \mathrm{mg}, 0.649 \mathrm{mmol}, 1.00 \mathrm{eq}$.), trichloroisocyanuric acid ($166 \mathrm{mg}, 0.714, \mathrm{mmol}, 1.10 \mathrm{eq}$.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.9 \mathrm{~mL})$ according to the general procedure A . Column chromatography ($10 \% \mathrm{EtOAc} /$ petrol $40-60$) yielded $\mathbf{2 e}$ as an off white solid ($93 \mathrm{mg}, 54 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}}: 7.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 7.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 7.25\left(\mathrm{ddd}, \mathrm{J}=7.7,7.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 7.06$ $\left(m, 1 H, H_{7}\right), 3.05-2.85\left(m, 1 H, H_{10}\right), 2.63-2.44\left(m, 1 H, H_{11}\right), 2.36-2.15\left(m, 1 H, H_{11 a}\right), 1.99-1.71\left(m, 4 H, H_{11}{ }^{\prime}\right.$, $\mathrm{H}_{11 \mathrm{a}^{\prime}}$ and H_{12}), 1.41 (s, $9 \mathrm{H}, \mathrm{H}_{1}$).
${ }^{13} \mathrm{C}^{2}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{c}: 174.1,148.2,141.6,132.0,130.5,129.1,127.8,38.5,36.3,31.7,27.7,24.8,18.1$. HRMS (ESI ${ }^{+}$): m/z calc'd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{ClNNaO}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$288.1126; found 288.1102, $\Delta-8.3 \mathrm{ppm}$. FTIR (neat) v/cm ${ }^{-1}$ 2997, 2947, 2871, 1681, 1483, 1249, 1162, 760, 693, 524.

Melting point (${ }^{\circ} \mathrm{C}$): 80-82.
Chiral HPLC: Chiralpak-IC column with guard; solvent ratio $=90: 10 n$-hexane: ${ }^{\circ}$ PrOH. Temperature $=25^{\circ} \mathrm{C}$. Flow rate $=1 \mathrm{ml} / \mathrm{min}, \lambda=240 \mathrm{~nm}, \tau_{\text {ret }}=4.8 \mathrm{~min}$ and 5.9 min .

Ret.Time \min	Amount n.a.	Rel.Area $\%$	Area mAU*min	Height mAU
4.837	n.a.	50.03	62.4230	533.16
5.863	n.a.	49.97	62.3567	351.25

Ret.Time \min	Amount n.a.	Rel.Area $\%$	Area mAU*min	Height mAU
4.867	n.a.	0.32	0.2167	1.55
5.880	n.a.	99.68	66.5150	332.85

Racemization study for $\mathbf{2 e}$: According to general procedure B , and using the conditions specified immediately above, an analytical quantity of the slower eluting enantiomer was collected by semipreparative HPLC and reinjected successively over time intervals shown below to calculate the rate of racemization.

Time (s)	\% maj. enantiomer	\% min. enantiomer	$\ln (1 / \mathrm{ee})$
0	99.68	0.32	0.00642
1920	99.61	0.39	0.00783
10920	99.27	0.73	0.0147
76260	96.81	3.19	0.0659
161160	93.78	6.22	0.133

$$
\begin{gathered}
k_{r a c}=7.85 \times 10^{-7} \mathrm{~s}^{-1} \\
t_{\frac{1}{2}} r a c=10.2 \mathrm{days} \\
\Delta G^{\ddagger}=107.7 \mathbf{k J} / \mathrm{mol}
\end{gathered}
$$

rac-N-(2-(tert-Butyl)phenyl)-N-chloro-cyclopentanecarboxamide, 2 f

Synthesised from 1 f ($300 \mathrm{mg}, 1.22 \mathrm{mmol}, 1.00 \mathrm{eq}$.), trichloroisocyanuric acid ($311 \mathrm{mg}, 1.34 \mathrm{mmol}, 1.10 \mathrm{eq}$.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(11 \mathrm{~mL})$ according to the general procedure A. Column chromatography ($10 \% \mathrm{EtOAc} /$ petrol $40-60$) yielded 2 f as a white solid ($215 \mathrm{mg}, 63 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}_{\mathrm{H}}: 7.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 7.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 7.27\left(\mathrm{td}, \mathrm{J}=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 7.17(\mathrm{dd}, J=7.8$, $\left.1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 2.48\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 2.15-1.53\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{11}+\mathrm{H}_{11}{ }^{\prime}+\mathrm{H}_{11 \mathrm{a}}+\mathrm{H}_{11 \mathrm{a}^{\prime}}+\mathrm{H}_{12}+\mathrm{H}_{12^{\prime}}+\mathrm{H}_{12 \mathrm{a}}\right), 1.53-1.32(\mathrm{~m}$, 10H, $\left.\mathrm{H}_{1}+\mathrm{H}_{12 \mathrm{a}}{ }^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{c}: ~ 176.6,148.2,141.9,132.1,130.4,129.2,127.8,43.7,36.4,32.3,31.7,31.0,26.4$, 26.3.

HRMS (ESI ${ }^{+}$): m/z calc'd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+} 280.1463$; found 280.1443, $\Delta-7.1 \mathrm{ppm}$.
FTIR (neat) v/cm ${ }^{-1}$ 2962, 2872, 1682, 1483, 1363, 1145, 760, 526.
Melting point (${ }^{\circ} \mathrm{C}$): 72-74.
Chiral HPLC: Chiralpak-IC column with guard; solvent ratio $=97: 3 n$-hexane: ${ }^{i} \mathrm{PrOH}$. Temperature $=25^{\circ} \mathrm{C}$. Flow rate $=1 \mathrm{ml} / \mathrm{min}, \lambda=240 \mathrm{~nm}, \tau_{\text {ret }}=13.5 \mathrm{~min}$ and 14.4 min .

Ret.Time min	Amount n.a.	Rel.Area $\%$	Area mAU * min	Height mAU
13.213	n.a.	1.19	0.3979	0.81
14.020	n.a.	98.81	32.9172	85.91

Racemization study for $\mathbf{2 f}$: According to general procedure B, and using the conditions specified immediately above, an analytical quantity of the slower eluting enantiomer was collected by semipreparative HPLC and reinjected successively over time intervals shown below to calculate the rate of racemization.

Time (s)	\% maj. enantiomer	\% min. enantiomer	$\ln (1 / \mathrm{ee})$
0	98.81	1.19	0.0240
69300	96.17	3.83	0.0797
155400	92.06	7.94	0.173
245040	88.48	11.52	0.262

rac-N-(2-(tert-Butyl)phenyl)-N-chloro-cyclohexanecarboxamide, $\mathbf{2 g}$

Synthesised from 1 g ($100 \mathrm{mg}, 0.386 \mathrm{mmol}, 1 \mathrm{eq}$.), trichloroisocyanuric acid ($99 \mathrm{mg}, 0.42 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ according to the general procedure A. Column chromatography ($4 \% \mathrm{EtOAc} /$ petrol $40-60$) yielded $\mathbf{2 g}$ as a white solid ($43 \mathrm{mg}, 38 \%$ yield).
 $\left.H z, 1 H, H_{7}\right), 2.17-1.98\left(m, 1 H, H_{10}\right), 1.83-1.55\left(m, 6 H, H_{11}+H_{11}{ }^{\prime}+H_{11 a}+H_{11 a^{\prime}}+H_{12}+H_{12}{ }^{\prime}\right), 1.54-1.34(m, 10 H$, $\left.\mathrm{H}_{1}+\mathrm{H}_{12 \mathrm{a}}\right), 1.33-0.72\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{13}+\mathrm{H}_{12 \mathrm{a}}{ }^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl3) $\mathbf{~ © c : ~ 1 7 5 . 0 , ~ 1 4 8 . 1 , ~ 1 4 1 . 5 , ~ 1 3 1 . 7 , ~ 1 3 0 . 4 , ~ 1 2 9 . 2 , ~ 1 2 7 . 6 , ~ 4 3 . 3 , ~ 3 6 . 3 , ~ 3 1 . 7 , ~ 2 9 . 8 , ~ 2 9 . 0 , ~ 2 5 . 6 , ~}$ 25.5, 25.3.

HRMS (ESI ${ }^{+}$): m/z calc'd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{ClNNaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 316.1439$; found 316.1416, $\Delta-7.3 \mathrm{ppm}$.
FTIR (neat) v/cm ${ }^{-1}$: 2935, 2848, 1693, 1483, 1319, 1248, 1158, 763, 693.
Melting point (${ }^{\circ} \mathrm{C}$): 89-91.
Chiral HPLC: Chiralpak-IG column with guard; solvent ratio $=97: 3 n$-hexane: ${ }^{i}$ PrOH. Temperature $=25{ }^{\circ} \mathrm{C}$. Flow rate $=1 \mathrm{ml} / \mathrm{min}, \lambda=240 \mathrm{~nm}, \tau_{\text {ret }}=10.5 \mathrm{~min}$ and 11.5 min .

\qquad

Ret.Time min	Amount n.a.	Rel.Area $\%$	Area mAU*min	Height mAU
10.543	n.a.	0.15	0.0661	0.35
11.517	n.a.	99.85	45.4818	162.80

Racemization study for $\mathbf{2 g}$: According to general procedure B , and using the conditions specified immediately above, an analytical quantity of the slower eluting enantiomer was collected by semipreparative HPLC and reinjected successively over time intervals shown below to calculate the rate of racemization.

Time (s)	\% maj. enantiomer	\% min. enantiomer	$\ln (1 / \mathrm{ee})$
0.00	99.85	0.15	0.00301
9000	98.99	1.01	0.0204
72600	92.83	7.17	0.155
159300	85.29	14.71	0.348
180120	83.80	16.20	0.392

$$
\begin{gathered}
k_{r a c}=2.17 \times 10^{-6} \mathrm{~s}^{-1} \\
t_{\frac{1}{2}} r a c=3.7 \text { days } \\
\Delta G^{\ddagger}=105.2 \mathrm{~kJ} / \mathrm{mol}
\end{gathered}
$$

rac-N-Chloro-N-(2-isopropylphenyl)-3-phenylpropanamide, 2 h

Synthesised from 1 h ($100 \mathrm{mg}, 0.374 \mathrm{mmol}, 1.00$ eq.) , trichloroisocyanuric acid ($96 \mathrm{mg}, 0.41, \mathrm{mmol}, 1.1 \mathrm{eq}$.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.4 \mathrm{~mL})$ according to the general procedure A . Column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yielded $\mathbf{2 h}$ as a clear oil (99 mg, 88\% yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta_{\mathrm{H}} 7.44-7.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{4}+\mathrm{H}_{5}\right), 7.28-7.14\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{14}+\mathrm{H}_{15}+\mathrm{H}_{6}\right), 7.10-7.00(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{H}_{13}+\mathrm{H}_{7}\right), 3.19-3.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 3.04-2.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{11}\right), 2.49-2.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 2.37-2.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10^{\prime}}\right), 1.25$ ($d, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{1}$), $1.16\left(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{1^{\prime}}\right)$.
${ }^{13}{ }^{\text {C NMR }}$ ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta c}_{\mathrm{c}} 170.1,147.9,140.6,140.2,131.0,129.4,128.7,128.6,127.6,127.4,126.5,36.4$, 31.9, 28.0, 24.2, 23.3.

HRMS (ESI+): m/z calc'd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ClNONa}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 324.1126$; found $324.1126, \Delta<0.1 \mathrm{ppm}$.
IR ($\mathbf{c m}^{-1}$): 2929, 2965, 1690, 1487, 1363, 757, 700
Chiral HPLC: Chiralpak-IC column with guard; solvent ratio: 97:3n-hexane: ${ }^{i} \mathrm{PrOH}$. Temperature $=5^{\circ} \mathrm{C}$. Flow rate $=1 \mathrm{ml} / \mathrm{min}, \lambda=240 \mathrm{~nm}, \tau_{\text {ret }}=15.4 \mathrm{~min}$ and 17.0 min .

Racemization Barrier: The HPLC data was processed using DCXPlorer to obtain kent: 1,6

rac-N-Chloro-N-(2-fluoro-6-methylphenyl)-3-phenylpropanamide, 2i

Synthesised from 1i ($100 \mathrm{mg}, 0.389 \mathrm{mmol}, 1.00 \mathrm{eq}$) , trichloroisocyanuric acid ($99 \mathrm{mg}, 0.43, \mathrm{mmol}, 1.1 \mathrm{eq}$.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ according to the general procedure A. Column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ yielded $\mathbf{2 i}$ as a clear oil ($55 \mathrm{mg}, 48 \%$ yield).
${ }^{1} \mathrm{H}^{\mathrm{H}}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta_{\mathrm{H}} \delta 7.34-7.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 7.27-7.14\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{13}+\mathrm{H}_{14}\right), 7.10-6.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{2}+\mathrm{H}_{4}\right.$ $+\mathrm{H}_{12}$), $3.03-2.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 2.45\left(\mathrm{ddd}, \mathrm{J}=15.2,9.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 2.35-2.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{9}\right), 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{6}\right)$. Diagnostic signals for the minor amide isomer were observed at; $7.35-7.32\left(\mathrm{~m}, \mathrm{H}_{\text {Ar }}\right), 3.12-3.05\left(\mathrm{~m}, \mathrm{H}_{9} / \mathrm{H}_{10}\right)$, $2.26\left(\mathrm{~s}, \mathrm{H}_{6}\right)$.
${ }^{13}{ }^{2}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{c}} 170.0,159.2(\mathrm{~d}, J=253.2 \mathrm{~Hz}), 140.4(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}), 131.7(\mathrm{~d}, \mathrm{~J}=8.7), 129.5(\mathrm{~d}$, $J=13.2 \mathrm{~Hz}), 128.7,128.5,126.8(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 126.5,114.4(\mathrm{~d}, J=20.0 \mathrm{~Hz}), 35.4,31.6,17.1(\mathrm{~d}, J=2.4 \mathrm{~Hz})$.
N.B. One aromatic ${ }^{13} \mathrm{C}$ signal is not observed due to overlapping peaks.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}_{\mathrm{F}}-119.30(\mathrm{dd}, \mathrm{J}=9.0,5.5 \mathrm{~Hz}$).
HRMS (ESI+): m/z calc'd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClFNONa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$314.0718; found 314.0714, $\Delta 1.3 \mathrm{ppm}$.
IR ($\mathbf{c m}^{-1}$): 3033, 2925, 1694, 1473, 1177, 701
Chiral HPLC: Chiralpak-IH column with guard; solvent ratio: 95:5 n-hexane: ${ }^{i} \mathrm{PrOH}$. Temperature $=20^{\circ} \mathrm{C}$. Flow rate $=1 \mathrm{ml} / \mathrm{min}, \lambda=240 \mathrm{~nm}, \tau_{\text {ret }}=10.9 \mathrm{~min}$ and 12.2 min .

Racemization Barrier: The HPLC data was processed using DCXPlorer to ontain kent: 1,6

$$
\begin{gathered}
k_{\text {ent }}=1.166 \times \mathbf{1 0}^{-3} s^{-1} \text { from DCXplorer } \\
\Delta G^{\ddagger}=\mathbf{8 8 . 2 ~ k J} / \mathbf{m o l} \\
t_{\frac{1}{2}} r a c=\mathbf{5 . 0} \text { minutes }
\end{gathered}
$$

rac-N-Chloro-N-(2-chloro-4,6-dimethylphenyl)-3-phenylpropanamide, $\mathbf{2 j}$

Synthesised from 1j ($100 \mathrm{mg}, 0.347 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) , trichloroisocyanuric acid (89 \mathrm{mg}, 0.38 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.1 mL) according to the general procedure A. Column chromatography ($15 \% \mathrm{Et}_{2} \mathrm{O} /$ petrol $40: 60$) afforded $\mathbf{2 j}$ as a colourless oil ($102 \mathrm{mg}, 91 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ_{H} : $\delta 7.33$ - $7.16\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.15\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 7.12-7.07\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 6.98\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right)$, 3.04 - $2.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{11}\right), 2.49-2.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{4}\right) 2.32-2.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}{ }^{\prime}\right), 2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{7}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta c}_{\mathrm{c}}$ 169.8, 142.1, 140.7, 139.8, 136.0, 134.5, 130.7, 128.9, 128.6, 128.6, 126.4, 35.5, 31.6, 21.2, 17.9.
${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\boldsymbol{\delta}_{\mathrm{H}} 7.04-7.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {ar }}\right), 7.00-6.94\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\text {ar }}\right), 6.66\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 6.30\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right)$, 3.08 (dt, J = 13.9, $7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}$), 2.87 (ddd, $J=13.9,8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11^{1}}$), 2.38 (ddd, J = 16.1, 8.0, $6.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}_{10^{\prime}}\right), 2.13\left(\mathrm{dt}, J=15.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{7}\right), 1.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{4}\right)$.
Diagnostic signals for the minor trans-isomer were observed at: $\delta 7.15-7.13\left(\mathrm{~m}, \mathrm{H}_{\text {Ar }}\right), 7.10-7.06\left(\mathrm{~m}, \mathrm{H}_{\text {Ar }}\right), 6.80$ $\left(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 6.44\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 2.03\left(\mathrm{~s}, \mathrm{H}_{7}\right), 1.76\left(\mathrm{~s}, \mathrm{H}_{4}\right)$. The identity of the major geometrical isomer was assigned as cis- on the basis of NOE correlations between H_{7} and H_{10} (see spectra). A ratio of $85: 15 \mathrm{cis} /$ trans was measured from the ${ }^{1} \mathrm{H}$ NMR data collected in $\mathrm{C}_{6} \mathrm{D}_{6}$.
${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\boldsymbol{\delta c}_{\mathrm{c}} 172.6$ (min.), 168.7 (maj.), 141.5 (maj.), 141.2 (maj.), 141.2 (min.), 140.7 (min.), 140.0 (maj.), 139.5 (min.), 137.2 (min.), 136.7 (maj.), 134.7 (maj.), 134.1 (min.), 130.6 (maj.), 130.2 (min.), 128.9 (min.), 128.8 (maj.), 128.8 (maj.), 128.8 (maj.), 128.4 (min.), 126.5 (maj.), 35.8 (maj.), 35.0 (min.), 31.9 (maj.), 31.2 (min.), 20.7 (maj.), 17.9 (min.), 17.6 (min.), 17.5 (maj.). N.B. Two aromatic ${ }^{13} \mathrm{C}$ signals for the minor isomer were not observed, presumably as a result of overlap with the residual solvent peak for benzene.
HRMS (ESI ${ }^{+}$): m/z calc'd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+} 322.0760$; found 322.0776, $\Delta 5.0 \mathrm{ppm}$.
FTIR (neat) v/cm ${ }^{-1}$: 3028, 2924, 1697, 1452, 1358, 1296, 1181, 851, 739, 699, 569.

Chiral HPLC: Chiralpak-IA column with guard; solvent ratio $=97.5: 2.5 n$-hexane: ${ }^{i} \operatorname{PrOH}$. Temperature $=25^{\circ} \mathrm{C}$. Flow rate $=1 \mathrm{ml} / \mathrm{min}, \lambda=240 \mathrm{~nm}, \tau_{\text {ret }}=10.9 \mathrm{~min}$ and 13.3 min .

Racemization study for $\mathbf{2 j}$: According to general procedure B, and using the conditions specified immediately above, an analytical quantity of the slower eluting enantiomer was collected by semipreparative HPLC and reinjected successively over time intervals shown below to calculate the rate of racemization.

Time (s)	\% maj. enantiomer	\% min. enantiomer	$\ln (1 / \mathrm{ee})$
0	98.59	1.41	0.0286
3720	97.06	2.94	0.0606
7440	95.99	4.01	0.0836
11160	95.02	4.98	0.105
14880	94.20	5.80	0.123
18600	93.27	6.73	0.145
22320	92.29	7.71	0.167
26100	91.26	8.74	0.192

rac-N-(2-Bromo-4,6-dimethylphenyl)-N-chloro-3-phenylpropanamide, 2k

Synthesised from 1k ($100 \mathrm{mg}, 0.302 \mathrm{mmol}, 1.0 \mathrm{eq}$.), trichloroisocyanuric acid ($77 \mathrm{mg}, 0.33 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.8 \mathrm{~mL})$ according to the general procedure A. Column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ afforded $\mathbf{2 k}$ as a colourless oil ($89 \mathrm{mg}, 80 \%$ yield).

1H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\text {н }} 7.35$ - $7.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2}\right), 7.27-7.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{14}\right), 7.20-7.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{15}\right), 7.13$ 7.07 (m, 2H, H13), 7.04 - $6.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.04-2.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{11}\right), 2.49-2.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{4}\right), 2.30$ - $2.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{10^{\prime}}\right), 2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{7}\right)$.

Diagnostic peaks for the minor amide isomer were observed at; $7.30\left(\mathrm{~s}, \mathrm{H}_{2}\right), 3.08-3.04\left(\mathrm{~m}, \mathrm{H}_{10} / \mathrm{H}_{11}\right), 2.30\left(\mathrm{~s}, \mathrm{H}_{4}\right)$, 2.24 ($\mathrm{s}, \mathrm{H}_{7}$).
 21.1, 18.3.
N.B. Two ${ }^{13} \mathrm{C}$ signals are overlapping at 128.6 ppm

HRMS (ESI ${ }^{+}$): m / z calc'd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{BrClNO}^{+}[\mathrm{M}+\mathrm{H}]^{+} 366.0255$; found $366.0244, \Delta 3.0 \mathrm{ppm}$.
FTIR (neat) v/cm ${ }^{-1}$: 3027, 2922, 1695, 1307, 699
Chiral HPLC: Chiralpak-IA column; solvent ratio $=95: 5 n$-hexane: ${ }^{i}$ PrOH. Temperature $=25{ }^{\circ} \mathrm{C}$. Flow rate $=1$ $\mathrm{ml} / \mathrm{min}, \lambda=240 \mathrm{~nm}, \tau_{\text {ret }}=8.5 \mathrm{~min}$ and 9.7 min .

Ret. Time min	Amount n.a.	Rel.Area $\%$	Area mAU*min	Height mAU
8.510	n.a.	49.67	36.4270	105.75
9.767	n.a.	50.33	36.9178	74.64

Ret.Time \min	Amount n.a.	Rel.Area $\%$	Area mAU*min	Height mAU
8.457	n.a.	2.11	0.5409	1.41
9.770	n.a.	97.89	25.1059	43.60

Racemization study for 2k According to general procedure B, and using the conditions specified immediately above, an analytical quantity of the slower eluting enantiomer was collected by semipreparative HPLC and reinjected successively over time intervals shown below to calculate the rate of racemization.

Time (s)	\% maj. enantiomer	\% min. enantiomer	$\ln (1 / \mathrm{ee})$
0.00	97.89	2.11	0.0431
24480	96.52	3.48	0.0721
81180	93.92	6.08	0.130
112740	92.3	7.7	0.167

rac-N-(2-(tert-Butyl)phenyl)-N-chloro-benzamide, 21

Synthesised from 11 ($250 \mathrm{mg}, 0.987 \mathrm{mmol}, 1.00$ eq.), trichloroisocyanuric acid ($252 \mathrm{mg}, 1.09 \mathrm{mmol}, 1.10 \mathrm{eq}$.), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (9.0 mL), according to general procedure A . Column Chromatography ($10 \% \mathrm{EtOAc} /$ pentane) afforded 21 as a yellow solid ($277 \mathrm{mg}, 98 \%$ yield).
${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $3,298 \mathrm{~K}$) $\boldsymbol{\delta}_{\mathrm{H}} 7.69-7.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.48\left(\mathrm{dd}, \mathrm{J}=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.44-7.23(\mathrm{~m}$, $\left.6 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{1}\right)$.
 31.7. (N.B. ${ }^{13} \mathrm{C}$ signal for $\mathrm{C}=\mathrm{O}$ not observed due to signal broadening)
 Н $_{12 \text { мај. }}+$ H4мај.), 7.49 (dd, J $=8.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4 \text { мin. }}$), $7.47-7.42$ (m, 3H, Н5мај., Н6мај., Н7мај.), $7.39-7.31$ (m, 4H, $H_{5 \text { Min. }}, \mathrm{H}_{11 \text { Min., }}$ and $\mathrm{H}_{13 \text { Min. }}$), 7.26 (dd, J = $7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7 \text { min. }}$), $7.24-7.16$ (m, $3 \mathrm{H}, \mathrm{H}_{6 \text { min. }}$ and $\mathrm{H}_{12 \text { Min. }}$), 1.49 ($\mathrm{s}, 9 \mathrm{H}$, $\mathrm{H}_{1 \text { мај. }}$), 1.35 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{H}_{1 \text { мin. }}$)

The identity of the minor geometrical isomer was assigned as cis- on the basis of NOE correlations between H_{11} and H_{7} (see spectra). A ratio of 45:55 cis/trans was measured from the ${ }^{1} \mathrm{H}$ NMR data collected at 218 K .
${ }^{13}$ C NMR (126 MHz, CDCl3, 218 K): δ c 175.7 (maj.), 167.5 (min.), 147.3 (maj.), 147.0 (min.), 142.7 (maj.), 140.7 (min.), 132.7 (maj.), 132.3 (min.), 132.2 (maj.), 132.0 (min.), 131.3 (maj.), 130.9 (min.), 130.5 (maj.), 130.2 (min.), 129.8 (maj.), 129.3 (maj.), 128.8 (min.), 128.3 (min.), 128.2 (maj.), 127.9 (maj.), 127.7 (min.), 127.4 (min.), 36.6 (min.), 35.4 (maj.), 31.7 (min.), 30.8 (maj.).

FTIR (neat) v/cm ${ }^{-1}$ 3059, 2992, 2970, 2875, 1692, 1458
HRMS (ESI): m / z calc'd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{CINO}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$288.1150; found $288.1142 \Delta-2.8 \mathrm{ppm}$
Melting Point (${ }^{\circ} \mathrm{C}$): 46-48

Chiral HPLC: Chiralpak-IC column with guard; solvent ratio $=90: 10 n$-hexane: ${ }^{i}$ PrOH. Temperature $=25^{\circ} \mathrm{C}$. Flow rate $=1 \mathrm{ml} / \mathrm{min}, \lambda=240 \mathrm{~nm}, \tau_{\text {ret }}=9.9 \mathrm{~min}$ and 12.1 min .

Ret.Time min	Amount n.a.	Rel.Area $\%$	Area mAU*min	Height mAU
9.903	n.a.	4.22	2.8987	8.48
12.117	n.a.	95.78	65.7343	167.57

Racemization study for 21: According to general procedure B, and using the conditions specified immediately above, an analytical quantity of the slower eluting enantiomer was collected by semipreparative HPLC and reinjected successively over time intervals shown below to calculate the rate of racemization.

Data from run 1:

Time (s)	\% maj. enantiomer	\% min. enantiomer	$\ln (1 / \mathrm{ee})$
0	95.78	4.22	0.0882
900	88.61	11.39	0.259
1860	81.93	18.07	0.448
2820	76.42	23.58	0.638
3660	72.07	27.93	0.818

$$
\begin{gathered}
k_{r a c}=1.99 \times 10^{-4} \mathrm{~s}^{-1} \\
t_{\frac{1}{2}} r a c=58 \text { minutes } \\
\Delta G^{\ddagger}=94.2 \mathrm{~kJ} / \mathrm{mol}
\end{gathered}
$$

Data from run 2:

Time (s)	\% maj. enantiomer	\% min. enantiomer	$\ln (1 / \mathrm{ee})$
0	97.43	2.57	0.052768
1020	88.76	11.24	0.254634
2040	81.75	18.25	0.45413
3060	76.1	23.9	0.650088
4080	71.33	28.67	0.851908

$$
\begin{gathered}
k_{r a c}=1.95 \times 10^{-4} \mathrm{~s}^{-1} \\
t_{\frac{1}{2}} r a c=59 \text { minutes } \\
\Delta G^{\ddagger}=94.2 \mathrm{~kJ} / \mathbf{m o l}
\end{gathered}
$$

rac-N-(2-(tert-Butyl)phenyl)-N-chloro-4-(trifluoromethyl)benzamide, $\mathbf{2 m}$

Synthesised from 1m ($150 \mathrm{mg}, 0.467 \mathrm{mmol}, 1.0$ eq.), trichloroisocyanuric acid ($119 \mathrm{mg}, 0.513 \mathrm{mmol}, 1.10 \mathrm{eq}$.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.3 \mathrm{~mL})$, according to general procedure A . Column chromatography ($5 \% \mathrm{EtOAc} /$ petrol $40-60$) afforded $\mathbf{2 m}$ as a white solid ($130 \mathrm{mg}, 78 \%$ yield).
 ($\mathrm{m}, 10 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}$), $7.30-7.19$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{\text {Ar }}$), 1.49 ($\mathrm{s}, 9 \mathrm{H} \mathrm{H}_{\text {Maj. }}$), 1.36 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{H}_{1 \text { Min. }}$).
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 218 \mathrm{~K}$): $\boldsymbol{\delta c}_{\mathrm{c}} 174.2$ (Maj.), 166.1 (Min.), 147.4 (Maj.), 147.1 (Min.), 142.1 (Maj.), 140.1 (Min.), 136.4 (Maj.), 135.9 (Min.), 132.7 (q, $J=32.7 \mathrm{~Hz}$, Maj.), 132.2 (Maj.), 131.8 (q, J = $32.7 \mathrm{~Hz}, \mathrm{Min}$.), 131.2 (Min.), 130.7 (Min.), 130.7 (Maj.), 130.1 (Min.), 129.7 (Maj.), 129.0 (Min.), $128.3 z$ (Maj.), 127.9 (Min.), 127.6 (Maj.), 125.3 ($q, J=3.6 \mathrm{~Hz}$ Min.), 125.0 ($q, J=3.6 \mathrm{~Hz}$, Maj.), 123.4 ($\mathrm{q}, J=272.9 \mathrm{~Hz}, \mathrm{Maj}$.), 123.2 ($\mathrm{q}, J=272.9$ Hz, Min.), 36.6 (Min.), 35.4 (Maj.), 31.7 (Min.), 30.9 (Maj.).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta_{\mathrm{F}}-63.1$.
FTIR (neat) v/cm ${ }^{-1}$: 2962, 1673, 1619, 1580, 1514, 1484, 1316, 1167, 851, 757.
HRMS (ESI): m / z calc' d^{2} for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClF}_{3} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$356.1024; found 356.1006. $\Delta-5.1 \mathrm{ppm}$.
Melting Point (${ }^{\circ} \mathrm{C}$): 66-68.
Chiral HPLC: Chiralpak-IC column with guard; solvent ratio $=97.5: 2.5 n$-hexane: ${ }^{i}$ PrOH. Temperature $=25^{\circ} \mathrm{C}$. Flow rate $=1 \mathrm{ml} / \mathrm{min}, \lambda=240 \mathrm{~nm}, \tau_{\text {ret }}=9.9 \mathrm{~min}$ and 12.1 min .

Ret.Time $\mathbf{m i n}$	Amount n.a.	Rel.Area $\%$	Area mAU*min	Height mAU
8.247	n.a.	49.96	910.2829	3019.65
9.133	n.a.	50.04	911.6783	2822.26

Ret.Time min	Amount n.a.	Rel.Area $\%$	Area mAU*min	Height mAU
8.253	n.a.	4.37	4.0063	16.38
9.147	n.a.	95.63	87.7757	292.71

Racemization study for $\mathbf{2 m}$: According to general procedure B, and using the conditions specified immediately above, an analytical quantity of the slower eluting enantiomer was collected by semipreparative HPLC and reinjected successively over time intervals shown below to calculate the rate of racemization.

Time (s)	\% maj. enantiomer	\% min. enantiomer	$\ln (1 / \mathrm{ee})$
0	95.78	4.22	0.0882
780	92.30	7.70	0.167
1500	88.27	11.73	0.267
2220	85.19	14.81	0.351
2940	82.34	17.66	0.436

$$
\begin{gathered}
k_{r a c}=1.20 \times 10^{-4} \mathrm{~s}^{-1} \\
t_{\frac{1}{2}} r a c=96 \text { minutes } \\
\Delta G^{\ddagger}=95.4 \mathrm{~kJ} / \mathrm{mol}
\end{gathered}
$$

rac-N-(2-(tert-Butyl)phenyl)-N-chloro-4-methoxybenzamide, 2n

Synthesised from 1 n ($200 \mathrm{mg}, 0.706 \mathrm{mmol}, 1.00$ eq.) , trichloroisocyanuric acid ($180 \mathrm{mg}, 0.775 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.5 \mathrm{~mL})$ according to the general procedure A. Column Chromatography ($7 \% \mathrm{EtOAc} /$ petrol $40-60$) yielded $\mathbf{2 n}$ as a gummy solid ($143 \mathrm{mg}, 64 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}_{\mathrm{H}}: 7.56\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{11}\right.$), $7.49\left(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.40-7.19(\mathrm{~m}, 3 \mathrm{H}, 3$ $\left.\mathrm{H}_{\mathrm{Ar}}\right), 6.81\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{12}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{14}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{1}\right)$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\boldsymbol{\delta c}_{\mathrm{c}} 161.9,147.7,143.0,132.3,131.5,129.8,128.9,127.6,125.2,113.4,113.3,55.4$, 36.1, 31.6.

FTIR (neat) v/cm ${ }^{-1}$: 2960, 2839, 1664, 1604, 1509, 1295, 1253, 1173, 758, 600.
HRMS (ESI): m / z calc'd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{ClNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 318.1255$; found $318.1258 \Delta 0.94 \mathrm{ppm}$.
Chiral HPLC: Chiralpak-IC column with guard; solvent ratio $=75: 25 n$-hexane: ${ }^{i} \operatorname{PrOH}$. Temperature $=25^{\circ} \mathrm{C}$. Flow rate $=1 \mathrm{ml} / \mathrm{min}, \lambda=240 \mathrm{~nm}, \tau_{\text {ret }}=10.8 \mathrm{~min}$ and 12.6 min .

| Ret.Time
 min | Amount
 n.a. | Rel.Area
 $\%$ | Area
 mAU*min | Height
 mAU |
| :---: | ---: | :---: | :---: | :---: | :---: |
| 10.787 | n.a. | 49.91 | 1395.3131 | 2636.63 |
| 12.600 | n.a. | 50.09 | 1400.0818 | 2562.00 |

Ret.Time \min	Amount n.a.	Rel.Area $\%$	Area mAU*min	Height mAU
10.840	n.a.	10.63	13.5288	23.99
12.653	n.a.	89.37	113.7630	260.77

Racemization study for $\mathbf{2 n}$: According to general procedure B, and using the conditions specified immediately above, an analytical quantity of the slower eluting enantiomer was collected by semipreparative HPLC and reinjected successively over time intervals shown below to calculate the rate of racemization.

Time (s)	\% maj. enantiomer	\% min. enantiomer	$\ln (1 / \mathrm{ee})$
0	89.37	10.63	0.239
960	81.44	18.56	0.464
1920	72.37	27.63	0.804
2880	65.98	34.02	1.14

rac-N-(2-(tert-Butyl)phenyl)-N-chloro-cinnamamide, 20

Synthesised from 10 ($206 \mathrm{mg}, 0.737 \mathrm{mmol}, 1.00$ eq.), trichloroisocyanuric acid ($189 \mathrm{mg}, 0.815 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.5 \mathrm{~mL})$ according to the general procedure A . Column chromatography ($10 \% \mathrm{EtOAc} /$ petrol $40-60$) yielded $\mathbf{2 o}$ as a white solid ($89 \mathrm{mg}, 38 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 218 \mathrm{~K}$) $\delta_{\mathrm{H}: ~} 7.78\left(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}\right), 7.64-7.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 7.52-7.47(\mathrm{~m}, 1 \mathrm{H}$, $\left.H_{6}\right), 7.42-7.31\left(m, 6 H, H_{5}, H_{13}, H_{14}, H_{15}\right), 7.29-7.23\left(m, 1 H, H_{4}\right), 6.15\left(d, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{10}\right), 1.44\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{1}\right)$. ${ }^{13}$ C NMR (126 MHz, CDCl 3,218 K): $\delta c: \delta 166.0,148.0,143.9,140.8,133.7,132.2,130.8,130.5,128.9,128.8$, 128.2, 128.2, 115.7, 36.0, 31.4.

FTIR (neat) v/cm ${ }^{-1}$: 3001, 2961, 2841, 1901, 1655, 1630, 1594, 1572, 1508.
HRMS (ESI): m / z calc'd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClNO}^{+}[\mathrm{M}+\mathrm{H}]^{+} 314.1306$; found $314.1307 \Delta=0.3 \mathrm{ppm}$.
Melting point (${ }^{\circ} \mathrm{C}$): 111-113.
Chiral HPLC: Chiralpak-IA column; solvent ratio $=95: 5 \mathrm{n}$-hexane: ${ }^{\mathrm{i}} \mathrm{PrOH}$. Temperature $=25^{\circ} \mathrm{C}$, flow rate $=$ $1 \mathrm{ml} / \mathrm{min}, \lambda=240 \mathrm{~nm}, \tau_{\text {ret }}=11.3 \mathrm{~min}$ and 13.4 min .

Ret.Time min	Amount n.a.	Rel.Area $\%$	Area mAU*min	Height mAU
11.327	n.a.	48.89	681.6093	1503.68
13.357	n.a.	51.11	712.6900	1413.54

| Ret.Time
 min | Amount
 n.a. | Rel.Area
 $\%$ | Area
 mAU*min | Height
 mAU |
| :---: | ---: | ---: | ---: | ---: | ---: |
| 10.953 | n.a. | 0.80 | 0.2936 | 0.76 |
| 12.970 | n.a. | 99.20 | 36.4381 | 72.85 |

Racemization study for $\mathbf{2 0}$: According to general procedure B , and using the conditions specified immediately above, an analytical quantity of the slower eluting enantiomer was collected by semipreparative HPLC and reinjected successively over time intervals shown below to calculate the rate of racemization.

Time (s)	\% maj. enantiomer	\% min. enantiomer	$\ln (1 / \mathrm{ee})$
0	99.20	0.80	0.0161
1291	99.00	1.00	0.0202
13536	97.56	2.44	0.0500
76693	91.02	8.98	0.198
166802	82.70	17.30	0.444

$$
\begin{gathered}
k_{r a c}=2.44 \times 10^{-6} \mathrm{~s}^{-1} \\
t_{\frac{1}{2}} r a c=3.3 \mathrm{days} \\
\Delta G^{\ddagger}=104.9 \mathrm{~kJ} / \mathrm{mol}
\end{gathered}
$$

3.3 Synthesis of N -alkyl amides

rac-N-(2-(tert-Butyl)phenyl)-3-phenyl-N-propylpropanamide, 3a

$\mathrm{NaH}(60 \%$ dispersion in mineral oil, $17 \mathrm{mg}, 0.43 \mathrm{mmol}$, 1.2 eq.) was suspended in dry DMF (0.35 mL) and cooled to $0^{\circ} \mathrm{C}$. A solution of 1 a ($100 \mathrm{mg}, 0.356 \mathrm{mmol}, 1.00 \mathrm{eq}$.) in dry DMF (1.8 mL) was added dropwise and the solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 minutes. After this time, 1 -iodopropane ($0.10 \mathrm{~mL}, 1.0 \mathrm{mmol}, 3.0 \mathrm{eq}$.) was added dropwise and the solution was allowed to warm to room temperature and stirred for 16 hours. The reaction was diluted with water and EtOAc. The layers were separated and the aqueous layer was extracted twice with EtOAc. The combined organics were washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The crude residue was purified via column chromatography (7\% EtOAc/petrol 40-60) to yield 3a as a white solid (61 mg, 53\% yield, >95:5 cis/trans).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}_{\mathrm{H}} 7.53\left(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 7.32-7.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 7.25-7.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{14}\right)$, $7.18-7.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{15}\right), 7.13-7.06\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{13} \& \mathrm{H}_{5}\right), 6.65\left(\mathrm{dd}, \mathrm{J}=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 4.25(\mathrm{ddd}, \mathrm{J}=13.0,11.1$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{16}$), 2.98 (ddd, $J=13.7,9.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}$), 2.86 (ddd, $J=13.8,9.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{11}{ }^{\prime}$), 2.68 (ddd, $J=$ $13.0,11.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{16^{\prime}}$), 2.36 - $2.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 1.85-1.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{17}\right), 1.59-1.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{17^{\prime}}\right), 1.33(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{H}_{1}\right), 0.88\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{18}\right)$.
The identity of the major geometrical isomer was assigned as cis- on the basis of NOE correlations between H_{7} H_{10} (see spectra).
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \mathrm{c}: 172.2,146.4,141.6,140.0,131.7,130.3,128.8,128.5,128.4,126.9,126.1,53.0$, 37.5, 36.3, 32.3, 31.7, 20.4, 11.6.

FTIR (neat) v/cm ${ }^{-1}$: 2965, 2932, 2874, 1645, 1403, 753, 701, 510.
HRMS (ESI): m / z calc'd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+} 324.2322$; found $324.2327 \Delta=1.5 \mathrm{ppm}$.
Melting Point (${ }^{\circ} \mathrm{C}$): 82-84.

Chiral HPLC: Chiralpak-IB column; solvent ratio $=97: 3 n$-hexane: ${ }^{i}$ PrOH. Temperature $=25{ }^{\circ} \mathrm{C}$, flow rate $=$ $1 \mathrm{ml} / \mathrm{min}, \lambda=240 \mathrm{~nm}, \tau_{\text {ret }}=6.00 \mathrm{~min}$ and 6.40 min .

Ret.Time min	Amount n.a.	Rel.Area $\%$	Area mAU*min	Height mAU
6.017	n.a.	49.28	344.9285	2156.34
6.417	n.a.	50.72	354.9716	2017.59

Racemization study for 3a: According to a modification of general procedure B, rac-3a (1 mg) was dissolved in 2 mL HPLC grade n-hexane. The sample was subjected to semi-preparative normal-phase HPLC ($100 \mu \mathrm{~L}$ injection volume) under the conditions specified immediately above using an analytical Daicel IB column (dimensions: $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{~cm}$) along with the corresponding guard column ($0.4 \mathrm{~cm} \varnothing \times 1 \mathrm{~cm}$) and the slower eluting enantiomer was collected. The solvent was removed under a stream of nitogen and the residue was redissolved in isoctane. The sample was heated to $100^{\circ} \mathrm{C}$ in a preheated oil bath, and $100 \mu \mathrm{~L}$ aliquots were removed and analyzed by chiral HPLC (under identical conditions) at the time intervals shown below to calculate the rate of racemization.

Time (s)	\% maj. enantiomer	\% min. enantiomer	$\ln (1 / \mathrm{ee})$
0	99.16	0.84	0.0169
3540	97.09	2.91	0.0600
6300	95.47	4.53	0.0950
10560	93.09	6.91	0.149
14160	91.20	8.80	0.194

$$
\begin{aligned}
& k_{r a c}=1.25 \times 10^{-5} \mathrm{~s}^{-1}\left(100^{\circ} \mathrm{C}\right) \\
& t_{\frac{1}{2}} r a c=15.4 \mathrm{hours}\left(100{ }^{\circ} \mathrm{C}\right) \\
& \Delta G^{\ddagger}=129.2 \mathrm{~kJ} / \mathrm{mol}\left(100^{\circ} \mathrm{C}\right)
\end{aligned}
$$

Assuming ΔG^{\ddagger} is invariant with temperature, $t_{\frac{1}{2}} r a c \approx 200$ years $\left(20^{\circ} \mathrm{C}\right)$

rac-N-(2-(tert-Butyl)phenyl)-N-propylbenzamide, 3b

A suspension of sodium hydride (60% dispersion in mineral oil, $47 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2 \mathrm{eq}$.) in dry DMF (1.3 mL) was cooled to $0^{\circ} \mathrm{C}$ and a solution of $\mathbf{1 i}(250 \mathrm{mg}, 0.987 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in DMF (4.2 mL) was added. The mixture was stirred for 15 minutes at $0^{\circ} \mathrm{C}$. Propyl iodide ($0.3 \mathrm{~mL}, 3.0 \mathrm{mmol}, 3.0 \mathrm{eq}$.) was added dropwise and the mixture was warmed to room temperature and stirred for 2 h . After this time, water and EtOAc were added, the layers separated, and the aqueous layer extracted twice with EtOAc. The combined organic extracts were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (eluent: gradient from $5 \% \mathrm{Et}_{2} \mathrm{O}$ in petrol $40-60$ to $100 \% \mathrm{Et}_{2} \mathrm{O}$) to afford $\mathbf{3 b}$ as a white solid (79 $\mathrm{mg}, 27 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} ; 7.62-7.57\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{4 \text { min }}\right.$ and $\mathrm{H}_{11 \text { min. }}$), $7.51-7.44\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{4 \text { maj. }}, \mathrm{H}_{13 \text { min }}\right.$ and $\left.\mathrm{H}_{12 \text { min. }}\right)$, $7.35-7.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5 \text { min. }}\right.$), $7.33-7.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{11 \text { maj }}\right.$), $7.31-7.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6 \text { min. }}\right), 7.27-7.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5 \text { maj. }}\right.$), 7.23
-7.19 (m, 1H, $\mathrm{H}_{13 \text { maj. }}$), 7.17 (dd, J = 7.7, $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7 \text { min. }}$), $7.15-7.12$ (m, 2H, $\mathrm{H}_{12 \text { maj. }}$), $7.12-7.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{6 \mathrm{maj}}\right.$), 7.01 (dd, J = 7.8, $1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{7 \text { maj. }}$), 4.44 (ddd, J = 13.0, 11.1, $5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{14 \text { maj. }}$), 3.77 (ddd, J = 14.4, 11.3, 5.3 Hz , $1 \mathrm{H}, \mathrm{H}_{14 \min .}$), 3.17 (ddd, J = 14.4, $11.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\left.14^{\prime} \min .\right)}$), 2.93 (ddd, J=13.0, 11.1, $4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{14^{\prime} \text { maj. }}$), $2.16-1.89$
 $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{16 \text { maj. }}$), 0.66 (t, J = $7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}_{16 \text { min. }}$).

The identity of the major geometrical isomer was assigned as cis- on the basis of NOE correlations between H_{11} and H_{7} (see spectra). A ratio of $77: 23$ cis/trans was measured from the ${ }^{1} \mathrm{H} \mathrm{NMR}$ data collected at 218 K .
${ }^{13}$ C NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\boldsymbol{\delta}_{\mathrm{c}}=172.3$ (min.), 168.8 (maj.), 146.5 (min.), 146.1 (maj.), 140.1 (maj.), 139.9 (min.), 137.1 (min.), 136.2 (maj.), 132.5 (maj.), 131.9 (min.), 130.8 (maj.), 129.5 (min.), 129.4 (maj.), 129.3 (min.), 129.1 (maj.), 128.5 (min.), 128.1 (maj.), 128.0 (min.), 127.4 (maj.), 126.8 (min.), 126.5 (min.), 126.2 (maj.), 55.9 (min.), 54.8 (maj.), 36.3 (maj.), 36.1 (min.), 32.3 (maj.), 31.9 (min.), 22.4 (min.), 20.2 (maj.), 11.6 (maj.), 11.2 (min.)

FTIR (neat) $\mathbf{v / c m} \mathbf{c m}^{\mathbf{- 1}}: 3060,2951,2925,2867,1626,1593,1489,1403,1319,774,658,609$.
HRMS (ESI): m/z calc'd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$296.2009; found $296.2027 \Delta 6.1 \mathrm{ppm}$.
Melting Point (${ }^{\circ} \mathrm{C}$): 92-96.
Chiral HPLC: Chiralpak-IC column; solvent ratio $=92: 8 n$-hexane: ${ }^{i} \operatorname{PrOH}$. Temperature $=25{ }^{\circ} \mathrm{C}$, flow rate $=$ $1 \mathrm{ml} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \tau_{\text {ret }}=15.9 \mathrm{~min}$ and 20.5 min .

Ret.Time min	Amount n.a.	Rel.Area $\%$	Area mAU*min	Height mAU
15.873	n.a.	49.91	768.4869	980.87
20.537	n.a.	50.09	771.1462	499.23

Racemization study for $\mathbf{3 b}$: According to a modification of general procedure B, rac-3b(1 mg) was dissolved in 2 mL HPLC grade n-hexane. The sample was subjected to semi-preparative normal-phase HPLC ($100 \mu \mathrm{~L}$ injection volume) under the conditions specified immediately above using an analytical Daicel IC column (dimensions: $0.46 \mathrm{~cm} \varnothing \times 25 \mathrm{~cm}$) along with the corresponding guard column ($0.4 \mathrm{~cm} \varnothing \times 1 \mathrm{~cm}$). The slower eluting enantiomer was collected. The solvent was removed under a stream of nitogen and the residue was redissolved in isoctane. The sample was heated to $70^{\circ} \mathrm{C}$ in a preheated oil bath, and $100 \mu \mathrm{~L}$ aliquots were removed and analyzed by chiral HPLC (under identical conditions) at the time intervals shown below to calculate the rate of racemization.

Time (s)	\% maj. enantiomer	\% min. enantiomer	$\ln (1 / \mathrm{ee})$
0	99.99	0.01	0.0002
1980	87.67	12.33	0.283
3900	79.06	20.94	0.543
5760	72.17	27.83	0.813
8400	64.29	35.71	1.25

Assuming ΔG^{\ddagger} is invariant with temperature, $t_{\frac{1}{2}} r a c \approx \mathbf{6 0}$ days $\left(20^{\circ} \mathbf{C}\right)$

3.4 Correlation of Racemization Rates with Charton Parameters and $\boldsymbol{\theta}$

The table below summarises the experimentally detemined values of $\Delta \mathrm{G}^{\ddagger}$ for compounds $\mathbf{2 a}$-g and $\mathbf{2 I}$ \mathbf{n} along with Charton values (v) reported in the literature, ${ }^{7,8,9}$ Taft-Dubois steric parameter (E_{s}) reported in the literature, ${ }^{10}$ and angle parameters θ calculated from the X -ray crystal structures. Uncertainties in θ were estimated by propagating individual standard deviations of angles a, b and c obtained from analysis of X -ray diffraction data. Uncertianties in $\Delta \mathrm{G}^{\ddagger}$ were estimated by propagating standard errors in $k_{r a c}$ obtained via linear regression analysis.

Compound $\left[\mathrm{R}^{1}\right]$	$\begin{aligned} & \text { angle } a /{ }^{\circ} \\ & \text { (CO-N-Cl) } \end{aligned}$	$\begin{aligned} & \text { angle } b /{ }^{\circ} \\ & \text { (CO-N-Ar) } \end{aligned}$	$\begin{gathered} \text { angle } c /{ }^{\circ} \\ (\text { Ar- } \mathrm{N}-\mathrm{Cl}) \end{gathered}$	$\begin{gathered} \theta / \circ \\ (a+b+c) \end{gathered}$	v	-Es'	$\Delta \mathrm{G}^{\ddagger} /$ $\mathrm{kJ} / \mathrm{mol}$
2a $\left[\mathrm{PhCH}_{2} \mathrm{CH}_{2}\right]$	116.63	127.11	112.88	356.62 ± 0.23	0.70^{7}	0.35^{10}	108.03 ± 0.02
2b [Et]	115.43	124.39	113.64	353.46 ± 0.15	$0.56{ }^{7}$	$0.08{ }^{10}$	107.92 ± 0.13
2c [n Hept]	-	-	-	-	$0.73{ }^{8}$	-	108.01 ± 0.13
2d [${ }^{\text {c Pr }}$]	114.12	123.90	111.84	349.86 ± 0.31	$1.06{ }^{8}$	1.09^{10}	106.40 ± 0.03
2e [${ }^{\text {c }}$ [u]	115.43	125.11	113.72	354.26 ± 0.16	$0.51{ }^{8}$	$0.03{ }^{10}$	107.66 ± 0.004
2 f ['Pent]	114.12	123.88	112.26	350.26 ± 0.25	$0.71{ }^{8}$	0.41^{10}	107.10 ± 0.09
2g [${ }^{[} \mathrm{Hex}$]	113.61	121.01	111.44	346.06 ± 0.17	0.87^{8}	$0.69{ }^{10}$	105.18 ± 0.02
21 [Ph]	117.33	118.06	114.06	349.45 ± 0.23	0.57 or 1.66^{9}	2.31^{10}	$\begin{aligned} & 94.17 \pm 0.03 \\ & 94.21 \pm 0.01 \end{aligned}$
$2 \mathrm{~m}\left[p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right]$	117.92	120.50	112.99	351.41 ± 0.18	-	-	95.39 ± 0.10
2n [p-OMeC ${ }_{6} \mathrm{H}_{4}$]	116.57	119.15	112.22	347.94 ± 0.20	-	-	93.03 ± 0.16

Plotting the values for Charton parameter against $\Delta \mathrm{G}^{\ddagger}$ gave the following graph. Error bars represent uncertainties in $\Delta \mathrm{G}^{\ddagger}$ as described above.

Plotting the values for the Taft-Dubois steric parameter against $\Delta \mathrm{G}^{\ddagger}$ gave the following graph. Error bars represent uncertainties in $\Delta \mathrm{G}^{\ddagger}$ as described above.

Plotting the values for θ against $\Delta \mathrm{G}^{\ddagger}$ gave the following graph. Error bars represent uncertainties in θ and $\Delta \mathrm{G}^{\ddagger}$ as described above.

4. X-Ray Crystallography

4.1 Experimental

Single crystal diffraction data were collected on a XtaLAB Synergy HyPix-Arc 100 diffractometer using copper radiation $\left(\lambda_{\text {сuк } \alpha}=1.54184 \AA\right.$). Data were collected at 150 K using an Oxford Cryosystems CryostreamPlus open-flow N_{2} cooling device.

Intensities were corrected for absorption using a multifaceted crystal model created by indexing the faces of the crystal for which data were collected. ${ }^{11}$ Cell refinement, data collection and data reduction were undertaken via the software CrysAlisPro. ${ }^{12}$

All structures were solved using XT^{13} and refined by XL^{14} using the Olex2 interface. ${ }^{15}$ All nonhydrogen atoms were refined anisotropically and hydrogen atoms were positioned with idealised geometry, with the exception of those bound to heteroatoms, the positions of which were located using peaks in the Fourier difference map. The displacement parameters of the hydrogen atoms were constrained using a riding model with $U_{(H)}$ set to be an appropriate multiple of the $U_{\text {eq }}$ value of the parent atom.

4.2 Crystal data and structure refinement for 2 a

Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClNO}$
Formula weight	315.82
Temperature/K	150.0(2)
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
a/Å	16.7373(9)
b/Å	6.1891(2)
c / \AA	18.0916(11)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	110.509(6)
Y/ ${ }^{\circ}$	90
Volume/Å ${ }^{3}$	1755.30(17)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.195
μ / mm^{-1}	1.923
F(000)	672.0
Crystal size/mm ${ }^{3}$	$0.26 \times 0.06 \times 0.05$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ} 8.926$ to 155.896	
Index ranges	$-20 \leq h \leq 21,-7 \leq k \leq 7,-21 \leq 1 \leq 22$
Reflections collected	20357
Independent reflections	$3493\left[\mathrm{R}_{\text {int }}=0.0320, \mathrm{R}_{\text {sigma }}=0.0217\right]$

Data/restraints/parameters 3493/234/233
Goodness-of-fit on $F^{2} \quad 1.148$
Final R indexes $[l>=2 \sigma(I)] \quad R_{1}=0.0428, w R_{2}=0.1167$
Final R indexes [all data] $\quad R_{1}=0.0509, w R_{2}=0.1354$
Largest diff. peak/hole / e $\AA^{-3} 0.31 /-0.44$

Figure 1: The structure of $2 a$ with probability ellipsoids drawn at the 50% probability level. Only the disorder component with the highest occupancy is shown and hydrogen atoms have been omitted for clarity

4.3 Crystal data and structure refinement for 2b

Empirical formula	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClNO}$
Formula weight	239.746
Temperature/K	150.0(2)
Crystal system	triclinic
Space group	P-1
a/Å	6.66649(19)
b/Å	9.4285(3)
$c / A ̊$	10.2117(3)
$\alpha /{ }^{\circ}$	93.580(2)
$\beta /{ }^{\circ}$	96.362(2)
$\gamma /{ }^{\circ}$	93.083(2)
Volume/Å ${ }^{3}$	635.47(3)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.253
μ / mm^{-1}	2.486
F(000)	257.4
Crystal size/mm ${ }^{3}$	$0.19 \times 0.18 \times 0.06$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ} 8.74$ to 155.2	
Index ranges	$-8 \leq h \leq 8,-11 \leq k \leq 11,-12 \leq 1 \leq 12$
Reflections collected	13900
Independent reflections	2505 [$\mathrm{Rint}=0.0347, \mathrm{R}_{\text {sigma }}=0.0219$]

Data/restraints/parameters	$2505 / 0 / 150$
Goodness-of-fit on F^{2}	1.039
Final R indexes [l>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0304, \mathrm{wR}_{2}=0.0794$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0323, \mathrm{wR}_{2}=0.0812$
Largest diff. peak/hole $/$ e $\AA^{-3} 0.23 /-0.21$	

Figure 2: The structure of $2 b$ with probability ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity

4.4 Crystal data and structure refinement for 2d

Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{ClNO}$
Formula weight	251.74
Temperature/K	150.0(2)
Crystal system	monoclinic
Space group	12/a
a/Å	18.5653(4)
b/Å	6.36990(10)
c/Å	23.6434(5)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	108.817(2)
$\mathrm{V} /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	2646.61(9)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.264
μ / mm^{-1}	2.414
F(000)	1072.0
Crystal size/mm ${ }^{3}$	$0.27 \times 0.1 \times 0.03$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ} 7.9$ to 155.126	
Index ranges	$-22 \leq h \leq 22,-7 \leq k \leq 7,-28 \leq 1 \leq 29$
Reflections collected	14323
Independent reflections	2651 [$\mathrm{Rint}=0.0384, \mathrm{R}_{\text {sigma }}=0.0270$]
Data/restraints/parameters	2651/0/157
Goodness-of-fit on F^{2}	1.051

Final R indexes $[I>=2 \sigma(I)] \quad R_{1}=0.0607, w R_{2}=0.1564$
Final R indexes [all data] $\quad R_{1}=0.0668, w R_{2}=0.1619$
Largest diff. peak/hole / e $\AA^{-3} 1.65 /-0.78$

Figure 3: The structure of 2d with probability ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity

4.5 Crystal data and structure refinement for 2 e

Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{ClNO}$
Formula weight	265.77
Temperature/K	150.0(2)
Crystal system	monoclinic
Space group	C2/c
a/Å	17.0047(5)
b/Å	6.6560(2)
c/Å	24.7570(8)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	92.075(3)
V/ ${ }^{\circ}$	90
Volume/Å ${ }^{3}$	2800.24(15)
Z	8
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.261
μ / mm^{-1}	2.308
F(000)	1136.0
Crystal size/mm ${ }^{3}$	$0.19 \times 0.16 \times 0.1$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ} 7.146$ to 156.44	
Index ranges	$-20 \leq h \leq 19,-8 \leq k \leq 8,-30 \leq 1 \leq 30$
Reflections collected	12518
Independent reflections	2785 [Rint $=0.0331, \mathrm{R}_{\text {sigma }}=0.0243$]
Data/restraints/parameters	2785/0/166
Goodness-of-fit on F^{2}	1.066

Final R indexes $[I>=2 \sigma(I)] \quad R_{1}=0.0330, w R_{2}=0.0886$
Final R indexes [all data] $\quad R_{1}=0.0372, w R_{2}=0.0928$
Largest diff. peak/hole / e \AA^{-3} 0.22/-0.27

Figure 4: The structure of $2 e$ with probability ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity

4.6 Crystal data and structure refinement for $2 f$

Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ClNO}$
Formula weight	279.79
Temperature/K	150.0(2)
Crystal system	monoclinic
Space group	P2 1_{1} c
a/Å	12.6132(6)
b/Å	6.8258(4)
c/Å	17.3255(8)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	93.319(4)
Y/ ${ }^{\circ}$	90
Volume/Å ${ }^{3}$	1489.13(14)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.248
μ / mm^{-1}	2.195
F(000)	600.0
Crystal size/mm ${ }^{3}$	$0.21 \times 0.09 \times 0.02$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ} 7.02$ to 156.434	
Index ranges	$-11 \leq h \leq 15,-7 \leq k \leq 8,-21 \leq 1 \leq 22$
Reflections collected	13974
Independent reflections	2982 [Rint $=0.0307, \mathrm{R}_{\text {sigma }}=0.0235$]
Data/restraints/parameters	2982/0/175
Goodness-of-fit on F^{2}	1.046

Final R indexes $[I>=2 \sigma(I)] \quad R_{1}=0.0445, w R_{2}=0.1230$
Final R indexes [all data] $\quad R_{1}=0.0557, w R_{2}=0.1337$
Largest diff. peak/hole / e \AA^{-3} 0.32/-0.24

Figure 5: The structure of $2 f$ with probability ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity

4.7 Crystal data and structure refinement for $\mathbf{2 g}$

Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{ClNO}$
Formula weight	293.82
Temperature/K	150.0(2)
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$
a/Å	9.22350(10)
b/Å	7.00790(10)
$c / A ̊$	25.1221(4)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	94.528(2)
$\mathrm{V} /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	1618.76(4)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.206
μ / mm^{-1}	2.041
F(000)	632.0
Crystal size/mm ${ }^{3}$	$0.1 \times 0.08 \times 0.03$
Radiation	$\mathrm{CuK} \alpha(\lambda=1.54184)$
29 range for data collection/ ${ }^{\circ} 7.06$ to 156.672	
Index ranges	$-11 \leq h \leq 11,-8 \leq k \leq 6,-30 \leq 1 \leq 31$
Reflections collected	15611
Independent reflections	$3262\left[R_{\text {int }}=0.0309, \mathrm{R}_{\text {sigma }}=0.0237\right]$
Data/restraints/parameters	3262/0/184

Goodness-of-fit on $\mathrm{F}^{2} \quad 1.044$
Final R indexes $[l>=2 \sigma(I)] \quad R_{1}=0.0368, w R_{2}=0.0961$
Final R indexes [all data] $\quad R_{1}=0.0433, w R_{2}=0.1014$
Largest diff. peak/hole / e $\AA^{-3} 0.52 /-0.27$

Figure 6: The structure of $\mathbf{2 g}$ with probability ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity

4.8 Crystal data and structure refinement for 21

Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClNO}$
Formula weight	287.77
Temperature/K	150.0(2)
Crystal system	orthorhombic
Space group	$\mathrm{P} 2{ }_{12} 1_{121}$
a/Å	7.63450(10)
b/Å	9.62950(10)
c/Å	20.4737(2)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma^{\prime}{ }^{\circ}$	90
Volume/Å ${ }^{3}$	1505.15(3)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.270
μ / mm^{-1}	2.194
F(000)	608.0
Crystal size/mm ${ }^{3}$	$0.22 \times 0.15 \times 0.08$
Radiation	$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection/ ${ }^{\circ} 8.638$ to 156.91	
Index ranges	$-9 \leq h \leq 8,-10 \leq k \leq 12,-24 \leq 1 \leq 24$
Reflections collected	19192
Independent reflections	3057 [$\left.\mathrm{R}_{\text {int }}=0.0346, \mathrm{R}_{\text {sigma }}=0.0202\right]$
Data/restraints/parameters	3057/0/185

Goodness-of-fit on F^{2}	1.046
Final R indexes [l>=2 $\sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0252, \mathrm{wR}_{2}=0.0649$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0259, w R_{2}=0.0654$
Largest diff. peak/hole $/$ e \AA^{-3}	$0.17 /-0.17$
Flack parameter	$-0.010(5)$

Figure 7: The structure of 21 with probability ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity

4.9 Crystal data and structure refinement for 2 m

Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClF}_{3} \mathrm{NO}$
Formula weight	355.77
Temperature/K	150.0(2)
Crystal system	monoclinic
Space group	P2 1_{1} c
a/Å	6.21560(10)
b/Å	11.1571(3)
c/Å	24.7517(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	92.551(2)
Y/ ${ }^{\circ}$	90
Volume/Å ${ }^{3}$	1714.78(7)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.378
μ / mm^{-1}	2.295
F(000)	736.0
Crystal size/mm ${ }^{3}$	$0.23 \times 0.04 \times 0.04$
Radiation	CuK ${ }^{(\lambda)}=1.54184$)
2Θ range for data collection/ ${ }^{\circ} 7.15$ to 157.838	
Index ranges	$-7 \leq h \leq 7,-13 \leq k \leq 13,-30 \leq 1 \leq 30$

Reflections collected 18811
Independent reflections $\quad 3491\left[R_{\text {int }}=0.0350, R_{\text {sigma }}=0.0235\right]$
Data/restraints/parameters 3491/420/275
Goodness-of-fit on $F^{2} \quad 1.092$
Final R indexes $[l>=2 \sigma(I)] \quad R_{1}=0.0361, w R_{2}=0.0986$
Final R indexes [all data] $\quad R_{1}=0.0406, w R_{2}=0.1026$
Largest diff. peak/hole / e $\AA^{-3} 0.31 /-0.26$

Figure 8: The structure of $\mathbf{2 m}$ with probability ellipsoids drawn at the 50% probability level. . Only the disorder component with the highest occupancy is shown and hydrogen atoms have been omitted for clarity

4.10 Crystal data and structure refinement for $2 n$

Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ClNO}_{2}$
Formula weight	317.80
Temperature/K	150.0(2)
Crystal system	triclinic
Space group	P-1
a/Å	8.35130(10)
b/Å	13.4596(2)
$c / A ̊$	15.5830(2)
$\alpha /{ }^{\circ}$	77.9650(10)
$\beta /{ }^{\circ}$	76.1000(10)
V/ ${ }^{\circ}$	77.2070(10)
Volume/Å ${ }^{3}$	1635.64(4)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.291
μ / mm^{-1}	2.116
F(000)	672.0
Crystal size/mm ${ }^{3}$	$0.27 \times 0.09 \times 0.05$
Radiation	CuK ${ }^{(\lambda)}=1.54184$)
2Θ range for data collection/ ${ }^{\circ} 5.922$ to 157.166	
Index ranges	$-9 \leq h \leq 10,-17 \leq k \leq 17,-19 \leq 1 \leq 19$

Reflections collected 43178
Independent reflections
Data/restraints/parameters 6442/0/406
Goodness-of-fit on F^{2}
Final R indexes $[l>=2 \sigma(I)] \quad R_{1}=0.0395, w R_{2}=0.1056$
Final R indexes [all data] $\quad R_{1}=0.0431, w R_{2}=0.1083$
Largest diff. peak/hole / e \AA^{-3} 0.45/-0.46

Figure 9: The structure of $2 n$ with probability ellipsoids drawn at the 50% probability level. Hydrogen atoms have been omitted for clarity

5. Computational Modelling

5.1 Computational Methods

All conformational searches were performed using MacroModel (Version 13.6) ${ }^{14}$ in the gas phase utilizing the MMFF force field ${ }^{15-20}$ and a mixture of Low Mode following and Monte Carlo search algorithms. ${ }^{21,22}$ Quantum mechanical calculations were carried out using ORCA 5.0.2. ${ }^{23}$ The molecular geometries were optimized using the PBEO-D3 functional ${ }^{24,25}$ with the def2-TZVP basis set ${ }^{26,27}$. The optimisations were using the implicit SMD solvent model. ${ }^{28}$ All single-point energies were separately calculated using ω B97M-V functional ${ }^{29}$ and def2-QZVPP ${ }^{26,27}$ basis set using the SMD solvent model. Frequency calculations were performed on all structures and confirmed to contain no imaginary frequencies or just one imaginary frequency for ground states and transition states, respectively. Full set of DFT output files with optimized structures, frequencies and high-level single-point energies are provided in the accompanied archive. The archive structure is shown below in section 5.3.

5.2 Investigation of solvent effect on racemization and amide rotation barriers

To investigate the influence of a different solvent on the racemization barriers, single point energy calculations using $\operatorname{SMD}(\mathrm{DCM}$) solvent model were repeated for all structures (see below). This revealed that all of the free energy trends remained similar in DCM solvent, but the racemization free activation energies all were $1.7-3.2 \mathrm{~kJ} / \mathrm{mol}$ higher in DCM compared to hexane. This may be due to more efficient ground state stabilization in the more polar solvent. All reported energies are in $\mathrm{kJ} / \mathrm{mol}$.

amide	$G_{\text {Gel }}$ trans vs cis (hexane)	$\mathrm{G}_{\text {rel }}$ trans vs cis (DCM)	$\Delta \mathrm{G}^{\ddagger}$ calc. (hexane)	$\Delta \mathrm{G}^{\ddagger}$ calc. (DCM)
2b (Et)	+2.1	+2.1	117.2	120.4
2d (cPr)	+4.3	+5.3	115.0	116.7
2l (Ph)	-3.4	-1.5	100.7	103.2
$\mathbf{2 n}(\mathrm{PMP})$	-4.8	-3.7	97.8	100.2

5.3 Summary of additional geometrical parameters

For comparison purposes, key additional geometrical parameters (bond lengths and angles) at the transition states for racemization and cis-trans isomerization are identified below:

Racemization transition states:

amide	Bond lengths (in \AA)			Bond angles (in degrees)		
	$\mathbf{C}(\mathbf{O})-\mathbf{N}$	$\mathbf{N}-\mathbf{C l}$	$\mathbf{N}-\mathbf{A r}$	$\mathbf{C}(\mathbf{O})-\mathbf{N}-\mathbf{C l}$	$\mathbf{C l}-\mathbf{N}-\mathbf{A r}$	$\mathbf{A r}-\mathbf{N}-\mathbf{C O}$
$\mathbf{2 b}(\mathrm{Et})$	1.47	1.71	1.42	103.6	126.5	116.6
$\mathbf{2 d}(\mathrm{cPr})$	1.47	1.71	1.42	103.2	125.7	116.1
$\mathbf{2 I}(\mathrm{Ph})$	1.46	1.72	1.43	101.8	125	118.1
$\mathbf{2 n}(\mathrm{PMP})$	1.47	1.72	1.43	102.2	125.1	117.3

Cis-trans isomerization transition states:

amide	Bond lengths (in \AA)			Bond angles (in degrees)		
	$\mathbf{C}(\mathbf{O})-\mathbf{N}$	$\mathbf{N - C l}$	$\mathbf{N}-\mathbf{A r}$	$\mathbf{C}(\mathbf{O})-\mathbf{N}-\mathbf{C l}$	$\mathbf{C l}-\mathbf{N}-\mathbf{A r}$	Ar-N-CO
$\mathbf{2 b}(\mathrm{Et})$	1.48	1.76	1.44	104.8	111.6	115.7
$\mathbf{2 d}(\mathrm{cPr})$	1.47	1.76	1.44	106.3	110.8	115
$\mathbf{2 I}(\mathrm{Ph})$	1.47	1.76	1.45	106.6	110.5	114.8
$\mathbf{2 n}(\mathrm{PMP})$	1.47	1.76	1.45	106.6	110.1	114.7

5.4 Summary of the associated computational dataset contents

This dataset contains ORCA DFT output files of the key ground-states and transition state DFT optimized structures. The dataset contains 160 files in total. The data is organized by the chloroamide studies, covering substrates $\mathbf{2 b}, \mathbf{2 l}, \mathbf{2 d}, \mathbf{2 n}$. Each of the substrate folders contain subfolders for the ground state calculations, racemization transition states and the cis-trans isomerization transition states. Each of the lower level folders contain the output of the final optimization calculation (*opt*.out), frequency calculation (*freq.out) as well as single point calculation (*_sp.out). All optimized geometries are also provided as *.xyz files for even better usability. The full dataset structure is shown below.

All of the files can be opened in any text editor. ORCA output structures can be viewed and the frequency modes visualised in Avogadro, jmol and in most other molecular viewers/editors. *.xyz files can be viewed in essentially all 3D molecular editors and viewers.

Et_cisiso1tsopt.out
:- PMP_transiso1freq.out
:- Ground

```
    L_Cyprop_cisiso2tsopt.xyz
_-Ground
    _-cyprop_Rcis.xyz
    cyprop_Rcis_sp.out
    cyprop_Rcisfreq.out
    cyprop_Rcisopt.out
    - cyprop_Rtrans.xyz
    cyprop_Rtrans_sp.out
    cyprop_Rtransfreq.out
    cyprop_Rtransopt.out
    cyprop_Scis.xyz
    cyprop_Scis_sp.out
    cyprop_Scisfreq.out
    cyprop_Scisopt.out
    cyprop_Strans.xyz
    cyprop_Strans_sp.out
    cyprop_Stransfreq.out
    - cyprop_Stransopt.out
_Racemization
    -_cyprop_ciscis.xyz
    cyprop_ciscis_sp.out
    cyprop_ciscisfreq.out
    cyprop_ciscistsopt.out
    cyprop_cistrans.xyz
    cyprop_cistrans_sp.out
    cyprop_cistransfreq.out
    cyprop_cistranstsopt.out
    cyprop_transtrans.xyz
    cyprop_transtrans_sp.out
    cyprop_transtransfreq.out
    _ cyprop_transtranstsopt.out
```


6. References

(1) J.-P. Heeb, J. Clayden, M. D. Smith and R. J. Armstrong, Nat. Protoc, 2023, 18, 27452771.
(2) O. Kitagawa, M. Yoshikawa, H. Tanabe, T. Morita, M. Takahashi, Y. Dobashi and T. Taguchi, J. Am. Chem. Soc. 2006, 128, 12923-12931.
(3) A. D. Hughes, D. A. Price and N. S. Simpkins, J. Chem. Soc., Perkin Trans. 1, 1999, 12951304.
(4) J. J. Neumann, S. Rakshit, T. Dröge and F. Glorius, Angew. Chem. Int. Ed. 2009, 48, 68926895.
(5) J. Long, X. Cao, L. Zhu, R. Qiu, C.-T. Au, S.-F. Yin, T. Iwasaki and N. Kambe, Org. Lett., 2017, 19, 2793-2796.
(6) O. Trapp, Chirality, 2006, 18, 489-497.
(7) M. Charton, J. Am. Chem. Soc. 1975, 97, 1552-1556.
(8) M. Charton, J. Org. Chem. 1976, 41, 2217-2220
(9) L. You, J. S. Berman, A. Lucksanawichien, E. V. Anslyn, J. Am. Chem. Soc., 2012, 134, 7126-7134.
(10) J. A. MacPhee, A. Panaye, J.-E. Dubois, Tetrahedron 1978, 34, 3553-3562.
(11) R. C. Clark, J.S. Reid, Acta Cryst., 1995, A51, 887
(12) CrysAlisPro, Rigaku Oxford Diffraction, Tokyo, Japan.
(13) Sheldrick, G.M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2015, 71, 3-8.
(14) Sheldrick, G.M. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112-122.
(15) Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.
(14) MacroModel, version 13.6, Schrödinger, LLC, New York, NY, 2022.
(15) T. A. Halgren J. Comput. Chem., 1996, 17, 490-519.
(16) T. A. Halgren J. Comput. Chem., 1996, 17, 520-552.
(17) T. A. Halgren J. Comput. Chem., 1996, 17, 553-586.
(18) T. A. Halgren and R. B. Nachbar, J. Comput. Chem., 1996, 17, 587-615.
(19) T. A. Halgren J. Comput. Chem., 1996, 17, 616-641.
(20) T. A. Halgren J. Comput. Chem., 1999, 20, 720-729.
(21) I. Kolossváry and W. C. Guida , J. Comput. Chem., 1999, 20, 1671-1684.
(22) I. Kolossváry and W. C. Guida, J. Am. Chem. Soc., 1996, 118, 5011-5019.
(23) F. Neese, F. Wennmohs, U. Becker, C. Riplinger J. Chem. Phys. 2020, 152, 224108
(24) C. Adamo, V. Barone, J. Chem. Phys., 1999, 110, 6158-6169
(25) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104
(26) F. Weigend, R. Ahlrichs Phys. Chem. Chem. Phys. 2005, 7, 3297-3305
(27) F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.
(28) A. V. Marenich, C. J. Cramer, D. G. Truhlar J. Phys. Chem. B 2009, 113, 6378-6396.
(29) N. Mardirossian, M. Head-Gordon, J. Chem. Phys. 2016, 144, 214110.

7. NMR Spectra

1c
${ }^{1} \mathrm{H}$ NMR, CDCl_{3}
$400 \mathrm{MHz}, 298 \mathrm{~K}$

$1 \underset{\sim}{\text { Nin }}$

1c
${ }^{13} \mathrm{C}$ NMR, CDCl_{3}
75 MHz , 298K

1d
${ }^{1} \mathrm{H}$ NMR, CDCl_{3}
400 MHz , 298K

1d
${ }^{13} \mathrm{C}$ NMR, CDCl_{3}
$75 \mathrm{MHz}, 298 \mathrm{~K}$

1 e
${ }^{1} \mathrm{H}$ NMR, CDCl_{3}
$300 \mathrm{MHz}, 298 \mathrm{~K}$

1f
${ }^{1} \mathrm{H}$ NMR, CDCl_{3} $300 \mathrm{MHz}, 298 \mathrm{~K}$

$1 f$
${ }^{13} \mathrm{C}$ NMR, CDCl_{3}
$75 \mathrm{MHz}, 298 \mathrm{~K}$

1h
${ }^{1} \mathrm{H}$ NMR, CDCl_{3} $400 \mathrm{MHz}, 298 \mathrm{~K}$

icin

1h
${ }^{13} \mathrm{C}$ NMR, CDCl_{3} 101 MHz, 298K

$1 i$
${ }^{1} \mathrm{H}$ NMR, CDCl_{3}
400 MHz , 298K

$1 i$
${ }^{13} \mathrm{C}$ NMR, CDCl_{3} $101 \mathrm{MHz}, 298 \mathrm{~K}$

$1 i$
${ }^{19}{ }^{\mathrm{F}} \mathrm{NMR}, \mathrm{CDCl}_{3}$
376 MHz, 298K

[^0]

1j
${ }^{1} \mathrm{H}$ NMR, CDCl_{3} $400 \mathrm{MHz}, 298 \mathrm{~K}$

\qquad

M

1j
${ }^{13} \mathrm{C}$ NMR, CDCl_{3}
$75 \mathrm{MHz}, 298 \mathrm{~K}$

1k
${ }^{1} \mathrm{H}$ NMR, CDCl_{3}
$400 \mathrm{MHz}, 298 \mathrm{~K}$

1k
${ }^{13} \mathrm{C}$ NMR, CDCl_{3}
$101 \mathrm{MHz}, 298 \mathrm{~K}$
$\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 \\ & & & & & & & & & & & & \end{array}$

1m
${ }^{1} \mathrm{H}$ NMR, CDCl_{3}
$300 \mathrm{MHz}, 298 \mathrm{~K}$

1m
${ }^{19} \mathrm{~F} \mathrm{NMR}, \mathrm{CDCl}_{3}$
282 MHz , 298K

${ }^{1} \mathrm{H}$ NMR, CDCl_{3}
$700 \mathrm{MHz}, 298 \mathrm{~K}$

2a
${ }^{1} \mathrm{H}$ NMR, CDCl_{3} $700 \mathrm{MHz}, 273 \mathrm{~K}$

2b
${ }^{1} \mathrm{H}$ NMR, CDCl_{3} $300 \mathrm{MHz}, 298 \mathrm{~K}$

2b
${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{CDCl} 3$, $500 \mathrm{MHz}, 263 \mathrm{~K}$

2c
${ }^{1} \mathrm{H}$ NMR, CDCl_{3} $400 \mathrm{MHz}, 298 \mathrm{~K}$

2c
${ }^{13} \mathrm{C}$ NMR, CDCl_{3}
126 MHz, 298 K

2d
${ }^{1} \mathrm{H}$ NMR, CDCl_{3} $300 \mathrm{MHz}, 298 \mathrm{~K}$

2e
${ }^{1} \mathrm{H}$ NMR, CDCl_{3} $300 \mathrm{MHz}, 298 \mathrm{~K}$

2f
${ }^{1} \mathrm{H}$ NMR, CDCl_{3}
$300 \mathrm{MHz}, 298 \mathrm{~K}$
\qquad \sim mVUL \qquad

$2 g$
${ }^{1} \mathrm{H}$ NMR, CDCl_{3} $300 \mathrm{MHz}, 298 \mathrm{~K}$

2 g
${ }^{13} \mathrm{C}$ NMR, CDCl_{3} $75 \mathrm{MHz}, 298 \mathrm{~K}$

2h
${ }^{1} \mathrm{H}$ NMR, CDCl_{3}
$400 \mathrm{MHz}, 298 \mathrm{~K}$

2i
${ }^{1} \mathrm{H}$ NMR, CDCl_{3} $400 \mathrm{MHz}, 298 \mathrm{~K}$

-

2i
${ }^{13} \mathrm{C}$ NMR, CDCl_{3} 101 MHz, 298K

2i
${ }^{19} \mathrm{~F} \mathrm{NMR}, \mathrm{CDCl}_{3}$ $376 \mathrm{MHz}, 298 \mathrm{~K}$

2j
${ }^{1} \mathrm{H}$ NMR, CDCl_{3}
$300 \mathrm{MHz}, 298 \mathrm{~K}$

※

${ }^{13} \mathrm{C}$ NMR, CDCl_{3}
$75 \mathrm{MHz}, 298 \mathrm{~K}$

2j
${ }^{1} \mathrm{H}$ NMR, $\mathrm{C}_{6} \mathrm{D}_{6}$ $700 \mathrm{MHz}, 298 \mathrm{~K}$ cis:trans: 85:15

[^1]
cis:trans 85:15
2j
NOESY data, $\mathrm{C}_{6} \mathrm{D}_{6}$
$700 \mathrm{MHz}, 298 \mathrm{~K}$

\qquad
\qquad

2k
${ }^{1} \mathrm{H}$ NMR, CDCl_{3}
$400 \mathrm{MHz}, 298 \mathrm{~K}$

2k
${ }^{13} \mathrm{C}$ NMR, CDCl_{3} $101 \mathrm{MHz}, 298 \mathrm{~K}$

21
${ }^{1} \mathrm{H}$ NMR, CDCl_{3} $400 \mathrm{MHz}, 298 \mathrm{~K}$

21
${ }^{1} \mathrm{H}$ NMR, CDCl_{3}
$500 \mathrm{MHz}, 218 \mathrm{~K}$

298 K
\qquad
\qquad

233 K

1. whahumult \qquad

218 K

\qquad

3.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0
									f1 (p									

2m
${ }^{1} \mathrm{H}$ NMR, CDCl_{3} $500 \mathrm{MHz}, 218 \mathrm{~K}$

2m
${ }^{13} \mathrm{C}$ NMR, CDCl_{3} $126 \mathrm{MHz}, 218 \mathrm{~K}$

2m
${ }^{19} \mathrm{~F}$ NMR, CDCl_{3} $282 \mathrm{MHz}, 298 \mathrm{~K}$

20
${ }^{1} \mathrm{H}$ NMR, CDCl_{3}
$500 \mathrm{MHz}, 218 \mathrm{~K}$

20
${ }^{13} \mathrm{C}$ NMR, CDCl_{3} $126 \mathrm{MHz}, 218 \mathrm{~K}$

3a
${ }^{1} \mathrm{H}$ NMR, CDCl_{3} $400 \mathrm{MHz}, 298 \mathrm{~K}$

3a
${ }^{13} \mathrm{C}$ NMR, CDCl_{3}
$75 \mathrm{MHz}, 298 \mathrm{~K}$

3b
${ }^{1} \mathrm{H}$ NMR, CDCl_{3}
$700 \mathrm{MHz}, 298 \mathrm{~K}$
77:23 cis:trans
alluld \qquad

 \qquad

3b
${ }^{13} \mathrm{C}$ NMR, CDCl_{3}
176 MHz , 298K cis/trans: 77:23

[^0]:

[^1]:

