Carbon-chalcogen Wires: Alkynyltellurolatocarbynes

Chee S. Onn and Anthony F. Hill ${ }^{*}$

Received 00th February 2024, DOI: 10.1039/x0xx00000x
www.rsc.org/

General

Experimental work was performed using standard Schlenk techniques using dried and pre-purified nitrogen or in an inert atmosphere glovebox charged with an argon atmosphere unless specified otherwise. Reactions employed dried and degassed solvents distilled over sodium and benzophenone (ethers, arenes and paraffins) or calcium hydride ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeCN}$). The compounds $\left[\mathrm{M}(\equiv \mathrm{CBr})(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right](\mathrm{M}=\mathrm{Mo}, \mathrm{W})^{1}$ has been described previously. All other reagents, including terminal alkynes, were used as received from commercial suppliers.

NMR spectra were obtained on a Bruker Avance $400\left({ }^{1} \mathrm{H}\right.$ at 400.1 $\mathrm{MHz},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ at 100.6 MHz) , a Bruker Avance $600\left({ }^{1} \mathrm{H}\right.$ at 600.0 MHz , ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ at 150.9 MHz) or a Bruker Avance $700\left({ }^{1} \mathrm{H}\right.$ at 700.0 MHz , ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ at $176.1 \mathrm{MHz},{ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\}$ at 126.4 MHz) spectrometers at the temperatures indicated. Chemical shifts (δ) are reported in ppm with coupling constants given in Hz and are referenced to the solvent resonance or external references $\left(\mathrm{Te}_{2} \mathrm{Ph}_{2}\right.$ for ${ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\}, \delta_{\mathrm{Te}}=422.0$ in CDCl_{3}). The multiplicities of NMR resonances are denoted by the abbreviations s (singlet), d (doublet), t (triplet), m (multiplet), br (broad) and combinations thereof for more highly coupled systems. Where applicable, the stated multiplicity refers to that of the primary resonance exclusive of ${ }^{183} \mathrm{~W}$ satellites. In select cases, distinct peaks were observed in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, but to the level of accuracy that is reportable (i.e., two decimal places for ${ }^{1} \mathrm{H}$ NMR, one decimal place for ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$) they are reported as having the same chemical shift.

The abbreviation 'pz' is used to refer to the pyrazolyl rings on the hydridotris(3,5-dimethylpyrazol-1-yl)borate (Tp*) ligand. Spectra provided generally correspond to samples obtained directly from chromatography and may contain residual solvent as recrystallised samples often display reduced solubility. The BH protons give rise to very broad signals around $4-5 \mathrm{ppm}$ in the ${ }^{1} \mathrm{H}$ NMR spectra due to coupling to the quadrupolar boron nuclei. These are generally not listed in the experimental NMR data as their chemical shifts and associated integrals are not determined accurately. The BH unit, being remote from the metal centre of interest is not particularly
responsive to variations and accordingly ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were not recorded.

Infrared spectra were obtained using a Shimadzu FTIR-8400 spectrometer (liquid) or Perkin Elmer FTIR Spectrum Two (solid state ATR, diamond anvil). Signals are denoted according to their absorption strength such as very sharp (vs), strong (s), medium (m), weak (w) or broad (br). Elemental microanalytical data were provided by Macquarie University, Australia, with the caveat that compounds containing $\mathrm{B}-\mathrm{N}$ bonds are considered prone to incomplete oxidation in the combustion analysis (formation of refractory boron nitride materials). Solvates evident from data were confirmed where possible by NMR spectroscopy. High and low resolution electrospray ionisation mass spectrometry (ESI-MS) was performed by the ANU Research School of Chemistry mass spectrometry service with acetonitrile or dichloromethane as the matrix.

Crystallographic Details

Data for X-ray crystallography were collected with Agilent Technologies Xcalibur or Supernova/EosS2-CCD diffractometers as indicated using graphite monochromated Mo-K α radiation ($\lambda=$ $0.71073 \dot{A}$) or Cu-K α radiation ($\lambda=1.54184 \dot{A}$) employing the CrysAlis PRO-CCD and -RED software, ${ }^{2}$ with Gaussian absorption corrections being applied. The structures were solved using intrinsic phasing and refined by full-matrix least-squares on F^{2} in an anisotropic (for nonhydrogen atoms) approximation using the SHELXS or SHELXT and SHELXL programs, ${ }^{3,4}$ implemented within the Olex2 suite of programs. ${ }^{5}$ Hydrogen atoms were located geometrically and refined using a riding model. Diagrams were produced using the CCDC visualisation program Mercury. ${ }^{6,7}$

Computational Details

Computational studies were performed by using the SPARTAN 20^{\circledR} suite of programs. ${ }^{8}$ Geometry optimisation (gas phase) for diatomics and metal complexes was performed at the DFT level of theory using the exchange functionals ω B97X-D of

Head－Gordon．${ }^{9,10}$ The Los Alamos effective core potential type basis set（LANL2D ）of Hay and Wadt ${ }^{11-12}$ was used for W，Se and Te while Pople basis sets ${ }^{15}$ were used for all other atoms． Frequency calculations were performed for all compounds to confirm that each optimized structure was a local minimum and also to identify vibrational modes of interest．Cartesian atomic coordinates and thermodynamic properties are provided below．

Synthetic Procedures and Crystallographic Data

Synthesis of $\left[\mathrm{W}\left(\equiv \mathrm{CSC} \equiv \mathrm{CSiMe}_{3}\right)(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right]$（2a）．To a solution of ethynyltrimethylsilane（ $23 \mu \mathrm{~L}, 0.163 \mathrm{mmol}$ ）in THF（ 5 mL ）at $-78^{\circ} \mathrm{C}$ was added ${ }^{n} \mathrm{BuLi}(0.10 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexanes， 0.16 $\mathrm{mmol})$ ．The mixture was warmed to room temperature and stirring was continued for 30 min ．Grey selenium（ $0.006 \mathrm{~g}, 0.187$ mg ．atom）was then added and the mixture stirred for 1 h ，during which time the solution turned clear．The mixture was again cooled to $-78{ }^{\circ} \mathrm{C}$ and transferred via cannula to a similarly cooled solution of $\left[\mathrm{W}(\equiv \mathrm{CBr})(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right](1: 0.100 \mathrm{~g}, 0.159 \mathrm{mmol})$ in THF（ 5 mL ）．The mixture was gradually warmed to room temperature and stirring was continued overnight，during which time the mixture turned orange－brown．Volatiles were removed in vacuo and the residue was extracted with the minimum dichloromethane and subjected to column chromatography（20 $\times 1 \mathrm{~cm}$ silica gel column），eluting first with petroleum spirits（40－ $60{ }^{\circ} \mathrm{C}$ ）and gradually increasing the polarity to $3: 1 \mathrm{v} / \mathrm{v}$ petrol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ．A bright orange band was collected and the volatiles were removed under reduced pressure to give an orange solid of pure $\mathbf{2 a}$（ $0.048 \mathrm{~g}, 0.071 \mathrm{mmol}, 45 \%$ ）．

IR（ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$ ）：1988s，1897s $\mathrm{v}_{\mathrm{co}} .2092 \mathrm{~s} \mathrm{v}_{\mathrm{C}=\mathrm{c} .}{ }^{1} \mathrm{H}$ NMR（ 600 $\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ）：$\delta_{\mathrm{H}}=0.22\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right)$ ， $2.38\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.54\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH}_{3}\right), 5.77$ （ $\mathrm{s}, 1 \mathrm{H}, \mathrm{pzH}$ ）， $5.90(\mathrm{~s}, 2 \mathrm{H}, \mathrm{pzH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ， $298 \mathrm{~K}): \delta_{\mathrm{c}}=0.1\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 12.9,13.0,15.6,17.1\left(\mathrm{pzCH}_{3}\right), 82.8$ （SC三C），106．9， 107.2 （pzCH）， 107.3 （SC三C），144．8，145．7，152．4， $153.1\left(\mathrm{pzC}{ }^{3,5} \mathrm{CH}_{3}\right), 223.7\left(\mathrm{CO},{ }^{1} \mathrm{~J}_{\mathrm{wc}}=161.6 \mathrm{~Hz}\right), 233.5\left(\mathrm{~W} \equiv \mathrm{C},{ }^{1} \mathrm{~J}_{\mathrm{wc}}\right.$ $=225.0 \mathrm{~Hz}$ ）．MS（ESI，m／z）：Found：678．1600．Calcd for $\mathrm{C}_{23} \mathrm{H}_{31}{ }^{11} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{SSi}^{184} \mathrm{~W}[\mathrm{M}]^{+}: 678.1599$ ．Anal．Found： $\mathrm{C}, 40.46 ; \mathrm{H}$ ， 4．50；N，12．26\％．Calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{BN}_{6} \mathrm{O}_{2}{ }^{32} \mathrm{~S}^{28} \mathrm{Si}^{184} \mathrm{~W}$ ：C，40．73；H， 4．61；N，12．39\％．

Single crystals suitable for X－ray structure diffraction were grown by slow evaporation of a chloroform／ethanol mixture． Crystal data for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{SSiW}\left(M_{\mathrm{w}}=678.35 \mathrm{~g} . \mathrm{mol}^{-1}\right.$ ）： orthorhombic，space group $P 2_{1} 2_{1} 2_{1}$（no．19），$a=8.0110$（16）\AA ，b $=17.654(4) \AA, c=19.997(4) \AA, V=2828.1(10) \AA^{3}, Z=4, T=293(2)$ $\mathrm{K}, \mu(\mathrm{MoK} \alpha)=4.231 \mathrm{~mm}^{-1}, D_{\text {calc }}=1.593 \mathrm{Mgm}^{-3}, 29140$ reflections measured（ $2.04^{\circ} \leq 2 \Theta \leq 63.3^{\circ}$ ）， 8132 unique（ $R_{\text {int }}=0.0484$ ， $\left.R_{\text {sigma }}=0.0446\right)$ which were used in all calculations．The final R_{1} was $0.0686(I>2 \sigma(I))$ and $w R_{2}$ was 0.1804 （all data）for 338 refined parameters with 1 restraints．For molecular geometry see Figure S1a．Because the data were acquired using synchrotron radiation on a minute crystal resulting in poor data leading to an imprecise structural model，the ．cif was not deposited in the CCDC．The model does however confirm connectivity．
（a） 2 a

Figure S1．Molecular structures of alkynylthiolatocarbynes（a）2a and（b）3a（one of two similar but crystallographically independent molecules）in crystals（50\％displacement ellipsoids，pyrazolyl groups simplified，hydrogen atoms omitted）．Selected bond lengths （Å）and angles（ ${ }^{\circ}$ ）：2a：W1－C1 1．842（17），C1－S1 1．728（17），S1－C4 1．691（17），C4－C5 1．22（2），W1－C1－S1 168．1（12），C1－S1－C4 102．0（8）．3a：W1－C1 1．838（16），W1－Au1 $2.7950(10)$ ，C1－Au1 2．126（17），C1－S1 1．736（15），S1－C4 1．69（2），C4－C5 1．21（3），W1－C1－ S1 160．5（12），C1－Au1－Cl1 174．5（5），C1－S1－C4 99．4（10）．

Synthesis of［WAu（ $\left.\left.\mu-\mathrm{CSC} \equiv \mathrm{CSiMe}_{3}\right) \mathrm{CI}(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right]$（3a）．To a flask containing $\left[\mathrm{W}\left(\equiv \mathrm{CSC} \equiv \mathrm{CSiMe}_{3}\right)(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right]$（2a： 0.029 g ， $0.043 \mathrm{mmol})$ and［ $\left.\mathrm{AuCl}\left(\mathrm{SMe}_{2}\right)\right]$（ $0.013 \mathrm{~g}, 0.044 \mathrm{mmol}$ ）was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the resulting mixture was stirred for 30 min ， during which time the orange solution darkened．The mixture was filtered through diatomaceous earth and the filtrate was dried under reduced pressure to give an orange solid of pure 3a （ $0.033 \mathrm{~g}, 0.036 \mathrm{mmol}, 84 \%$ ）．

IR（ $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$ ）：2015s， $1935 \mathrm{~s} \mathrm{v}_{\mathrm{co}}{ }^{1}{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ， 298 K ）：$\delta_{\mathrm{H}}=0.24\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.38(\mathrm{~s}, 6 \mathrm{H}$ ， pzCH_{3} ）， 2.48 （s， $9 \mathrm{H}, \mathrm{pzCH}_{3}$ ）， 5.93 （s， $1 \mathrm{H}, \mathrm{pzCH}$ ）， 5.95 （ $\mathrm{s}, 2 \mathrm{H}$ ， $\mathrm{pzCH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $\left.176 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta_{\mathrm{c}}=-0.1\left(\mathrm{SiCH}_{3}\right)$ ， 13．0，13．4，16．2， 17.7 （ pzCH_{3} ）， 88.2 （SC三C），108．1， 108.6 （pzCH）， 110.7 （SC＝C），146．0，146．6，153．1， 153.8 （ $\mathrm{pzC}^{3,5} \mathrm{CH}_{3}$ ）， 215.7 （CO）， 235.2 （W＝C）．MS（ESI，m / z ）：Found：933．0866．Calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{Au}^{11} \mathrm{~B}^{35} \mathrm{ClN}_{6} \mathrm{O}_{2}{ }^{32} \mathrm{~S}^{28} \mathrm{Si}^{184} \mathrm{WNa} \quad[\mathrm{M}+\mathrm{Na}]^{+}: 933.0846$ ．Anal． Found：C，26．53；H，2．99；N，8．60\％．Calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{AuBClN}_{6} \mathrm{O}_{2} \mathrm{SSiW}^{2} 2 \mathrm{CHCl}_{3}$ ：C，26．12；H，2．89；N，7．31\％．

Single crystals suitable for X－ray structure diffraction were grown by slow evaporation of a dichloromethane／ethanol mixture．Crystal data for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{AuBClN}_{6} \mathrm{O}_{2} \mathrm{SSiW}\left(M_{\mathrm{w}}=910.76\right.$ g． mol^{-1} ）：monoclinic，space group $P 2_{1} / \mathrm{m}$（no．11），$a=12.3181$（4） $\AA, b=24.9472(13) \AA, c=16.5061(6) \AA, \quad b=108.592(4)^{\circ}, V=$ 4807．6（4）$\AA^{3}, Z=6, T=150.0(1) K, \mu(C u K \alpha)=16.992 \mathrm{~mm}^{-1}, D_{\text {calc }}$ $=1.887 \mathrm{Mgm}^{-3}$ ， 15801 reflections measured $\left(7.086^{\circ} \leq 2 \Theta \leq\right.$ 133.202° ）， 8618 unique（ $R_{\text {int }}=0.0399, R_{\text {sigma }}=0.0637$ ）which were used in all calculations．The final R_{1} was $0.0772(I>2 \sigma(/))$ and $w R_{2}$ was 0.2006 （all data）for 482 refined parameters with 2 restraints（CCDC 2033073）．For molecular geometry see Figure S1b．

Synthesis of［W（三CTeC＝CSiMe $\left.{ }_{3}\right)(\mathbf{C O})_{2}\left(\right.$ Tp $\left.\left.^{*}\right)\right]$（4a）．To a solution of ethynyltrimethylsilane（ $450 \mu \mathrm{~L}, 3.18 \mathrm{mmol}$ ）in THF $(10 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added ${ }^{n}$ BuLi（ $2.0 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane， 3.2 $\mathrm{mmol})$ ．The mixture was warmed to room temperature and stirring was continued for 30 min ．Powdered tellurium $(0.406 \mathrm{~g}$ ， 3.18 mg ．atom）was then added and the mixture stirred for 1 h ，
during which time the solution turned clear. The mixture was again cooled to $-78^{\circ} \mathrm{C}$ and transferred via cannula to a similarly cooled solution of $\left[\mathrm{W}(\equiv \mathrm{CBr})(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right](1: 2.00 \mathrm{~g}, 3.18 \mathrm{mmol})$ in THF (10 mL). The mixture was gradually warmed to room temperature and stirring was continued overnight, during which time the mixture turned orange-brown. Volatiles were removed in vacuo and the residue was extracted with the minimum dichloromethane and subjected to column chromatography (20 $x 1 \mathrm{~cm}$ silica gel column), eluting first with petrol and gradually increasing the polarity to $3: 1 \mathrm{v} / \mathrm{v}$ petrol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The first dark red band collected was $\left[\mathrm{W}\left(\equiv \mathrm{CC} \equiv \mathrm{CSiMe}_{3}\right)(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right](6 a) .{ }^{16} \mathrm{~A}$ bright orange band was then collected and the volatiles were removed under reduced pressure to give an orange solid of pure 4a ($1.618 \mathrm{~g}, 2.09 \mathrm{mmol}, 66 \%$).

IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 1988s, 1897s vco. 2077s vc=c. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta_{\mathrm{H}}=0.21\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right)$, $2.36\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.57\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH}_{3}\right), 5.76$ (s, $1 \mathrm{H}, \mathrm{pzH}$), $5.91(\mathrm{~s}, 2 \mathrm{H}, \mathrm{pzH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $298 \mathrm{~K}): \delta_{\mathrm{C}}=0.4\left(\mathrm{SiCH}_{3}\right), 12.9,13.0,15.6,17.3\left(\mathrm{pzCH}_{3}\right), 59.6$ (TeC \equiv C), 106.9, 107.2 (pzCH), 125.2 (TeC $\equiv C$), 144.8, 145.8, $152.4,153.1\left[\mathrm{C}^{3,5}(\mathrm{pz})\right], 223.7\left(\mathrm{CO},{ }^{1} \mathrm{~J}_{\mathrm{Wc}}=166.7 \mathrm{~Hz}\right), 234.5(\mathrm{~W} \equiv \mathrm{C}$, $\left.{ }^{1} J_{\mathrm{Wc}}=214.5 \mathrm{~Hz}\right) .{ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta_{\mathrm{Te}}=$ 771. MS (ESI, m / z): Found: 777.1016. Calcd for $\mathrm{C}_{23} \mathrm{H}_{32}{ }^{11} \mathrm{BN}_{6} \mathrm{O}_{2}{ }^{28} \mathrm{Si}^{130} \mathrm{Te}^{184} \mathrm{~W}[\mathrm{M}+\mathrm{H}]^{+}: 777.1015$. Anal. Found: C , 35.80; H, 4.13; N, 10.63\%. Calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{BN}_{6} \mathrm{O}_{2}$ SeSiW: C, 35.70; H, 4.04; N, 10.86\%.

Synthesis of [W(三CTeC \equiv CSi $\left.^{i}{ }^{P}{ }_{3}\right)(\mathbf{C O})_{\mathbf{2}}\left(\right.$ Tp $\left.\left.^{*}\right)\right]$ (4b). A solution of ethynyltriisopropylsilane ($72 \mu \mathrm{~L}, 0.318 \mathrm{mmol}$) in THF (5 mL) at $-78^{\circ} \mathrm{C}$ was treated with ${ }^{n} \mathrm{BuLi}(0.20 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, 0.32 mmol). The mixture was warmed to room temperature and stirring was continued for 30 min . Powdered tellurium (0.041 g , 0.318 mg .atom) was then added and stirring continued for 1 h , during which time the solution became clear. The mixture was again cooled to $-78{ }^{\circ} \mathrm{C}$ and transferred via cannula into a similarly cooled solution $\left[\mathrm{W}(\equiv \mathrm{CBr})(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right](1: 0.200 \mathrm{~g}, 0.318$ mmol) in THF (10 mL). The mixture was warmed slowly to room temperature and stirred overnight. After this time, the volatiles were removed in vacuo and the residue was extracted with the minimum dichloromethane and subjected to column chromatography ($20 \times 1 \mathrm{~cm}$ silica gel column), eluting first with petrol and gradually increasing the polarity to $3: 1 \mathrm{v} / \mathrm{v}$ petrol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The first dark red band collected was $\left[\mathrm{W}\left(\equiv \mathrm{CC} \equiv \mathrm{CSi}^{\prime} \mathrm{Pr}_{3}(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right]\right.$ (6b). A bright orange band was collected and the volatiles were removed under reduced pressure to give an orange solid of pure $\mathbf{4 b}(0.158 \mathrm{~g}, 0.184$ mmol, 58\%).

IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 1987 \mathrm{~s}, 1897 \mathrm{~s} \mathrm{v}_{\mathrm{co}} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(700 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $298 \mathrm{~K}): \delta_{\mathrm{H}}=1.10\left(\mathrm{~d}, 18 \mathrm{H}, \mathrm{SiCHCH}_{3}, 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH} \mathrm{H}_{3}\right), 2.38(\mathrm{~s}\right.$, $\left.6 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.59\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH}_{3}\right), 5.77(\mathrm{~s}, 1$ $\mathrm{H}, \mathrm{pzH}), 5.92$ (s, $2 \mathrm{H}, \mathrm{pzH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta_{\mathrm{C}}=11.9(\mathrm{SiCH}), 12.9,13.0,15.6,17.2\left(\mathrm{pzCH}_{3}\right), 18.9\left(\mathrm{SiCHCH}_{3}\right)$, 60.5 ($\mathrm{TeC}=\mathrm{C}$), 106.9, 107.1 (pzCH), 121.7 ($\mathrm{TeC} \equiv C$), 144.7, 145.8, 152.5, $153.0\left(\mathrm{pzC}{ }^{3,5} \mathrm{CH}_{3}\right), 223.8\left(\mathrm{CO},{ }^{1} \mathrm{~J}_{\mathrm{wc}}=165.4 \mathrm{~Hz}\right), 235.7$ $\left(\mathrm{W} \equiv \mathrm{C},{ }^{1} \mathrm{~J}_{\mathrm{Wc}}=214.7 \mathrm{~Hz}\right) .{ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right):$ $\delta_{\text {Te }}=$ 764. MS (ESI, m / z): Found: 860.1974. Calcd for $\mathrm{C}_{29} \mathrm{H}_{43}{ }^{11} \mathrm{BN}_{6} \mathrm{O}_{2}{ }^{28} \mathrm{Si}^{130} \mathrm{Te}^{184} \mathrm{~W}$ [M]+: 860.1976. Anal. Found: C,
40.58; H, 5.05; N, 9.77\%. Calcd for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{SiTeW}: \mathrm{C}, ~ 40.59$; H, 5.05; N, 9.79\%.

Single crystals suitable for X-ray structure diffraction were grown by slow evaporation of a chloroform/ethanol mixture. Crystal data for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{SiTeW}\left(M_{\mathrm{w}}=858.04 \mathrm{~g} . \mathrm{mol}^{-1}\right)$: triclinic, space group $P-1$ (no. 2), $a=10.6281$ (5) \AA, $b=11.0432$ (6) \AA Å, $c=15.1354(7) \AA \AA, \alpha=84.687(4)^{\circ}, b=87.521(4)^{\circ}, \gamma=75.938(4)^{\circ}$, $V=1715.38(15) \AA^{3}, Z=2, T=150.0$ (1) $K, \mu(C u K \alpha)=13.419 \mathrm{~mm}^{-}$ ${ }^{1}, D_{\text {calc }}=1.661 \mathrm{Mgm}^{-3}, 10111$ reflections measured $\left(8.284^{\circ} \leq 2 \Theta\right.$ $\leq 133.194^{\circ}$), 6019 unique ($R_{\text {int }}=0.0546, R_{\text {sigma }}=0.0898$) which were used in all calculations. The final R_{1} was 0.0604 ($1>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.1600 (all data) for 368 refined parameters with 0 restraints (CCDC 2033027). For molecular geometry see Figure 2.

Synthesis of $\left[W\left(\equiv C T e C \equiv C^{\prime} \operatorname{Pr}\right)(C O)_{\mathbf{2}}\left(\right.\right.$ Tp $\left.\left.^{*}\right)\right]$ (4c). To a solution of 3-methyl-1-butyne ($40 \mu \mathrm{~L}, 0.391 \mathrm{mmol}$) in THF (5 mL) at -78 ${ }^{\circ} \mathrm{C}$ was added ${ }^{n} \mathrm{BuLi}(0.20 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, 0.32 mmol$)$. The mixture was warmed to room temperature and stirring was continued for 30 min . Powdered tellurium ($0.041 \mathrm{~g}, 0.318$ mg .atom) was then added and stirring continued for 1 h , during which time the solution became clear. The mixture was again cooled to $-78{ }^{\circ} \mathrm{C}$ and transferred via cannula into a similarly cooled solution of $\left[\mathrm{W}(\equiv \mathrm{CBr})(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right](1: 0.200 \mathrm{~g}, 0.318 \mathrm{mmol})$ in THF (10 mL). The mixture was warmed slowly to room temperature and stirred overnight. After this time, the volatiles were removed in vacuo and the residue was extracted with the minimum dichloromethane and subjected to column chromatography ($20 \times 1 \mathrm{~cm}$ silica gel column), eluting first with petrol and gradually increasing the polarity to $3: 1 \mathrm{v} / \mathrm{v}$ petrol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A bright orange band was collected and the volatiles were removed under reduced pressure to give an orange solid of pure $\mathbf{4 c}(0.081 \mathrm{~g}, 0.109 \mathrm{mmol}, 34 \%)$.

IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 1986s, $1896 \mathrm{~s} \mathrm{v}_{\mathrm{co}} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $298 \mathrm{~K}): \delta_{H}=1.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}}=6.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CHCH}_{3}\right), 2.31(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{pzCH} \mathrm{H}_{3}\right), 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.40\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.58(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{pzCH} \mathrm{H}_{3}\right), 2.93\left(\mathrm{~m},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHMe}_{2}\right), 5.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pzH})$, 5.90 (s, $2 \mathrm{H}, \mathrm{pzH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta_{\mathrm{C}}=$ 13.0, 15.6, $17.2\left(\mathrm{pzCH}_{3}\right), 23.1\left(\mathrm{CHMe}_{2}\right), 23.5\left(\mathrm{CHCH}_{3}\right), 77.6$ (TeC $\equiv \mathrm{C}), 106.9,107.1$ (pzCH), 122.2 (TeC三C), 144.8, 145.7, 152.5, $153.1\left(\mathrm{pzC}{ }^{3,5} \mathrm{CH}_{3}\right), 223.8\left(\mathrm{CO},{ }^{1} \mathrm{~J}_{\mathrm{wc}}=167.7 \mathrm{~Hz}\right), 237.4$ ($\mathrm{W} \equiv \mathrm{C},{ }^{1} \mathrm{~J}_{\mathrm{WC}}=214.1 \mathrm{~Hz}$). ${ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right):$ $\delta_{\text {Te }}=$ 747. MS (ESI, m / z): Found: 746.1080. Calcd for $\mathrm{C}_{23} \mathrm{H}_{29}{ }^{11} \mathrm{BN}_{6} \mathrm{O}_{2}{ }^{130} \mathrm{Te}^{184} \mathrm{~W}[\mathrm{M}]^{+}: 746.1114$. $\mathrm{MS}(E S I, m / z)$: Found: 769.0901. Calcd for $\mathrm{C}_{23} \mathrm{H}_{29}{ }^{11} \mathrm{BN}_{6} \mathrm{O}_{2}{ }^{130} \mathrm{Te}^{184} \mathrm{WNa} \quad[\mathrm{M}+\mathrm{Na}]^{+}$: 769.0929. Anal. Found: C, 37.25; H, 3.99; N, 11.12\%. Calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{TeW}: \mathrm{C}, 37.14 ; \mathrm{H}, 3.93 ; \mathrm{N}, 11.30 \%$.

Synthesis of $\left[W\left(\equiv C T e C \equiv C^{n} B u\right)(C O)_{2}\left(\mathbf{T p}^{*}\right)\right](4 d)$. To a solution of 1-hexyne ($37 \mu \mathrm{~L}, 0.318 \mathrm{mmol}$) in THF (5 mL) at $-78{ }^{\circ} \mathrm{C}$ was added ${ }^{n} B u L i(0.20 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, 0.318 mmol$)$. The mixture was brought to room temperature and stirred for 30 min . Powdered tellurium ($0.041 \mathrm{~g}, 0.318 \mathrm{mg}$.atom) was then added and stirring was continued for 1 h , during which time the solution became clear. The mixture was again cooled to $-78^{\circ} \mathrm{C}$ and transferred via cannula into a similarly cooled solution of $\left[\mathrm{W}(\equiv \mathrm{CBr})(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right]$ (1: $\left.0.200 \mathrm{~g}, 0.318 \mathrm{mmol}\right)$ in THF (10 mL). The mixture was warmed slowly to room temperature and stirred overnight, during which time the mixture turned orange-
brown. The volatiles were then removed in vacuo the residue was extracted with the minimum dichloromethane and subjected to column chromatography ($20 \times 1 \mathrm{~cm}$ silica gel column), eluting first with petrol and gradually increasing the polarity to $7: 1 \mathrm{v} / \mathrm{v}$ petrol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$. A bright orange band was collected and the volatiles were removed under reduced pressure to give an orange solid of pure $4 \mathrm{~d}(0.129 \mathrm{~g}, 0.170$ mmol, 54\%).

IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): $1986 \mathrm{~s}, 1895 \mathrm{~s} \mathrm{v}_{\mathrm{co}} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $298 \mathrm{~K}): \delta_{\mathrm{H}}=0.92\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\text {H }}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.44(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.53\left(\mathrm{~m}, 2 \mathrm{H}, \equiv \mathrm{CCH}_{2} \mathrm{CH}_{2}\right), 2.32(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH} 3), 2.37(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{pzCH} 3), 2.40(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH})_{3}\right), 2.51\left(\mathrm{~m}, 2 \mathrm{H}, \equiv \mathrm{CCH}_{2}\right), 2.59(\mathrm{~s}, 6$ $\mathrm{H}, \mathrm{pzCH} 3$), 5.76 (s, $1 \mathrm{H}, \mathrm{pzCH}$), $5.91(\mathrm{~s}, 2 \mathrm{H}, \mathrm{pzCH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta_{\mathrm{C}}=12.9,13.0\left(\mathrm{pzCH}_{3}\right), 13.9\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 15.6, $17.1\left(\mathrm{pzCH}_{3}\right), 21.0\left(\equiv \mathrm{CCH}_{2} \mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 31.1$ ($\equiv \mathrm{CCH}_{2} \mathrm{CH}_{2}$), 77.6 ($\mathrm{TeC} \equiv \mathrm{C}$), 106.9, 107.1 (pzCH), 116.9 ($\mathrm{TeC} \equiv \mathrm{C}$), $144.8,145.7,152.5,153.0\left(\mathrm{pzC}^{3,5} \mathrm{CH}_{3}\right), 223.8\left(\mathrm{CO},{ }^{1} \mathrm{~J}_{\mathrm{wc}}=167.7\right.$ Hz), $238.4\left(\mathrm{~W} \equiv \mathrm{C},{ }^{1} \mathrm{~J}_{\mathrm{wc}}=214.1 \mathrm{~Hz}\right.$). ${ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz , $\mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta_{\mathrm{Te}}=747 . \mathrm{MS}(E S I, m / z)$: Found: 759.1216. Calcd for $\mathrm{C}_{24} \mathrm{H}_{32}{ }^{11} \mathrm{BN}_{6} \mathrm{O}_{2}{ }^{128} \mathrm{Te}^{184} \mathrm{~W}[\mathrm{M}+\mathrm{H}]^{+}$: 759.1245. Anal. Found: C , 37.05; H, 4.03; N, 11.21\%. Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{TeW}$: C, 38.04; H, 4.12; N, 11.09\%.

Synthesis of $\left[\mathrm{W}\left(\equiv \mathrm{CTeC} \equiv \mathrm{C}^{t} \mathrm{Bu}\right)(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right] \quad$ (4e) and $\left[\mathbf{W}\left(\equiv C C=C^{t} B u\right)(C O)_{2}\left(\mathbf{T p}^{*}\right)\right](4 \mathrm{~g})$. To a solution of 3,3 -dimethyl-1butyne ($39 \mu \mathrm{~L}, 0.318 \mathrm{mmol}$) in THF (5 mL) at $-78^{\circ} \mathrm{C}$ was added ${ }^{n}$ BuLi ($0.20 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, 0.32 mmol). The mixture was warmed to room temperature and stirred for 30 min . Powdered tellurium ($0.041 \mathrm{~g}, 0.318 \mathrm{mg}$.atom) was then added and stirring continued for 1 h , during which time the solution became clear. The mixture was again cooled to $-78{ }^{\circ} \mathrm{C}$ and transferred via cannula into a similarly cooled solution of $\left.\left[\mathrm{W}(\equiv \mathrm{CBr})(\mathrm{CO})_{2}(\mathrm{Tp})^{*}\right)\right]$ (1: $0.200 \mathrm{~g}, 0.318 \mathrm{mmol}$) in THF (10 mL). The mixture was warmed slowly to room temperature and stirred overnight. After this time, the volatiles were removed in vacuo and the residue was extracted with the minimum dichloromethane and subjected to column chromatography ($20 \times 1 \mathrm{~cm}$ silica gel column), eluting first with petrol and gradually increasing the polarity to $3: 1 \mathrm{v} / \mathrm{v}$ petrol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The first dark red band collected was $\left[\mathrm{W}\left(\equiv \mathrm{CC} \equiv \mathrm{C}^{t} \mathrm{Bu}\right)(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right] .{ }^{17} \mathrm{~A}$ second bright orange band was collected and the volatiles were removed under reduced pressure to give an orange solid of pure $4 \mathbf{e}$ ($0.127 \mathrm{~g}, 0.168 \mathrm{mmol}, 53 \%$).

IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): $1986 \mathrm{~s}, 1895 \mathrm{~s} \mathrm{v}_{\mathrm{co}}{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.298 \mathrm{~K}): \delta_{\mathrm{H}}=1.29\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.33(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH})_{3}\right), 2.38(\mathrm{~s}, 6$ $\mathrm{H}, \mathrm{pzCH} 3$), $2.42(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH} 3$), $2.60(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH} 3$), $5.77(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{pzCH}), 5.92$ (s, $2 \mathrm{H}, \mathrm{pzCH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(176 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta_{\mathrm{C}}=13.0,15.6,17.3\left(\mathrm{pzCH}_{3}\right), 31.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 41.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 68.3$ (TeC $\equiv \mathrm{C}), 106.9,107.1$ (pzCH), 124.8 ($\mathrm{TeC} \equiv C$), 144.8, 145.7, 152.4, $153.1\left(\mathrm{pzC}^{3,5} \mathrm{CH}_{3}\right), 223.9\left(\mathrm{CO},{ }^{1} \mathrm{~J}_{\mathrm{wc}}=167.2 \mathrm{~Hz}\right), 238.9$ $\left(\mathrm{W} \equiv \mathrm{C},{ }^{1} \mathrm{~J}_{\mathrm{wc}}=211.2 \mathrm{~Hz}\right) .{ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta_{\mathrm{Te}}=745$. MS (ESI, m / z): Found: 759.1218. Calcd for $\mathrm{C}_{24} \mathrm{H}_{32}{ }^{11} \mathrm{BN}_{6} \mathrm{O}_{2}^{128} \mathrm{Te}^{184} \mathrm{~W}[\mathrm{M}+\mathrm{H}]^{+}: 759.1239$. Anal. Found: C , 37.93; H, 4.12; N, 10.93\%. Calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{BN}_{6} \mathrm{O}_{2}$ TeW: C, 38.04; H, 4.12; N, 11.09\%.

Synthesis of $\left[W(\equiv C T e C \equiv C P h)(C O)_{2}\left(\right.\right.$ Tp $\left.\left.^{*}\right)\right]$ (4f). To a solution of ethynylbenzene ($35 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$) in THF (5 mL) at $-78{ }^{\circ} \mathrm{C}$ was added ${ }^{n}$ BuLi ($0.20 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, 0.32 mmol). The
mixture was warmed to room temperature and stirred for 30 min . Powdered tellurium ($0.041 \mathrm{~g}, 0.32 \mathrm{mg}$.atom) was then added and stirring continued for 1 h , during which time the solution became clear. The mixture was again cooled to $-78{ }^{\circ} \mathrm{C}$ and transferred via cannula into a similarly cooled solution of $\left[\mathrm{W}(\equiv \mathrm{CBr})(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right](1: 0.200 \mathrm{~g}, 0.318 \mathrm{mmol})$ in THF (10 mL). The mixture was warmed slowly to RT and stirred overnight. After this time, the volatiles were removed in vacuo and the residue was extracted with the minimum dichloromethane and subjected to column chromatography ($20 \times 1 \mathrm{~cm}$ silica gel column), eluting first with petrol and gradually increasing the polarity to $3: 1 \mathrm{v} / \mathrm{v}$ petrol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The first dark red band collected is $\left[\mathrm{W}(\equiv \mathrm{CC} \equiv \mathrm{CPh})(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right]$. A second bright orange band was collected and the volatiles were removed under reduced pressure to give an orange solid of pure $\mathbf{4 f}(0.163 \mathrm{~g}$, $0.210 \mathrm{mmol}, 66 \%$).

IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 1989s, $1896 \mathrm{~s} \mathrm{v}_{\mathrm{co}} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $298 \mathrm{~K}): \delta_{\mathrm{H}}=2.32(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH} 3), 2.36\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH} \mathrm{H}_{3}\right), 2.40(\mathrm{~s}, 3$ $\mathrm{H}, \mathrm{pzCH} 3), 2.61(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH} 3), 5.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pzCH}), 5.91(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{pzCH}), 7.27\left(\mathrm{~m}, 3 \mathrm{H}\right.$, overlapping $\mathrm{H}^{3-5}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$), $7.42(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}^{2,6}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta_{\mathrm{C}}=13.0,15.6$, $17.2\left(\mathrm{pzCH} \mathrm{H}_{3}\right), 43.8(\mathrm{TeC} \equiv \mathrm{C}), 107.0,107.2(\mathrm{pzCH}), 115.4$ $\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right], 123.8(\mathrm{TeC} \equiv C), 128.5\left[\mathrm{C}^{3,5}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right], 128.7\left[\mathrm{C}^{4}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right]$, $132.1\left[{ }^{2}{ }^{2,6}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right], 144.8,145.8,152.5,153.1\left(\mathrm{pzC}^{3,5} \mathrm{CH}_{3}\right), 223.8$ $\left(\mathrm{CO},{ }^{1} \mathrm{~J}_{\mathrm{wc}}=169.0 \mathrm{~Hz}\right), 235.5\left(\mathrm{~W} \equiv \mathrm{C},{ }^{1} \mathrm{~J}_{\mathrm{wc}}=213.0 \mathrm{~Hz}\right) .{ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta_{\text {Te }}=759$. MS (ESI, m / z): Found: 779.0926. Calcd for $\mathrm{C}_{26} \mathrm{H}_{28}{ }^{11} \mathrm{BN}_{6} \mathrm{O}_{2}{ }^{128} \mathrm{Te}^{184} \mathrm{~W}[\mathrm{M}+\mathrm{H}]^{+}: 779.0923$. Anal. Found: C, 40.05; H, 3.61; N, 10.86\%. Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{TeW}: \mathrm{C}, 40.15 ; \mathrm{H}, 3.50 ; \mathrm{N}, 10.81 \%$.

Single crystals suitable for X -ray structure diffraction were grown by slow evaporation of a dichloromethane/ethanol mixture. Crystal data for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{TeW}$ ($M_{\mathrm{w}}=777.79 \mathrm{~g}$.mol ${ }^{-}$ ${ }^{1}$): monoclinic, space group $P 2_{1} / \mathrm{n}$ (no. 14), $a=$ 20.5319(5) \AA, $b=$ $14.2779(2) \AA, c=21.6073(4) \AA, b=117.804(3)^{\circ}, V=5602.9(2)$ $\AA^{3}, Z=8, T=150.0(1) \mathrm{K}, \mu(C u K \alpha)=15.967 \mathrm{~mm}^{-1}, D_{\text {calc }}=1.780$ g.cm ${ }^{-3}, 56411$ reflections measured $\left(7.728^{\circ} \leq 2 \Theta \leq 133.202^{\circ}\right)$, 9890 unique ($R_{\text {int }}=0.0386, R_{\text {sigma }}=0.0207$) which were used in all calculations. The final R_{1} was $0.0524(I>2 \sigma(I))$ and $w R_{2}$ was 0.1380 (all data) for 696 refined parameters without restraints (CCDC 2033039). For molecular geometry see Figure 2.

Synthesis of $\left[\mathrm{W}\left(\equiv \mathrm{CTeC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right](4 \mathrm{~g})$ and $\left[\mathrm{W}\left(\equiv \mathrm{CC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right] \quad(6 \mathrm{~g})$ To a solution of 4 ethynyltoluene ($41 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$) in THF (5 mL) at $-78^{\circ} \mathrm{C}$ was added ${ }^{n}$ BuLi ($0.20 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, 0.32 mmol). The mixture was warmed to room temperature and stirred for 30 min . Powdered tellurium ($0.041 \mathrm{~g}, 0.32 \mathrm{mg}$.atom) was then added and stirring continued for 1 h , during which time the solution became clear. The mixture was again cooled to $-78{ }^{\circ} \mathrm{C}$ and transferred via cannula into a similarly cooled solution of $\left[W(\equiv C B r)(C O)_{2}\left(p^{*}\right)\right](1: 0.200 \mathrm{~g}, 0.318 \mathrm{mmol})$ in THF (10 mL). The mixture was warmed slowly to RT and stirred overnight. After this time, the volatiles were removed in vacuo and the residue was extracted with the minimum dichloromethane and subjected to column chromatography ($20 \times 1 \mathrm{~cm}$ silica gel column), eluting first with petrol and gradually increasing the polarity to $3: 1 \mathrm{v} / \mathrm{v}$ petrol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The first dark red band collected was $\left[\mathrm{W}\left(\equiv \mathrm{CC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right)(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right]$. A second bright
orange band was collected and the volatiles were removed under reduced pressure to give an orange solid of pure $\mathbf{4 g}$ ($0.145 \mathrm{~g}, 0.183 \mathrm{mmol}, 58 \%$). IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 1987s, 1897s vco. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta_{\mathrm{H}}=2.34(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH} 3), 2.37$ ($\mathrm{s} \times 2$ overlapping, $9 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$ and $\mathrm{pzCH} \mathrm{H}_{3}$), $2.42(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH} 3$), $\left.2.63(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH})_{3}\right), 5.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pzCH}), 5.92(\mathrm{~s}, 2 \mathrm{H}, \mathrm{pzCH}), 7.14$ $\left(\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3,5}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right), 7.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=8.1 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\left.\mathrm{H}^{2,6}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \mathrm{\delta}_{\mathrm{C}}=12.9,13.0$, 15.6, $17.1\left(\mathrm{pzCH}_{3}\right), 21.8\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 42.6(\mathrm{TeC} \equiv \mathrm{C}), 106.9,107.2$ $\left[\mathrm{C}^{4}(\mathrm{pz})\right], 115.5\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 120.9(\mathrm{TeC}=\mathrm{C}), 129.4\left[\mathrm{C}^{3,5}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right]$, $132.2\left[\mathrm{C}^{2,6}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 138.9\left[\mathrm{C}^{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 144.8,145.8,152.5,153.1$ $\left[C^{3,5}(\mathrm{pz})\right], 223.8\left(C O,{ }^{1} J_{\mathrm{WC}}=166.7 \mathrm{~Hz}\right), 236.2\left(\mathrm{~W} \equiv C,{ }^{1} J_{\mathrm{WC}}=215.1\right.$ $\mathrm{Hz}) .{ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta_{\mathrm{Te}}=758 . \mathrm{MS}(E S I$, $\mathrm{m} / \mathrm{z})$: Found: 793.1080. Calcd for $\mathrm{C}_{27} \mathrm{H}_{30}{ }^{11} \mathrm{BN}_{6} \mathrm{O}_{2}{ }^{128} \mathrm{Te}^{184} \mathrm{~W}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 793.1089. Anal. Found: C, $40.86 ; \mathrm{H}, 3.63 ; \mathrm{N}, 10.47 \%$. Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{TeW}: \mathrm{C}, 40.96 ; \mathrm{H}, 3.69 ; \mathrm{N}, 10.61 \%$.

The first dark red band was also collected and the volatiles were removed under reduced pressure to give a dark-red solid of the pure tolylpropargylidyne $\mathbf{6 g}(0.078 \mathrm{~g}, 0.117 \mathrm{mmol}, 37 \%)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 1981 \mathrm{~s}$, $1892 \mathrm{~s} \mathrm{v}_{\mathrm{co}} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, 298 K): $\delta_{H}=2.32$ ($\mathrm{s} \times 2$ overlapping, $6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$ and pzCH 3), 2.37 (s, $9 \mathrm{H}, \mathrm{pzCH}_{3}$), $2.62\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH} \mathrm{p}_{3}\right), 5.75(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pzCH}), 5.91$ (s, $2 \mathrm{H}, \mathrm{pzCH}$), $7.09\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{3,5}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right), 7.37\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $\left.=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}^{2,6}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta_{c}=13.0,15.6,16.9\left(\mathrm{pzCH}_{3}\right), 22.1\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}\right), 71.1(\mathrm{C}=\mathrm{CAr})$, 106.9, 107.0 (overlapping pzCH and $C \equiv C A r$), $119.3\left[\mathrm{C}^{1}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right]$, $129.6\left[\mathrm{C}^{3,5}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 132.8\left[\mathrm{C}^{2,6}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 139.2\left[\mathrm{C}^{4}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)\right], 44.7$, 145.5, 152.6, $152.7\left(\mathrm{pzC}^{3,5} \mathrm{CH}_{3}\right), 226.6\left(\mathrm{CO},{ }^{1} \mathrm{~J}_{\mathrm{wc}}=163.6 \mathrm{~Hz}\right)$, $247.2\left(\mathrm{~W} \equiv C,{ }^{1} \mathrm{~J}_{\mathrm{Wc}}=200.0 \mathrm{~Hz}\right) . \mathrm{MS}(\mathrm{ESI}, m / z)$: Found: 665.2023. Calcd for $\mathrm{C}_{27} \mathrm{H}_{30}{ }^{11} \mathrm{BN}_{6} \mathrm{O}_{2}{ }^{184} \mathrm{~W}[\mathrm{M}+\mathrm{H}]^{+}$: 665.2031. Anal. Found: C, 48.59; H, 4.26; N, 12.59\%. Calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{~W}: \mathrm{C}, 48.82$; H , 4.40; N, 12.65\%.

Synthesis of $[W(\equiv C T e C \equiv C-\{N$-methylimidazol4\})(CO) $\mathbf{2}_{\mathbf{2}}\left(\mathrm{Tp}^{*}\right)$] (4h). To a solution of 5-ethynyl-1-methyl-1Himidazole ($33 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$) in THF (5 mL) at $-78^{\circ} \mathrm{C}$ was added ${ }^{n}$ BuLi ($0.20 \mathrm{~mL}, 1.6 \mathrm{M}$ in hexane, 0.32 mmol). The mixture was brought to room temperature and stirred for 30 min . Powdered tellurium ($0.041 \mathrm{~g}, 0.32 \mathrm{mg}$.atom) was then added and stirring was continued for 1 h , during which time the solution became clear. The mixture was again cooled to $-78{ }^{\circ} \mathrm{C}$ and transferred via cannula into a similarly cooled solution of $\left[\mathrm{W}(\equiv \mathrm{CBr})(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right](1: 0.200 \mathrm{~g}, 0.318 \mathrm{mmol})$ in THF (10 mL). The mixture was warmed slowly to room temperature and stirred overnight, during which time the mixture turned orangebrown. The volatiles were then removed in vacuo the residue was extracted with the minimum dichloromethane and subjected to column chromatography ($20 \times 1 \mathrm{~cm}$ silica gel column), eluting first with $2: 1 \mathrm{v} / \mathrm{v}$ petrol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and gradually increasing the polarity to $2: 1 \mathrm{v} / \mathrm{vCH}_{2} \mathrm{Cl}_{2}$ /acetonitrile. An orangebrown band was collected and the volatiles were removed under reduced pressure to give an orange solid of pure $\mathbf{4 h}$ ($0.073 \mathrm{~g}, 0.093 \mathrm{mmol}, 29 \%$). IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 1987s, 1897s vco. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta_{\mathrm{H}}=2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.37$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{pzCH})_{3}$), $\left.2.39(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH})_{3}\right), 2.58(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH}), 3.67(\mathrm{~s}$, 3H, NMe), 5.77 (s, $1 \mathrm{H}, \mathrm{pzCH}), 5.91$ (s, $2 \mathrm{H}, \mathrm{pzCH}$), 7.29 (s, 1H, C-$\mathrm{CH}-\mathrm{N}$), 7.45 (s, 1H, N-CH-N). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298$ K): $\delta_{\mathrm{C}}=12.9,13.0,15.6,17.0\left(\mathrm{pzCH}_{3}\right), 32.3(\mathrm{~N}-\mathrm{Me}), 52.5(\mathrm{TeC} \mathrm{C})$,
102.8 (TeC $\equiv C$), 106.9, 107.2 (pzCH), $116.9(C-\mathrm{CH}-\mathrm{N}), 135.9$ (C-$\mathrm{CH}-\mathrm{N}), 138.6(\mathrm{~N}-\mathrm{CH}-\mathrm{N}), 144.9,145.8,152.3,153.0\left(\mathrm{pzC}^{3,5} \mathrm{CH}_{3}\right)$, $223.7\left(\mathrm{CO},{ }^{1} J_{\mathrm{WC}}=166.1 \mathrm{~Hz}\right), 234.1\left(\mathrm{~W} \equiv \mathrm{C},{ }^{1} \mathrm{~J}_{\mathrm{WC}}=214.4 \mathrm{~Hz}\right)$. ${ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta_{\mathrm{Te}}=761 . \mathrm{MS}(\mathrm{ESI}, \mathrm{m} / z):$ Found: 783.0972. Calcd for $\mathrm{C}_{24} \mathrm{H}_{28}{ }^{11} \mathrm{BN}_{8} \mathrm{O}_{2}{ }^{128} \mathrm{Te}^{184} \mathrm{~W}[\mathrm{M}+\mathrm{H}]^{+}$: 783.0987. Anal. Found: C, C, 33.41; H, 3.57; N, 12.06\%. Calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{BN}_{8} \mathrm{O}_{2} \mathrm{TeW} . \mathrm{CHCl}_{3}: \mathrm{C}, 33.32 ; \mathrm{H}, 3.13 ; \mathrm{N}, 12.43 \%$. Single crystals suitable for X-ray structure diffraction were grown by slow evaporation of a dichloromethane/ethanol mixture. Crystal data for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{BN}_{8} \mathrm{O}_{2} \mathrm{TeW}\left(M_{\mathrm{w}}=781.79\right.$ g.mol$\left.{ }^{-1}\right)$: monoclinic, space group $P 2_{1}$ (no. 4), $a=7.9095(2) \AA, b=$ 18.2594(4) $\AA, c=9.7522(3) \AA, B\left[W(\equiv C B r)(C O)_{2}\left(T p^{*}\right)\right] \quad(1:=$ 99.742(2) ${ }^{\circ}, V=1388.13(6) \AA^{3}, Z=2, T=150.0(1) \mathrm{K}, \mu(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=$ $16.138 \mathrm{~mm}^{-1}, D_{\text {calc }}=1.870 \mathrm{Mgm}^{-3}, 14026$ reflections measured $\left(9.2^{\circ} \leq 2 \Theta \leq 136.492^{\circ}\right.$), 3673 unique ($R_{\text {int }}=0.0524, R_{\text {sigma }}=$ $0.0513)$ which were used in all calculations. The final R_{1} was $0.0521(I>2 \sigma(I))$ and $w R_{2}$ was 0.1359 (all data) for 323 refined parameters with 1 restraint (CCDC 2033028, for molecular geometry see Figure 2c).

Synthesis of $\left[W(\equiv C T e C \equiv C H)(C O)_{2}\left(\right.\right.$ Tp $\left.\left.^{*}\right)\right](A .11) . ~ T o ~ a ~ s t i r r e d ~$ solution of $\mathbf{A} .3(1.000 \mathrm{~g}, 1.29 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.230 \mathrm{~g}, 1.66$ mmol) in THF (15 mL) and $\mathrm{MeOH}(5 \mathrm{~mL})$ was added deionised $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. Stirring was continued for 30 min , after which time the mixture was extracted with dichloromethane. The organic phase was collected and volatiles removed under reduced pressure. The residue was subjected to column chromatography ($20 \times 4 \mathrm{~cm}$ silica gel column), eluting with $3: 1$ v / v petrol $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$. A bright orange band was collected and removal of the solvents under reduced pressure gave an orange-brown solid of pure A. 11 ($0.819 \mathrm{~g}, 1.17 \mathrm{mmol}, 91 \%$). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right): 1988 \mathrm{~s}$, 1899 s vco. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298$ $\left.\mathrm{K}): \delta_{\mathrm{H}}=2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.36(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH})_{3}\right), 2.40(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{pzCH} \mathrm{H}_{3}\right), 2.57\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH} \mathrm{H}_{3}\right), 3.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 5.76(\mathrm{~s}, 1 \mathrm{H}$, pzCH), 5.91 (s, $2 \mathrm{H}, \mathrm{pzCH}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$: $\delta_{\mathrm{C}}=12.9,13.0,15.6,17.1\left(\mathrm{pzCH}_{3}\right), 68.3(\mathrm{TeC} \equiv \mathrm{C}), 103.5(\mathrm{TeC} \equiv C)$, 107.0, $107.2(\mathrm{pzCH}), 144.9,145.8,152.5,153.1\left(\mathrm{pzC}^{3,5} \mathrm{CH}_{3}\right)$, 223.6 (CO), $232.6(\mathrm{~W} \equiv C) .{ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298$ $\mathrm{K}): \delta_{\text {Tе }}=762 . \mathrm{MS}(\mathrm{ESI}, m / z)$: Found: 702.05263. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23}{ }^{11} \mathrm{BN}_{6} \mathrm{O}_{2}{ }^{128} \mathrm{Te}^{184} \mathrm{~W}$ [M]+: 702.05332. Anal. Found: C, C, 34.37; $\mathrm{H}, 3.40$; N, 11.75\%. Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BN}_{6} \mathrm{O}_{2} \mathrm{TeW}: \mathrm{C}, ~ 34.23$; H, 3.30; N, 11.98\%.

Synthesis and decomposition (to 8) of [WAuCl(μ $\mathbf{C T e C \equiv C S i M e} 3$)(CO) $\mathbf{2}_{\mathbf{2}}\left(\mathrm{Tp}^{*}\right)$] (6b). To a flask containing $\left[\mathrm{W}\left(\equiv \mathrm{CTeC} \equiv \mathrm{CSiMe}_{3}\right)(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right]$ (4a: $\left.0.050 \mathrm{~g}, 0.065 \mathrm{mmol}\right)$ and $\left[\mathrm{AuCl}\left(\mathrm{SMe}_{2}\right)\right](0.021 \mathrm{~g}, 0.065 \mathrm{mmol})$ was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the resulting mixture was stirred for 30 min . The mixture was filtered through diatomaceous earth and concentrated under reduced pressure. Upon adding hexane, a precipitate formed that was collected by filtration, washed with pentane and dried to give an orange solid of pure $6 \mathbf{b}(0.046 \mathrm{~g}, 0.046$ mmol, 71\%).

IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 2015s, 1935s vco. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $298 \mathrm{~K}): \delta_{\mathrm{H}}=0.23\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right), 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{pzCH}_{3}\right), 2.38(\mathrm{~s}, 6 \mathrm{H}$, $\left.\mathrm{pzCH})_{3}\right), 2.50\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{pzCH}_{3}\right), 5.93(\mathrm{~s}, 1 \mathrm{H}, \mathrm{pzCH}), 5.96(\mathrm{~s}, 2 \mathrm{H}$, pzCH). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta_{\mathrm{C}}=0.2\left(\mathrm{SiCH}_{3}\right)$, 13.0, 13.4, 16.3, $17.7\left(\mathrm{pzCH}_{3}\right), 66.7$ ($\left.\mathrm{TeC} \equiv \mathrm{C}\right), 108.1,108.6(\mathrm{pzCH})$, 128.3 ($\mathrm{TeC} \equiv C$), 145.9, 146.7, 152.9, $153.8\left(\mathrm{pzC}^{3,5} \mathrm{CH}_{3}\right), 215.7(\mathrm{CO}$,
$\left.{ }^{1} J_{\mathrm{wc}}=158.0 \mathrm{~Hz}\right), 228.3\left(\mathrm{~W}=\mathrm{C},{ }^{1} \mathrm{~J}_{\mathrm{wc}}=95.7 \mathrm{~Hz}\right)$. Multiple new carbon resonances appear after overnight ${ }^{13} \mathrm{C}$ NMR, complicating absolute assignments. Tellurium resonance was not able to be observed due to rapid decomposition of the complex. MS (ESI, m / z): Found: 1012.0866. Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{Au}^{11} \mathrm{BN}_{7} \mathrm{O}_{2}{ }^{28} \mathrm{Si}^{128} \mathrm{Te}^{184} \mathrm{~W} \quad\left[\mathrm{M}-\mathrm{Cl}+\mathrm{CH}_{3} \mathrm{CN}\right]^{+}: \quad 1012.0919$. Elemental analyses could not be obtained due to its tendency to decompose rapidly. Single crystals suitable for X-ray structure diffraction were grown by slow evaporation of a dichloromethane/hexane mixture and proved to be a decomposition product (A.14a). Crystal data for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{AuBCl}_{4} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{STeW} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (A.14a: $M_{\mathrm{w}}=1162.49$ g.mol${ }^{-1}$): triclinic, space group P-1 (no. 2), $a=11.1523(4) \AA, b=$
 89.186(3) ${ }^{\circ}, \gamma=77.275(3)^{\circ}, V=1742.02(13) \AA^{3}, Z=2, T=$ 150.01(10) K, $\mu(\mathrm{Cu} \mathrm{K} \mathrm{\alpha})=25.339 \mathrm{~mm}^{-1}$, Dcalc $=2.216 \mathrm{~g} . \mathrm{cm}^{-3}$, 9740 reflections measured ($8.122^{\circ} \leq 2 \Theta \leq 142.078^{\circ}$), 6466 unique $\left(R_{\text {int }}=0.0452, \mathrm{R}_{\text {sigma }}=0.0833\right)$ which were used in all calculations. The final R_{1} was $0.0632(1>2 \sigma(1))$ and $w R_{2}$ was 0.1831 (all data) for 339 refined parameters with 0 restraints (CCDC 2033082).

Synthesis of $\left[\mathbf{W}_{2} \mathrm{Cu}_{4} \mathrm{Cl}\left(\mu-\mathrm{CTeC} \equiv \mathrm{CSi}^{i} \mathrm{Pr}_{3}\right)_{2}(\mathrm{CO})_{4}\left(\mathrm{Tp}^{*}\right)_{2}\right]\left(6 \mathrm{a}_{2}=\right.$ 7). To a flask containing $\left[\mathrm{W}\left(\equiv \mathrm{CTeC} \equiv \mathrm{CSi}^{i} \mathrm{Pr}_{3}\right)(\mathrm{CO})_{2}\left(\mathrm{Tp}^{*}\right)\right]$ (4a; $0.018 \mathrm{~g}, 0.021 \mathrm{mmol})$ and excess $\left[\mathrm{CuCl}\left(\mathrm{SMe}_{2}\right)\right](0.008 \mathrm{~g}, 0.050$ mmol) was added $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and the resulting mixture was stirred for 30 min . The mixture was filtered through diatomaceous earth and the filtrate was dried under reduced pressure to give an orange solid of pure $6 \mathbf{a}_{\mathbf{2}}(0.019 \mathrm{~g}, 0.018$ mmol, 86\%). IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$): 2001s, $1918 \mathrm{~s} \mathrm{v}_{\mathrm{co}} .{ }^{1 \mathrm{H}} \mathrm{NMR}(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta_{\mathrm{H}}=1.09(2 \mathrm{x}$ overlapping $\mathrm{s}, 42 \mathrm{H}$, $\mathrm{Si}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{3}, 2.32(\mathrm{~s}, 6 \mathrm{H}, \mathrm{pzCH} 3), 2.36(\mathrm{~s}, 18 \mathrm{H}, \mathrm{pzCH} 3), 2.46(\mathrm{~s}$, $\left.12 \mathrm{H}, \mathrm{pzCH})_{3}\right), 5.85(\mathrm{~s}, 2 \mathrm{H}, \mathrm{pzH}), 5.92$ (s, $\left.4 \mathrm{H}, \mathrm{pzH}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta_{\mathrm{C}}=12.0(\mathrm{SiCH}), 13.0,13.3,16.0,17.9$ $\left(\mathrm{pzCH}_{3}\right), 19.1\left(\mathrm{SiCHCH}_{3}\right), 95.5(\mathrm{TeC} \equiv \mathrm{C}), 107.5,108.0(\mathrm{pzCH})$, 119.2 - 120.1 (bm, ТеC $\equiv C$), 144.9, 146.2, 152.3, 153.4 $\left(\mathrm{pzC}{ }^{3,5} \mathrm{CH}_{3}\right), 218.3\left(\mathrm{CO},{ }^{1} \mathrm{~J}_{\mathrm{wc}}=158.6 \mathrm{~Hz}\right), 229.9-230.6(\mathrm{bm}$, $\mathrm{W} \equiv C$). Tellurium resonance could not be identified. MS (ESI, m / z : Found: 1021.0117. Calcd for $\mathrm{C}_{29} \mathrm{H}_{43}{ }^{11} \mathrm{~B}^{35} \mathrm{Cl}^{63} \mathrm{Cu}_{2} \mathrm{~N}_{6} \mathrm{O}_{2}{ }^{28} \mathrm{Si}^{130} \mathrm{Te}^{184} \mathrm{~W} \quad[\mathrm{M}]+:$ 1021.0136. Anal. Found: C , 33.06; $\mathrm{H}, 4.40$; $\mathrm{N}, 7.90 \%$. Calcd for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{BCl}_{2} \mathrm{Cu}_{2} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{SiTeW}: \mathrm{C}, 32.98 ; \mathrm{H}, 4.10 ; \mathrm{N}, 7.96 \%$. Single crystals suitable for X-ray structure diffraction were grown by slow evaporation of a dichloromethane/hexane mixture. Crystal data for $\mathrm{C}_{58} \mathrm{H}_{86} \mathrm{~B}_{2} \mathrm{Cl}_{4} \mathrm{Cu}_{4} \mathrm{~N}_{12} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Te}_{2} \mathrm{~W}_{2} . \mathrm{C}_{6} \mathrm{H}_{14}\left(M_{\mathrm{w}}=2198.21\right.$ g.mol ${ }^{-1}$): monoclinic, space group $\mathrm{P} 2_{1} / n$ (no. 14), $a=$ 10.9539(2) $\AA, b=\quad$ 18.7716(4) $\AA, c=\quad$ 20.4333(4) $\AA, b=$ $102.630(2)^{\circ}, V=4099.87(14) \AA^{3}, Z=2, T=150.01(10) \mathrm{K}$, $\mu($ CuK $\alpha)=13.541 \mathrm{~mm}^{-1}$, Dcalc $=1.781 \mathrm{g.cm}^{-3}, 13081$ reflections measured $\left(8.488^{\circ} \leq 2 \Theta \leq 133.202^{\circ}\right.$), 7171 unique ($R_{\text {int }}=0.0349$, $\mathrm{R}_{\text {sigma }}=0.0586$) which were used in all calculations. The final R_{1} was 0.0372 (I $>2 \sigma(\mathrm{I})$) and $w R_{2}$ was 0.0954 (all data) for 450 refined parameters with 1 restraints (CCDC 2033029).

1 L. K. Burt, R. D. Dewhirst, A. F. Hill, R. Y. Kong, E. E. Nahon and C. S. Onn, Dalton Trans., 2022, 51, 12080-12099.
2 CrysAlis PRO, Agilent Technologies Ltd, Yarnton, Oxfordshire, England, 2014.
3 G. Sheldrick, Acta Crystallogr. Sect. A: Found. Crystallogr., 2008, 64, 112-122.
4 G. M. Sheldrick, Acta Crystallogr. Sect. C: Cryst. Struct. Commun., 2015, 71, 3-8.
5 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallog., 2009, 42, 339-341.
6 C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, J. Appl. Crystallogr., 2006, 39, 453-457.
7 C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek and P. A. Wood, J. Appl. Crystallogr., 2008, 41, 466470.

8 Spartan 20^{\circledR} (2020) Wavefunction, Inc., 18401 Von Karman Ave., Suite 370 Irvine, CA 92612 U.S.A.
9 J. D. Chai and M. Head-Gordon, J Chem Phys., 2008, 128, 084106.

10 J. D. Chai and M. Head-Gordon, Phys Chem Chem Phys, 2008, 10, 6615-6620.
11 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270-283.
12 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299-310.
13 W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284-298.
14 W. J. Hehre, R. Ditchfeld and J. A. Pople, J. Chem. Phys., 1972, 56, 2257-2261.
15 A. L. Spek, Acta Crystallogr. Struct. Chem., 2015, 71, 9-18.
16 B. Schwenzer and H. Fischer, J. Organomet. Chem., 2003, 667, 16.
17 I. J. Hart, A. F. Hill and F. G. A. Stone, J. Chem. Soc., Dalton Trans., 1989, 2261.

Notes and references

Chemical Communications

ELECTRONIC SUPPORTING INFORMATION

Sample Name	Description	Quality Checks
CO_WSulfur_TMS	Sample 068 By Administrator Date Friday, January 25 2019	The Quality Checks give rise to multiple warnings for the sample.

Figure S5. ESI-MS Spectrum of Compound 2a

Observed versus-simulated spectrum for detected target formulas [M]+ ion]

Figure S6. Isotopic analysis of [M]+ ion for Compound 2a
CO298_WSTMS_AuCl_proton

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $\mathbf{3 a}$.

Figure S8. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, δ) of compound $\mathbf{3 a}$.

Figure S9. ESI-MS Spectrum of Compound $\mathbf{3 a}[\mathrm{M}+\mathrm{Na}]^{+}$.

Figure S10. Isotopic analysis of [M]+ ion for Compound 3a
CO\&_WTeTMS_proton

$\stackrel{5}{6}$
OC
1

$\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$
$\mathrm{pz}\left(\mathrm{CH}_{3}\right)$
1

Figure $\mathbf{S 1 2 .}{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $\mathbf{4 a}$.

Figure 13. ${ }^{125 \mathrm{~T}}$ e $\{1 \mathrm{H}\} \mathrm{NMR}$ spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $\mathbf{4 a}$.

PerkinEImer Spectrum Version 10.4.3

Figure S14. Infrared spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$ of Compound 4a

Figure S15. ESI-MS Spectrum of Compound 4a

Figure S16. Isotopic analysis of [M]+ ion for Compound 4a

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $\mathbf{4 b}$.

Figure $\mathbf{S 1 8} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $\mathbf{4 b}$.
CO_{3} _WTeTIPS_tellurium

 Figure 19. ${ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $\mathbf{4 b}$.

Figure S20. Infrared spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$ of Compound $\mathbf{4 b}$

Figure S21. ESI-MS Spectrum of Compound 4b

Observed versus simulated spectrum for detected target formulas ([M+H]+ion)

9

Figure S22. Isotopic analysis of [M]+ ion for Compound 4b

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $\mathbf{4 c}$.

Figure $\left.24 .{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound 4 c .

Figure 25. ${ }^{125 \mathrm{~T}}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $\mathbf{4 c}$.

Figure S26. Infrared spectrum ($\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}$) of Compound 4c

Figure S27. ESI-MS Spectrum of Compound 4c

Figure S28. Isotopic analysis of [M]+ ion for Compound 4c
CO46_WTe_nBu_proton

Figure S29. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound 4 d .

CO46_WTe_nBu_carbon

 $4 \underbrace{\text { ta }}$

Figure S30. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $\mathbf{4 d}$.

1	1	1	1	1	1	1	1	1	1	1	T	1	1	1	1	1
1800	1700	1600	1500	1400	1300	1200	1100	1000	900	800	700	600	500	400	300	200

Figure 531 . ${ }^{125}{ }^{15}\left\{^{1}{ }^{1}\right\}$) NMR spectrum ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, 8\right)$ of compound 4 d .

Figure S33. ESI-MS Spectrum of Compound 4d

38 | Chem. Commun., 2024, 60, 1-4
This journal is © The Royal Society of Chemistry 2024

igure S34. Isotopic analysis of [M]+ ion for Compound 4d

Figure $\mathbf{S 3 5 .}{ }^{1} \mathrm{H}$ NMR spectrum ($700 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $\mathbf{4 e}$.
CO4s_WTe_tBu_carbon

${ }^{t} \mathrm{Bu}$

Figure $\mathbf{S 3 6}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $\mathbf{4 e}$.

CO4s_WTe_tBu_tellurium

$\mathrm{OC}_{\mathrm{OC}}^{\mathrm{Tp}{ }_{l}^{*}} \underset{\mid}{\mathrm{W}=\mathrm{C}-\mathrm{Te}}$
$\stackrel{\text { 等 }}{1}$

Figure S38. Infrared spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$ of Compound $4 \mathbf{e}$

Figure S39. ESI-MS Spectrum of Compound 4 e

Observed versus simulated spectrum for detected target formulas ([M+H]+ion)

Figure S40. Isotopic analysis of [M]+ ion for Compound 4e

Figure S42. ${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $\mathbf{4 f}$.

COs_WTePh_tellurium

Figure S43. ${ }^{125}$ Te\{1 $\left.{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, δ) of compound 4 .

Figure S45. ESI-MS Spectrum of Compound 4f

Observed versus simulated spectrum for detected target formulas ([M+H]+ion) \mid

Figure S46. Isotopic analysis of [M]+ ion for Compound 4f

Figure S47. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $\mathbf{4 g}$.

CO

Figure 48. ${ }^{13}$ C $\{1 \mathrm{H}\}$ NMR spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound 4 g

CO31_WTeTol_tellurium

Figure S49. ${ }^{125}$ Te\{ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $\mathbf{4 g}$

Figure S51. ESI-MS Spectrum of Compound $\mathbf{4 g}$

Figure S52. sootopic analysis of [M]+ ion for Compound $\mathbf{4 g}$
CO3ib_WC3Tol_proton
梁 $\stackrel{R}{i}$

$\iint J$
1
$p-\mathrm{CH}_{3}$ overlapping with $/ \mathrm{pz}\left(\mathrm{CH}_{3}\right)$

$\mathrm{pz}\left(\mathrm{CH}_{3}\right)$
$\underset{1}{ }$

Figure S53. ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $\mathbf{6 g}$.
$\mathrm{CO}_{3} \mathrm{Bb}_{\mathrm{B}}$ WC3Tol_carbon

CO41_WTe_imidazole_proton
$\overbrace{1}^{8}$
$\stackrel{\bar{\circ}}{\substack{\circ \\ 0}}$

$\int 1$

I

Figure $\mathbf{S 5 6 .}{ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $\mathbf{4 h}$.

CO41_WTe_imidazole_tellurium

Figure S57. ${ }^{125}$ Te $\left\{^{[1 \mathrm{H}}\right.$) NMR spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound 4 h.

[^0]

Figure S59. ESI-MS Spectrum of Compound 4h

Observed versus simulated spectrum for detected target formulas $\cdot[[\mathrm{M}+\mathrm{H} \cdot]+$ ion $) \mathbb{T}$

Figure S60. Isotopic analysis of [M]+ ion for Compound 4h

Figure 61. $\mathrm{S}^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound 4 i .

Figure 62. ${ }^{13}$ C $\{1 \mathrm{H}\} \mathrm{NMR}$ spectrum ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound 4i.

CO__WTeH_tellurium

850	800	750	700	650	600	550	500	450	400	350	300	250	200	150	100	50	0	-50

Figure $63 .{ }^{125} \mathrm{Te}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $\mathbf{4 i}$.

Figure S65. ESI-MS Spectrum of Compound 4i

Observed versus simulated spectrum for detected target formulas (\mathbf{M}^{+}ion)

Figure S66. Isotopic analysis of [M]+ ion for Compound 4i

Figure 67. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $7 \mathrm{a}_{2}$.

[^1]

Figure S69. Infrared spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$ of Compound $7 \mathbf{a}_{2}$

Figure S70. ESI-MS Spectrum of Compound 7a ${ }_{2}$

Observed versus simulated spectrum for detected target formulas ([M-Cl] ${ }^{\text {ion }}$)

Figure S71. Isotopic analysis of [M]+ ion for Compound 7a $\mathbf{a}_{\mathbf{2}}$

Figure S72. ${ }^{1} \mathrm{H}$ NMR spectrum ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $\mathbf{7 b}$.

Figure $\mathrm{S} 73 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta$) of compound $\mathbf{7 b}$.

[^2]Observed versus simulated spectrum for detected target formulas (\mathbf{M}^{+}ion)

Figure S75. Isotopic analysis of $[\mathrm{M}-\mathrm{Cl}+\mathrm{MeCN}]^{+}$ion for Compound 7b

Chemical Communications

ELECTRONIC SUPPORTING INFORMATION

Optimised Geometries and Cartesian Coordinates
(a) $\left[\mathrm{W}(\equiv \mathrm{COC} \equiv \mathrm{CMe})(\mathrm{CO})_{2}(\mathrm{Tp})\right]$

Figure S76: Optimised structure of $\left[\mathrm{W}(\equiv \mathrm{COC} \equiv \mathrm{CMe})(\mathrm{CO})_{2}(\mathrm{Tp})\right] \quad(\omega \mathrm{B} 97 \mathrm{X}-\mathrm{D} / 6-$ $31 \mathrm{G}^{*} / \mathrm{LANL2D} \zeta(\mathrm{~W}) /$ gas phase). Bond lengths (\AA) and angles (${ }^{\circ}$) of interest: $\mathrm{W}=\mathrm{C}$ 1.181, WC-O 1.325, O-CC $1.325 \AA$ Å, C=C 1.201, W-C-O 177.8, C-O-C 115.4.

Infrared absorptions of interest (cm^{-1}, scaled by 0.9297): 1982, $1914 v_{\mathrm{co}}$.
Natural atomic charges of note: W (0.877), C α (0.041), O(0.496).

Löwden bond orders of interest: W-C (2.39), WC-O (1.29), C-OCC (1.24).

Table S1. Cartesian Coordinates for $\left[\mathrm{W}(=\mathrm{COC}=\mathrm{CMe})(\mathrm{CO})_{2}(\mathrm{Tp})\right]$			
Atom		\mathbf{x}	\mathbf{y}
W	0.150984	1.384495	\mathbf{z}
O	1.374346	3.642613	2.1822829
O	-2.121137	3.351643	-0.606214
N	-1.154017	0.640474	2.067780
N	-1.267282	-0.676532	2.344919
N	-0.791545	-0.398021	-0.627635
N	-0.972176	-1.566963	0.024162
N	1.474600	-0.235618	1.152560
N	0.987145	-1.427632	1.561222
C	1.161301	1.973776	-1.044247
C	0.920843	2.820603	1.510302
C	-2.081973	-0.850744	3.398064

Atom		\mathbf{x}	\mathbf{y}
C	-2.517868	0.390654	3.829109
C	-1.905280	1.293206	2.956953
C	-1.284741	2.636716	-0.250924
C	-1.517884	-2.470984	-0.807196
C	-1.702754	-1.876467	-2.042975
C	-1.228759	-0.572665	-1.875456
C	1.996009	-2.216914	1.968322
C	3.183713	-1.523000	1.821865
C	2.798375	-0.282756	1.305889
B	-0.522926	-1.723015	1.490491
H	-0.756623	-2.834263	1.888475
H	-3.180498	0.608981	4.651940
H	-2.120990	-2.320530	-2.932848
H	4.180613	-1.863881	2.053918
H	-2.293212	-1.844743	3.763814
H	-1.963738	2.371913	2.921349
H	1.793815	-3.213323	2.332458
H	3.396464	0.575555	1.036783
H	-1.735765	-3.469360	-0.457829
H	-1.168123	0.245042	-2.579172
O	1.879789	2.450427	-2.050693
C	1.583620	1.956927	-3.244525
C	1.347563	1.520309	-4.338159
C	1.069866	0.983661	-5.669175
H	1.893052	0.348243	-6.012182
H	0.939701	1.790915	-6.397504
H	0.155493	0.381257	-5.664550

Table S2: Thermodynamic Properties at 298.15 K

Zero Point Energy :	692.54	$\mathrm{kJ} / \mathrm{mol}$	(ZPE)
Temperature Correction :	55.72	$\mathrm{kJ} / \mathrm{mol}$	(vibration + gas law + rotation + translation)
Enthalpy Correction :	748.25	$\mathrm{kJ} / \mathrm{mol}$	(ZPE + temperature correction)
Enthalpy:	1225.641653	au	(Electronic Energy + Enthalpy Correction)
Entropy :	601.42	$\mathrm{J} / \mathrm{mol} \cdot \mathrm{K}$	
Gibbs Energy :	1225.709950	au	(Enthalpy - T*Entropy)
C_{v} :	379.39	$\mathrm{J} / \mathrm{mol} \cdot \mathrm{K}$	

Optimised Geometries and Cartesian Coordinates

Figure S77: Optimised structure of $\left[W(\equiv C S C=C M e)(C O)_{2}(T p)\right] \quad(\omega B 97 X-D / 6-$ $31 \mathrm{G}^{*} / \mathrm{LANL2D} \zeta(\mathrm{~W}) /$ gas phase). Bond lengths (Å) and angles (${ }^{\circ}$) of interest: $\mathrm{W} \equiv \mathrm{C}$ 1.813, WC-S 1.711, S-CC 1.706, C=C 1.209, W-C-S 173.8, C-S-C 100.1.

Infrared absorptions of interest (cm^{-1}, scaled by 0.9297): 1979, $1916 v_{\mathrm{co}}$.
Natural atomic charges of note: W (0.986), C $\alpha(-0.544)$, S (0.408).

Löwden bond orders of interest: W-C (2.41), WC-S (1.26), CSCC (1.18).

Table S3. Cartesian Coordinates for $\left[\mathrm{W}(\equiv \mathrm{CSC} \equiv \mathrm{CMe})(\mathrm{CO})_{2}(\mathrm{Tp})\right]$			
Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}
W	0.555885	1.149659	0.261997
O	1.572019	3.642632	1.916000
O	-1.480654	3.067771	-1.199383
N	-1.109782	0.627983	1.777138
N	-1.322346	-0.648371	2.164418
N	-0.241259	-0.725508	-0.658784
N	-0.591396	-1.806690	0.070183
N	1.622872	-0.358192	1.514620
N	1.025168	-1.491981	1.944312
C	1.711478	1.558147	-1.073679
C	1.193164	2.729317	1.318954
C	-2.338608	-0.695051	3.040518
C	-2.810415	0.591898	3.237390
C	-2.002678	1.384205	2.418978
C	-0.735909	2.368682	-0.661070
C	-1.006052	-2.790454	-0.746622
C	-0.926063	-2.339757	-2.052208
C	-0.437120	-1.034982	-1.941308
C	1.900773	-2.225384	2.651151
C	3.112286	-1.556919	2.683593
C	2.881072	-0.386596	1.957613
B	-0.449634	-1.790193	1.602555
H	-0.785829	-2.845931	2.072507
H	-3.618942	0.907861	3.877846
H	-1.180857	-2.878004	-2.951852

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}
H	4.025922	-1.869361	3.164573
H	-2.652472	-1.639037	3.461140
H	-2.015343	2.453070	2.258095
H	1.596991	-3.168761	3.080043
H	3.546075	0.432056	1.724525
H	-1.328093	-3.737021	-0.338589
H	-0.205380	-0.305338	-2.705118
S	2.654203	1.990275	-2.434673
C	1.476569	1.941178	-3.667399
C	0.637903	1.905761	-4.537494
C	-0.368858	1.889346	-5.594047
H	-0.929065	0.948553	-5.590409
H	0.106138	1.994215	-6.574847
H	-1.081762	2.710923	-5.470669

Table S4: Thermodynamic Properties at 298.15 K

Zero Point Energy :	684.63	kJ/mol	(ZPE)
Temperature Correction :	56.92	$\mathrm{kJ} / \mathrm{mol}$	(vibration + gas law + rotation + translation)
Enthalpy Correction :	741.56	kJ/mol	(ZPE + temperature correction)
Enthalpy :	1548.641295	au	(Electronic Energy + Enthalpy Correction)
Entropy :	609.83	$\mathrm{J} / \mathrm{mol} \cdot \mathrm{K}$	
Gibbs Energy :	1548.710547	au	(Enthalpy - T*Entropy)
C_{v} :	395.07	$\mathrm{J} / \mathrm{mol} \cdot \mathrm{K}$	

Optimised Geometries and Cartesian Coordinates

$\left[\mathrm{W}(\equiv \mathrm{CSeC} \equiv \mathrm{CMe})(\mathrm{CO})_{2}(\mathrm{Tp})\right]$

Figure S78: Optimised structure of $\left[\mathrm{W}(\equiv \mathrm{CSeC} \equiv \mathrm{CMe})(\mathrm{CO})_{2}(\mathrm{Tp})\right]$ ($\omega \mathrm{B97X}-\mathrm{D} / 6-$ $31 \mathrm{G}^{*} / \mathrm{LANL} 2 \mathrm{D} \zeta(\mathrm{W}, \mathrm{Se}) /$ gas phase). Bond lengths (\AA) and angles (${ }^{\circ}$) of interest: $\mathrm{W} \equiv \mathrm{C}$ 1.806, WC-Se 1.858, Se-CC 1.841, C=C 1.210, W-C-Se 177.3, C-Se-C 96.3.

Infrared absorptions of interest (cm^{-1}, scaled by 0.9297): 1982, 1918 vco.
Natural atomic charges of note: W (0.973), C $\alpha(-0.585)$, Se (0.519)

Löwden bond orders of interest: W-C (2.47), WC-Se (1.18), C-SeCC (1.15).

Table S5. Cartesian Coordinates for $\left[\mathrm{W}(\equiv \mathrm{CSeC}=\mathrm{CMe})(\mathrm{CO})_{2}(\mathrm{~T}\right.$			
		\mathbf{y}	\mathbf{z}
Atom	\mathbf{x}	0.221509	1.524505
W	0.465992		
O	1.283753	3.646000	2.566981
O	-2.008891	3.536802	-0.488698
N	-1.175950	0.606064	2.080225
N	-1.265361	-0.732931	2.234304
N	-0.649282	-0.175929	-0.672602
N	-0.827199	-1.403232	-0.137433
N	1.529518	-0.130312	1.216480
N	1.048414	-1.359354	1.505139
C	1.290387	2.241620	-0.801165
C	0.888587	2.876233	1.804273
C	-2.138445	-1.021577	3.213285
C	-2.636773	0.165012	3.723143
C	-1.999329	1.156905	2.973747
C	-1.196919	2.801105	-0.122118
C	-1.342196	-2.230289	-1.062085
C	-1.504634	-1.524658	-2.241947
C	-1.056243	-0.235832	-1.941421
C	2.053366	-2.159259	1.900958
C	3.231072	-1.433839	1.870876
C	2.844834	-0.164186	1.434015

Atom		\mathbf{x}	\mathbf{y}
B	-0.447809	-1.680160	1.331781
H	-0.671154	-2.827905	1.616002
H	-3.355896	0.292276	4.517166
H	-1.899100	-1.888448	-3.178060
H	4.222401	-1.773266	2.127499
H	-2.342499	-2.049212	3.475728
H	-2.090143	2.232677	3.028468
H	1.855727	-3.184810	2.175367
H	3.436260	0.722467	1.258591
H	-1.557086	-3.258762	-0.812489
H	-0.987683	0.645067	-2.563216
Se	2.324169	2.974225	-2.160360
C	1.633866	1.941221	-3.518630
C	1.181806	1.229113	-4.385607
C	0.634915	0.342751	-5.407737
H	0.187747	-0.539817	-4.936700
H	1.420893	-0.002826	-6.087130
H	-0.136635	0.842563	-6.002623

Table S6: Thermodynamic Properties at 298.15 K

Zero Point Energy :	682.43	$\mathrm{kJ} / \mathrm{mol}$	(ZPE)
Temperature Correction :	57.72	$\mathrm{kJ} / \mathrm{mol}$	(vibration + gas law + rotation + translation)
Enthalpy Correction :	740.15	kJ/mol	(ZPE + temperature correction)
Enthalpy:	3551.791245	au	(Electronic Energy + Enthalpy Correction)
Entropy :	617.51	$\mathrm{J} / \mathrm{mol} \cdot \mathrm{K}$	
Gibbs Energy :	3551.861369		(Enthalpy - T*Entropy)
C_{V} :	398.10	$\mathrm{J} / \mathrm{mol} \cdot \mathrm{K}$	

Optimised Geometries and Cartesian Coordinates

$\left[\mathrm{W}(\equiv \mathrm{CTeC} \equiv \mathrm{CMe})(\mathrm{CO})_{2}(\mathrm{Tp})\right]$

Figure S79: Optimised structure of $\left[\mathrm{W}(\equiv \mathrm{CTeC}=\mathrm{CMe})(\mathrm{CO})_{2}(\mathrm{Tp})\right] \quad(\omega \mathrm{B} 97 \mathrm{X}-\mathrm{D} / 6-$ $31 \mathrm{G}^{*} / \mathrm{LANL} 2 \mathrm{D} \zeta(\mathrm{W}, \mathrm{Te}) /$ gas phase). Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of interest: $\mathrm{W} \equiv \mathrm{C}$ 1.807, WC-Te 2.043, Te-CC 2.029, C=C 1.212, W-C-Te 168.3, C-Te-C 93.9.

Infrared absorptions of interest (cm^{-1}, scaled by 0.9297): 1977, $1915 v_{\text {co }}$.
Natural atomic charges of note: W (0.985), C $\alpha(-0.725$), Te (0.775).

Löwden bond orders of interest: W-C (2.50), WC-Te (1.13), $\mathrm{C}-\mathrm{TeCC}$ (1.10).

Atom	x	y	z
W	-0.632253	0.850929	-0.780512
0	0.164916	3.323979	1.019395
O	-3.150985	2.448605	-1.829192
N	-1.721267	-0.045494	1.074482
N	-1.575322	-1.350975	1.389623
N	-1.305400	-1.095572	-1.620728
N	-1.228084	-2.249872	-0.921779
N	0.976200	-0.460509	0.043853
N	0.741243	-1.704676	0.512203
C	0.390180	1.631750	-2.049400
C	-0.140205	2.424269	0.363766
C	-2.288256	-1.636439	2.491447
C	-2.923109	-0.481884	2.916801
C	-2.532610	0.487468	1.989599
C	-2.238602	1.860901	-1.434116
C	-1.690323	-3.263877	-1.670993
C	-2.081256	-2.762940	-2.900885
C	-1.820834	-1.394194	-2.815192
C	1.896486	-2.266100	0.909540
C	2.920493	-1.361176	0.693996
C	2.288043	-0.241192	0.146419
B	-0.688448	-2.271030	0.524154
H	-0.698692	-3.393607	0.958046
H	-3.572616	-0.361591	3.769772
H	-2.495491	-3.308025	-3.734506

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}
H	3.971367	-1.493653	0.899081
H	-2.293233	-2.639383	2.892366
H	-2.791770	1.535379	1.932400
H	1.903542	-3.266617	1.316072
H	2.697874	0.704571	-0.181782
H	-1.710223	-4.267778	-1.273493
H	-1.970120	-0.609177	-3.541938
Te	1.769770	2.649329	-3.160627
C	2.778475	3.332714	-1.538397
C	3.273980	3.697359	-0.494023
C	3.837891	4.152548	0.772092
H	3.086004	4.062214	1.562958
H	4.139379	5.203251	0.710380
H	4.713257	3.560492	1.059120

Table S8: Thermodynamic Properties at 298.15 K

Zero Point Energy :	680.76	$\mathrm{kJ} / \mathrm{mol}$	(ZPE)
Temperature Correction :	58.10	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	738.86	kJ/mol	(ZPE + temperature correction)
Enthalpy :	1158.525399	au	(Electronic Energy + Enthalpy Correction)
Entropy :	623.15	$\mathrm{J} / \mathrm{mol} \cdot \mathrm{K}$	
Gibbs Energy :	1158.596163	au	(Enthalpy - T*Entropy)
C_{v} :	400.07	$\mathrm{J} / \mathrm{mol} \cdot \mathrm{K}$	

Optimised Geometries and Cartesian

Coordinates
$\mathrm{Te}(\mathrm{C} \equiv \mathrm{CMe})_{2}$

Figure S80: Optimised structure of $\mathrm{Te}(\mathrm{C}=\mathrm{CMe})_{2}\left(\omega \mathrm{~B} 97 \mathrm{X}-\mathrm{D} / 6-31 \mathrm{G}^{*} / \mathrm{LANL} 2 \mathrm{D} \zeta(\mathrm{Te}) / \mathrm{gas}\right.$ phase). (Mean) Bond lengths (\AA) and angles (${ }^{\circ}$) of interest: $\mathrm{C}=\mathrm{C} 1.211, \mathrm{C}-\mathrm{Te} 2.023, \mathrm{C}-$ Te-C 97.7.

Infrared absorptions of interest (cm^{-1}, scaled by 0.9297): 2171, $2165 v_{c o} .967 v_{c s e}$.
Natural atomic charges of note: $\mathrm{C} \alpha(-0.468)$, $\mathrm{Te}(0.818)$.
Löwden bond orders of interest: C-Te (1.12), CC (2.84).

Table S7. Cartesian Coordinates for $\mathrm{Te}(\mathrm{C}=\mathrm{CMe})_{2}$					
Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}		
C	-1.760073	-0.003512	1.808441		
C	-1.793964	-0.011459	0.597635		
Te	-2.001328	-0.028310	-1.415191		
C	-1.694030	0.005977	3.265975		
H	-0.655430	-0.093262	3.598351		
H	-2.264349	-0.826167	3.691653		
H	-2.091945	0.940575	3.674919		
C	-0.034542	-0.010492	-1.888892		
C	1.117586	-0.002724	-2.262625		
C	2.513485	0.005843	-2.687039		
H	3.173845	0.000755	-1.813521		
H	2.742474	0.898984	-3.277710		
H	2.748271	-0.876206	-3.291996		

Table S8: Thermodynamic Properties at 298.15 K

Zero Point Energy :	235.78	$\mathrm{kJ} / \mathrm{mol}$	(ZPE)
Temperature Correction :	24.84	kJ/mol	(vibration + gas law + rotation + translation)
Enthalpy Correction :	260.62	$\mathrm{kJ} / \mathrm{mol}$	(ZPE + temperature correction)
Enthalpy :	239.980696	au	(Electronic Energy + Enthalpy Correction)
Entropy :	390.82	$\mathrm{J} / \mathrm{mol} \cdot \mathrm{K}$	
Gibbs Energy :	240.025077	au	(Enthalpy - T*Entropy)
C_{v} :	132.44	$\mathrm{J} / \mathrm{mol} \cdot \mathrm{K}$	

ENDS

[^0]: Figure S58. Infrared spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$ of Compound 4 h

[^1]: Figure $\left.\mathbf{S 6 8 .}{ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, \delta\right)$ of compound $7 \mathbf{7 a}_{2}$

[^2]: Figure S74. Infrared spectrum $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right)$ of Compound $\mathbf{7 b}$ showing evolution to Compound $\mathbf{8}$.

