# **Electronic Supplementary Information**

# Ionic liquid modified MOFs incorporated mixed matrix membrane by metal site anchoring for gas separation

Chang Li,<sup>a</sup> Wenhai Zhang,<sup>a</sup> Qin Meng,<sup>\*, b</sup> Haibiao Xu,<sup>a</sup> Chong Shen,<sup>a</sup> Guoliang Zhang<sup>\*, a</sup>

<sup>a</sup> Center for Membrane and Water Science & Technology, Collaborative Innovation Center of Membrane Separation and Water Treatment of Zhejiang Province, Zhejiang University of Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, Zhejiang 310014, China Tel/Fax: 86-571-88320863

<sup>b</sup>Department of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang 310027, China Tel/Fax: 86-571-87953193

\*Corresponding author E-mail: guoliangz@zjut.edu.cn

# Contents

- 1. Experimental detail
  - 1.1 Materials
  - 1.2 Synthesis of MOF-808(Zr) by solvent thermal process
  - 1.3 Synthesis of [mim]Br@MOF-808(Zr) by metal site anchoring
  - 1.4 Preparation of MMMs by solvent evaporation and spin coating
  - 1.5 Characterization
  - 1.6 Evaluation of gas permeability
- 2. Results and Discussions
  - 2.1 Characterization
  - 2.2 Gas separation performance comparison
- 3. References

### 1. Experimental details

#### **1.1 Materials**

The polysulfone (PSf) ultrafiltration membrane with a mean pore diameter of 8-15 nm was obtained from Collaborative Innovation Center for membrane separation and water treatment Of Zhejiang Province. PDMS was purchased from Jinan Xingfeilong Chemical Co. Ltd. N, N-Dimethylformamide (DMF, 99.5 %), n-Hexane (97 %), ethanol (EtOH, 99.7 %) were purchased from Shanghai Lingfeng Chemical Reagent Co. Ltd. Tannic acid (TA, AR), tetraethyl orthosilicate (TEOS, AR), HCl (36 %), formic acid (98 %) were purchased from Sinopharm Chemical Reagent Co. Ltd. Polyvinylpyrrolidone (PVP, K30, molecular weight: 58000 Da), polyvinyl alcohol (PVA, degree of hydrolysis: 98%~99%), di-tin butyl dilaurate (DBTDL, 95%), 1,3,5benzenetricarboxylic acid (H<sub>3</sub>BTC, 99 %), Zirconium Oxychloride Octahydrate (ZrOCl<sub>2</sub>·8H<sub>2</sub>O, 99 %), Bromoacetic acid (98 %), 1-Methylimidazole (99 %) were obtained from Aladdin Reagent Co. Ltd. Pebax®1657 (containing 60 wt% polyethylene oxide (PEO) segment and 40 wt% polyamide (PA) segment) was purchased from Arkema. Pure CO<sub>2</sub> and N<sub>2</sub> were supplied by Hangzhou Jingong Special Gases Co. Ltd. Deionized (DI) water was produced through a self-made RO-EDI system. All reagents do not require further purification.

### 1.2 Synthesis of MOF-808(Zr) by solvent thermal process

 $ZrOCl_2 \cdot 8H_2O$  (3.3 g) and  $H_3BTC$  (0.7 g) were dissolved in 300 mL DMF/formic acid mixture (v/v=1:1), placed in a 500 mL round-bottomed flask, connected with a condensing tube, vacuumed inside the flask and filled with N<sub>2</sub> protection. The roundbottomed flask was heated at 130 °C for 48 h, and then centrifuge washed with DMF and EtOH after cooling. The sediment was dried in vacuum at 60 °C to obtain MOF-808(Zr).

### 1.3 Synthesis of [mim]Br@MOF-808(Zr) by metal site anchoring

Some amount of MOF-808(Zr) was dispersed in 80 mL HCl solution, heated at 90 °C for 12 h under stirring conditions, centrifuged and dried under vacuum to obtain the

pre-treated MOF-808(Zr). Bromoacetic acid was dissolved in 50 mL EtOH, 0.1 g of pre-treated MOF-808(Zr) was added to it, and the reaction was continued at 80 °C for 24 h under stirring conditions, the excess substance was removed by washing and redispersed in 50 mL EtOH. Then 0.55 mL 1-methylimidazole was added and reacted at 80 °C for 12 h, [mim]Br@MOF-808(Zr) was obtained by centrifugation.

#### 1.4 Preparation of MMMs by solvent evaporation and spin coating

The [mim]Br@MOF-808(Zr)/Pebax MMMs were prepared on multi-modified PSf substrate by solvent evaporation method, as shown in Fig. S3. In order to coat an ultrathin selective layer without defects on porous substrate, PDMS was used as the interlayer to prevent the Pebax layer from penetrating into the pores of the porous substrate. A mixture of n-hexane: PDMS: TEOS: DBTDL was prepared in a ratio of 950:50:5:1. After cross-linking at room temperature, the mixture was spin-coated on the surface of PSf (M0) membrane, denoted by M1. The interface adhesion between the Pebax selective layer and the PDMS interlayer was enhanced by pretreatment technology based on hydrophilic modification of PDMS surface. After the membrane was irradiated by UV lamp for 3 h (M2-U), it was immersed in PVP/TA solution (TA and PVP dissolved in 500ml DI) for 3.5 h, and gently washed with DI to remove free TA and PVP on the surface of the membrane, and dried in oven at 60 °C, denoted by M2. Finally, 0.1wt% PVA solution was coated on the surface of the membrane by spin coating to complete the hydrophilic modification of the membrane (M3).

The Pebax particles were dissolved in 7:3 (w/w) EtOH/water solvent under continuous stirring at 80 °C, the [mim]Br@MOF-808(Zr) particles of different quality were added and dispersed by stirring to obtain [mim]Br@MOF-808(Zr)/Pebax casting solution. The modified membrane was fixed in the plate frame, the casting solution was added, solvent evaporated at room temperature, and vacuum dried at 50 °C to obtain [mim]Br@MOF-808(Zr)/Pebax MMMs (M4).

#### **1.5 Characterization**

The surface and cross-sectional morphology of the membranes were characterized

by scanning electron microscopy (SEM, Hitachi, Japan). The surface functional groups of the membranes were analyzed by Fourier transform infrared spectroscopy (FTIR, iS50, Thermo Fisher Nicolet, USA). The content of elements in the material was analyzed by Inductively Coupled Plasma (ICP-MS: Agilent 7800). The crystal morphology of MOF-808(Zr) was studied by X-ray diffraction (XRD, X'Pert PRO, PNAlytical, Holland). The X-ray photoelectron spectroscopy (XPS, PHI5300, Thermo, USA) analyses were performed with a Thermo Scientific K-Alpha instrument using a monochromated Al-K $\alpha$  X-ray source. The contact angle (CA) measurements were conducted with the sessile drop method using contact angle meter (OCA50AF, Dataphysics, Germany).

#### 1.6 Evaluation of gas permeability

Gas permeation properties were tested using a constant volume/variable pressure method at specific pressure and 25 °C. The membrane was placed in a stainless-steel module containing two separable parts (effective area = 7.0686 cm<sup>2</sup>), and a rubber O-ring was applied in the module to seal the equipment. The penetration volume flow rate of gases is measured by a soap bubble flowmeter. Before testing each gas, both sides of the membranes were swept and the equipment was stabilized for sufficient time to avoid errors. In order to ensure the stability of the data, each gas penetration should be sampled 5 times. The permeability and selectivity of the MMMs in the stable state are calculated by the following formula:

$$J = \frac{Q}{\Delta p \cdot A} \cdot \frac{T_0}{T}$$
(1)  
$$P_A = \frac{J_A}{l}$$
(2)  
$$\alpha_{A/B} = \frac{J_A}{J_B}$$
(3)

where J is the gas permeability in unit of GPU (1 GPU= $10^{-6} \cdot \text{cm}^3 \cdot (\text{STP})/(\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$ ), Q is the Gas flow rate measured by soap bubble flowmeters (cm<sup>3</sup>/s),  $\Delta p$  is the transmembrane pressure difference (cmHg), A is the area of the membrane with an effective membrane area of 7.0686 cm<sup>2</sup>, and *T* is the operating temperature (K),  $T_0 = 273.15$  K (standard state temperature). *P* is the gas permeability coefficient (1 Barrer =  $10^{-10} \cdot \text{cm}^3 \cdot (\text{STP}) \cdot \text{cm}/(\text{cm}^2 \cdot \text{s} \cdot \text{cmHg})$ ), *l* is the membrane thickness (cm).  $\alpha$  is the ideal selectivity. To verify reproducible results, some permeability measurements were performed with 3 different membranes and the mean values are reported in this paper.

The permeation data for each membrane were collected from at least three distinct samples from different batches, and the permeation test was repeated at least three times for each sample to ensure the accuracy of the data.

# 2. Results and Discussions

## 2.1 Characterization:



Fig. S1 SEM images of (a) MOF-808(Zr) and (b) [mim]Br@MOF-808(Zr).



Fig. S2 (a) Elemental maps of [mim]Br@MOF-808(Zr), (b) Zr, (c) N and (d) Br signal elemental maps of the [mim]Br@MOF-808(Zr) particle.



Fig. S3 Schematic of preparation of [mim]Br@MOF-808(Zr)/Pebax MMMs.



Fig. S4 (a) FT-IR, (b) XPS spectra of interlayer at different modification stages (M1~M3).



Fig. S5 Contact angle of interlayer at different modification stages (M1~M3).



Fig. S6 Surface and cross-sectional SEM images of MMMs under different [mim]Br@MOF-808(Zr) loadings: (a,b) 2.5 wt%, (c,d) 10 wt%.



Fig. S7 The transport mechanism of CO<sub>2</sub> and N<sub>2</sub> moleculesacross: (a) [mim]Br@MOF-808(Zr)/Pebax MMM, (b) MOF-808(Zr)/Pebax MMMs.



Fig. S8 Pure gas and mixed gas separation performance of the 5% [mim]Br@MOF-808(Zr)/Pebax MMMs (25 °C, 2 bar).



Fig. S9 Performance of the [mim]Br@MOF-808(Zr)/Pebax MMM with 5 wt% fillers loading under varied pressures (25 °C).

|                | Zr (%) | Br (%) |
|----------------|--------|--------|
| Before washing | 29.99  | 4.13   |
| After washing  | 29.98  | 4.13   |

Table S1 Elemental analysis before and after [mim]Br@MOF-808(Zr) washing.

|              | C (%) | 0 (%) | Si (%) | C/Si   | O/Si   |
|--------------|-------|-------|--------|--------|--------|
| M1           | 51.43 | 24.15 | 24.42  | 2.1061 | 0.9889 |
| <b>M2-</b> U | 50.24 | 27.26 | 22.5   | 2.2329 | 1.2116 |
| M2           | 46.91 | 29.19 | 23.9   | 1.9628 | 1.221  |
| M3           | 46.62 | 32.34 | 21.04  | 2.2158 | 1.5371 |

Table S2 Element content of interlayer in different modification stages (M1-M3).

# 2.2 Gas separation performance comparison

| <u>(M1-M3).</u> |                                 |                                             |  |  |  |
|-----------------|---------------------------------|---------------------------------------------|--|--|--|
|                 | CO <sub>2</sub> permeance (GPU) | CO <sub>2</sub> /N <sub>2</sub> selectivity |  |  |  |
| M1              | 2677                            | 10.45                                       |  |  |  |
| M2              | 2149                            | 9.53                                        |  |  |  |
| M3              | 1193                            | 11.37                                       |  |  |  |

Table S3 Separation performance of interlayer at different modification stages

| Filler                               | Matrix                                 | Condition     | CO <sub>2</sub><br>permeance<br>(Barrer) | CO <sub>2</sub> /N <sub>2</sub><br>selectivity | Refs. |
|--------------------------------------|----------------------------------------|---------------|------------------------------------------|------------------------------------------------|-------|
| UTSA-16                              | РТО                                    | 30 °C         | 184                                      | 38                                             | [S1]  |
|                                      |                                        | 1 bar         |                                          |                                                |       |
| SUM-9                                | Pebax 2533                             | 35 °C         | 539                                      | 24.69                                          | [\$2] |
|                                      |                                        | 6 bar         |                                          |                                                |       |
| MII -178(Fe)                         | Debay 3533                             | 35 °C         | 165                                      | 16                                             | [\$3] |
|                                      | 1 <b>COUX</b> 5555                     | 3 bar         | 105                                      | 10                                             | [55]  |
| C mimDE @71E 67                      | [C <sub>5</sub> mim][BF <sub>4</sub> ] | 30 °C         | 400                                      | 07.2                                           | [0/]  |
| $C_5 \prod DF_4 (UZIF - 0)$          | /Pebax 1657                            | 2 bar         | 400                                      | 91.2                                           | [34]  |
|                                      |                                        | 25 °C         |                                          | 31.4                                           | [85]  |
| U1O-66-NM@PEG                        | Pebax 1657                             | 1 bar         | 307.4                                    |                                                |       |
|                                      |                                        | 35 °C         | 174                                      | 25.6                                           |       |
| ZIF-94                               | Pebax 1657                             | 3 bar         |                                          |                                                | [S6]  |
|                                      | Pebax 1657                             | 30 °C         | 91.6                                     | 51.8                                           | [S7]  |
| ZIF-67-L                             |                                        | 2 bar         |                                          |                                                |       |
|                                      | Pebax 1657                             | 25 °C         | 64.2                                     | 183.4                                          | [S8]  |
| ZIF-7/COK-1745(S)                    |                                        | 1.2 bar       |                                          |                                                |       |
| ZIF-94                               |                                        | 35 °C         | 152                                      | 46                                             | [89]  |
|                                      | Pebax 1657                             | 3 bar         |                                          |                                                |       |
|                                      | Pebax 1657                             | 35 °C         | 335                                      | 176                                            | [S10] |
| [EMIM][OAc]/CuBTC                    |                                        | 1 bar         |                                          |                                                |       |
| ZIF-8 @NH2-MIL-125                   | Pebax 1657                             | 35 °C         | 156.7                                    | 52.2                                           | [S11] |
|                                      |                                        | 4 bar         |                                          |                                                |       |
| UiO-66@IL                            | Pebax 1657                             | 25 °C         | 143                                      | 61.11                                          |       |
|                                      |                                        | 10 bar        |                                          |                                                | [S12] |
| PEI-ZIF-62                           | Pebax 1657                             | 25 °C         | 58                                       | 83                                             |       |
|                                      |                                        | 10 bar        |                                          |                                                | [S13] |
| ZIF-90@C <sub>3</sub> N <sub>4</sub> | Pebax 1657                             | 25 ℃<br>2 bar | 110.5                                    | 84.4                                           | [S14] |

 Table S4 Comparison of the performance of [mim]Br@MOF-808/Pebax MMMs with

 the literature in this field.

| NH <sub>2</sub> -ZIF-8         | D 1 1657    | 25 °C   | 101 0  | 0.6.6 | [~1.5] |
|--------------------------------|-------------|---------|--------|-------|--------|
|                                | Pebax 1657  | 1 bar   | 121.9  | 96.6  | [815]  |
| PEI@ZIF-8                      | Dahay 1657  | 25 °C   | 177    | 72    | [014]  |
|                                | Pebax 1037  | 2 bar   | 1//    | 12    | [510]  |
| CuBDC-ns@MoS <sub>2</sub>      | Dobox 1657  | 35 °C   | 122    | 60    | [\$17] |
|                                | 1 coax 1057 | 4 bar   | 123    | 09    | [31/]  |
| UiO-66 PLs                     | Pehav 1657  | 25 °C   | 113    | 41.2  | [\$18] |
|                                | 1 coax 1057 | 1 bar   | 115    | 41.2  | [310]  |
| ZnO@ZIF-8 HNT                  | Debay 1657  | 25 °C   | 147    | 68    | [\$10] |
|                                | 1 coax 1057 | 5 bar   | 14/    | 08    | [319]  |
| UiO-66                         | Pehav 1657  | 35 °C   | 114 14 | 108   | [\$20] |
|                                | 1 coax 1057 | 1.5 bar | 114.14 | 198   | [320]  |
| Cu-BTC-SC                      | Pehav 1657  | 25 °C   | 557.34 | 63.1  | [\$21] |
|                                | 1 coax 1057 | 1.5 bar |        | 03.1  | [521]  |
| MWCNTs@ZIF-8                   | Pehav 1657  | 35 °C   | 186.3  | 61.3  | [\$22] |
|                                | 1 coax 1057 | 5 bar   |        | 01.5  | [322]  |
| [Bmim][PF <sub>6</sub> ]@ZIF-8 | Pehav 1657  | 25 °C   | 117    | 84.5  | [\$23] |
|                                | 1 coax 1057 | 2 bar   | 11/    | 04.5  | [323]  |
| NOTT-300                       | Pehav 1657  | 25 °C   | 395    | 61.2  | [\$24] |
|                                | 1 coax 1057 | 10 bar  |        | 01.2  | [324]  |
| [mim]Br@MOF-808(Zr)            | Pebay 1657  | 25 °C   | 426 17 | 69 63 | This   |
|                                | 1 CUAX 1037 | 2 bar   | 720.17 | 09.05 | work   |
|                                |             |         |        |       |        |

### 3. References

[S1] H. J. Min, M. Kang, Y.S. Bae, R. Blom, C. A. Grand, J. H. Kim, Thin-film composite mixed-matrix membrane with irregular micron-sized UTSA-16 for outstanding gas separation performance, J Membrane Sci. 669 (2023) 121295.

[S2] X. Feng, Z.K. Qin, Q.X. Lai, Z.Y. Zhang, Z.W. Shao, W.L. Tang, W.J. Wu, Z.D. Da, C. Liu, Mixed-matrix membranes based on novel hydroxamate metal–organic frameworks with two-dimensional layers for CO<sub>2</sub>/N<sub>2</sub> separation, Sep. Purif. Technol. 305 (2023) 122476.

[S3] M. Benzaqui, M. Wahiduzzaman, H. Zhao, M.R. Hasan, T. Steenhaut, A. Saad, J. Marrot, P. Normand, J.M. Greneche, N. Heymans, G.D. Weireld, A. Tissot, W. Shepard, Y. Filinchuk, S. Hermans, F. Carn, M. Manlankowska, C. Tellez, J. Coronas, G. Maurin, N. Steunou, C. Serre, A robust eco-compatible microporous iron coordination polymer for CO<sub>2</sub> capture, J. Mater. Chem. A, 10 (2022) 8535-8545.

[S4] Y.X. Sun, Y.S. Gao, C.X. Gen, Z.Q. Zhan, Z.H. Qiao, C.L. Zhong, Improved  $CO_2/N_2$  separation performance by relatively continuous and defect-free distribution of IL-encapsulated ZIF-67 in ion gel membranes, J Membrane Sci. 683 (2023) 121818.

[S5] B.Y. L, J.X. Liu, X.T. He, R. Wang, W.Q. Tao, Z. Li, Covalent "Bridgecrosslinking" strategy constructs facilitated transport mixed matrix membranes for highly-efficient CO<sub>2</sub> separation, J Membrane Sci. 680 (2023) 121755.

[S6] M. R. Hasa, A. Morione, M. Malankowsk, J. Coronas, Study on the recycling of zeolitic imidazolate frameworks and polymer Pebax® 1657 from their mixed matrix membranes applied to CO<sub>2</sub> capture, Sep. Purif. Technol. 304 (2023) 122355.

[S7] Q. Zhao, S.H. Lian, R. Li, Y. Yang, G.L. Zang, C.F. Song, Fabricating Leaf-like hierarchical ZIF-67 as Intra-Mixed matrix membrane microarchitecture for efficient intensification of CO<sub>2</sub> separation, Sep. Purif. Technol. 305 (2023) 122460.

[S8] Q. Jia, E. Lasseuguette, M.M. Lozinska, M.C. Ferrari, P.A. Wright, Hybrid Benzimidazole–Dichloroimidazole Zeolitic Imidazolate Frameworks Based on ZIF-7 and Their Application in Mixed Matrix Membranes for CO<sub>2</sub>/N<sub>2</sub> Separation, ACS Appl.

Mater. Interfaces 14 (2022) 46615-46626.

[S9] V. Berned-Samata'n, L. Martı'nez-Izquierdo, Elisa Aba's, C. Te'llez, J. Coronas, A facile route for the recovery of the ligand of zeolitic imidazolate framework ZIF-94/SIM-1, Chem. Commun. 58 (2022) 11681-11684.

[S10] N. Habib, O. Durak, M. Zeeshan, A. Uzun, S. Keskin, A novel IL/MOF/polymer mixed matrix membrane having superior CO<sub>2</sub>/ N<sub>2</sub> selectivity, J Membrane Sci. 658 (2022) 120712.

[S11] W. Hou, J. Cheng, N. Liu, C. Yang, Y.W. Chen, H.J. Zhang, B.J. Ye, J.H. Zhou, Selection-diffusion-selection mechanisms in ordered hierarchically-porous MOF-on-MOF: ZIF-8@NH<sub>2</sub>-MIL-125 for efficient CO<sub>2</sub> separation, J. Environ. Chem. Eng. 10 (2022) 108029.

[S12] Z. Iqbal, Z. Shamai, M. Usman, M.A. Gilani, M. Yasin, S. Saqib, A. L. Khan, One pot synthesis of UiO-66@IL composite for fabrication of CO<sub>2</sub> selective mixed matrix membranes, Chemosphere 303 (2022) 135122.

[S13] X.X. L, C.L. Jia, X.Q. Zhang, Z.B. Tian, X. Xu, F.Y. Liang, G.H. Wang, H.Q. Jiang, A general strategy for fabricating polymer/nanofiller composite membranes with enhanced CO<sub>2</sub>/N<sub>2</sub> separation performance, J. Clean. Prod. 350 (2022) 131468.

[S14] F. Guo, D.S. Li, R. Ding, J.M. Gao, X.H. Ruan, X.B. Jiang, G.H. He, W. Xiao, Constructing MOF-doped two-dimensional composite material ZIF-90@ $C_3N_4$  mixed matrix membranes for  $CO_2/N_2$  separation, Sep. Purif. Technol. 280 (2022) 119803.

[S15] R. Ding, Z.H. Li, Y. Dai, X.C. Li, X.H. Ruan, J.M. Gao, W.J. Zheng, G.H. He, Boosting the CO<sub>2</sub>/N<sub>2</sub> selectivity of MMMs by vesicle shaped ZIF-8 with high amino content, Sep. Purif. Technol. 298 (2022) 121594.

[S16] R. Ding, Q.C. Wang, X.H. Ruan, Y. Dai, X.C. Li, W.J. Zheng, G.H. He, Novel and versatile PEI modified ZIF-8 hollow nanotubes to construct CO2 facilitated transport pathway in MMMs, Sep. Purif. Technol. 2889 (2022) 120768.

[S17] N. Liu, J. Chen, W. Hou, C. Yang, X. Yang, J.H. Zhou, Bottom-up synthesis of two-dimensional composite via CuBDC-ns growth on multilayered MoS<sub>2</sub> to boost CO<sub>2</sub> permeability and selectivity in Pebax-based mixed matrix membranes, Sep. Purif. Technol. 282 (2022) 120007.

[S18] D.C. Wang, Y.Y. Xin, X.Q. Li, F. Wang, Y.D. Wang, W.R. Zhang, Y.P. Zheng, D.D. Yao, Z.Y. Yang, X.F. Lei, A universal approach to turn UiO-66 into type 1 porous liquids via post-synthetic modification with corona-canopy species for CO<sub>2</sub> capture, Chem. Eng. J. 416 (2021) 127625.

[S19] Q.C. Wang, Y. Dai, X.H. Ruan, W.J. Zheng, X.M. Yan, X.C. Li, G.H. He, ZIF-8 hollow nanotubes based mixed matrix membranes with high-speed gas transmission channel to promote  $CO_2/N_2$  separation, J Membrane Sci. 630 (2021) 119323.

[S20] B. Wang, J.Y. Xu, J.X. Wang, S. Zhao, X.L. Li, Z. Wang, High-performance membrane with angstrom-scale manipulation of gas transport channels via polymeric decorated MOF cavities, J Membrane Sci. 625 (2021) 119175.

[S21] S.S. Xu, H.L. Huang, X.Y. Guo, Z.H. Qiao, C.L. Zhong, Highly selective gas transport channels in mixed matrix membranes fabricated by using water-stable Cu-BTC, Sep. Purif. Technol. 257 (2021) 117979.

[S22] X. Li, S.F. Yu, K. Li, C. Ma, J. Zhang, H. Li, X. Chang, L. Zhu, Q.Z. Xue, Enhanced gas separation performance of Pebax mixed matrix membranes by incorporating ZIF-8 in situ inserted by multiwalled carbon nanotubes, Sep. Purif. Technol. 248 (2020) 117080.

[S23] Z.X. Guo, W.J. Zhen, X.M. Yan, Y. Dai, X.H. Ruan, X.C. Yang, X.C. Li, N. Zhang, G.H. He, Ionic liquid tuning nanocage size of MOFs through a two-step adsorption/ infiltration strategy for enhanced gas screening of mixed-matrix membranes, J Membrane Sci. 605 (2020) 1188101.

[S24] N. Habib, Z. Shamair, N. Tara, A.S. Nizami, F. H. Akhtar, N.M. Ahmad, M.A. Gilani, M.R. Bilad, A.L. Khan, Development of highly permeable and selective mixed matrix membranes based on Pebax®1657 and NOTT-300 for CO<sub>2</sub> capture, Sep. Purif. Technol. 234 (2020) 116101.