Supplementary Information

Organocatalytic Enantioselective Desymmetrization of Enal-Tethered Cyclohexane-1,3-diones

Lakshmi Revati Magham,^{a,c} Abdus Samad^{a,c} Satish B. Thopate,^{a,c} Jagadeesh Babu Nanubolu^{b,c} and Rambabu Chegondi^{*,a,c}

^{*a*}Department of Organic Synthesis & Process Chemistry, ^{*b*}Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. ^{*c*}Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.

E-mail: rchegondi@iict.res.in/cramhcu@gmail.com

		Pages
I.	General details	02
II.	Experimental procedures and analytical data	
	IIa. Experimental procedures and analytical data of products	03 to 36
	IIb. One millimole-scale reaction and Synthetic utility	36 to 41
	IIc. Labelling studies	41 to 42
	IId. Experimental procedures and analytical data of substrates	43 to 53
III.	References	54
IV.	X-ray crystallographic data	55 to 56
V.	¹ H NMR and ¹³ C NMR spectra	57 to114

I. General details:

Unless otherwise noted, all reagents were used as received from commercial suppliers. TMS-Prolinol catalysts were purchased from Sigma-Aldrich and used without further purification. All reactions were performed under a nitrogen atmosphere and in flame-dried or oven-dried glassware with magnetic stirring. Unless otherwise noted, all solvents were purchased from Merk, Finar, or Spectrochem, and used without further purification. Reactions were monitored using thin-layer chromatography (SiO₂). TLC plates were visualized with UV light (254 nm), iodine treatment, or using *p*-anisaldehyde stain or β -naphthol stain. Column chromatography was carried out using silica gel (60-120 mesh & 100-200 mesh) packed in glass columns. NMR spectra were recorded at 300, 400, 500 MHz (H) and 75, 100, 125 MHz (C), respectively. Chemical shifts (δ) are reported in ppm, using the residual solvent peak in CDCl₃ (H: δ = 7.26 and C: δ = 77.16 ppm) as internal standard, and coupling constants (J) are given in Hz. The following abbreviations were used to designate the multiplicities: s = singlet; d = doublet; t = triplet; q= quartet; dd = doublet of doublet; dt = doublet of triplet; dq = doublet of quartet; m = multiplet; br.s = broad singlet; qd = quartet of doublet. HRMS were recorded using ESI-TOF techniques. Enantiomeric ratio (er) values were determined by chiral HPLC of the purified product with hexane and *i*-PrOH as solvents and diastereomer ratio (dr) values were determined by ¹H NMR analysis. All chiral compound's optical rotation was measured on a Horiba SEPA-300.

II. Experimental Procedures and Analytical Data

IIa. Experimental procedures and analytical data of products:

General Procedure for organocatalytic enantioselective desymmetrization:

To a stirred solution of enal-tethered cyclohexane 1,3-dione 1 (0.3 mmol) in EtOH (1.5 mL, 0.2 M) at -20 °C was added Jørgensen-Hayashi catalyst C-I (10.2 mg, 0.03 mmol, 10 mol%) under nitrogen atmosphere. The reaction was allowed to stir at the same temperature until complete consumption of starting material (monitored by TLC). Afterward, the solvent was evaporated under reduced pressure at 40-45°C (rotary evaporator water bath) and the crude residue was directly purified by column chromatography on silica gel (EtOAc in Hexane) to give the desired product 2with from 5:1 to >20:1 ratio of diastereoselectivity (*dr*). [Note: For racemic products, Piperidine catalyst (10 mol%) was used at room temperature and followed the same procedure as above]. The enantiomeric excess was determined by chiral HPLC analysis. Here, diastereoselectivity (*dr*) was measured from ¹H NMR analysis of crude product and reported the NMR data for major isomer of product 2.

(2S,7aR)-2-Methoxy-7a-methyl-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2a):

Prepared according to the general procedure as described above in 82% yield (51 mg; dr = >20:1). It was purified by flash chromatography (30% EtOAc/hexane; $R_f = 0.4$) to afford yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 4.72 (ddd, J = 7.5, 5.2, 2.6 Hz, 1H), 3.42 – 3.39 (m, 1H), 3.37 (d, J = 0.8 Hz, 3H), 2.70 (ddd, J = 15.4, 13.6, 6.1 Hz, 1H), 2.55 – 2.45 (m, 2H), 2.41 (dd, J = 14.0, 5.1 Hz, 1H), 2.29 – 2.18 (m, 1H), 2.08 (dd, J = 14.1, 7.3 Hz, 1H), 1.81 – 1.67 (m, 1H), 1.37 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 210.3, 188.5, 166.8, 135.6, 81.3, 62.3, 57.0, 38.1, 37.5, 26.4, 24.1, 23.0; HRMS (ESI) calcd for C₁₂H₁₇O₃ [M+H]⁺: 209.1178; found: 209.1226; [α]²⁰_D = -125.22° (c 1.0, CHCl₃); 85:15er; Chiral HPLC analysis of the product: Daicel Chiralpak IC 250X4.6 mm 5 μ column; hexane/2-propanol = 80:20, detected at 280 nm, Flow rate = 1 mL/min, Retention times: 18.64 min (minor), 20.37 min (major).

<Peak Table> n1 280nm Ret. Time PDA Ch1 Height Area% Height% Area eak# 1 18.639 207841 9498 15.001 18.459 2 20.376 1177659 41956 84.999 <u>81.541</u> Total 1385500 51453 100.000 100.000

PDAC	h1 280nm				
Peak#	Ret. Time	Area	Height	Area%	Height%
1	18.776	367629	14570	49.537	51.453
2	20.589	374508	13747	50.463	48.547
Total		742137	28317	100.000	100.000

(2S,7aR)2-Ethoxy-7a-methyl-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2b):

Prepared according to the general procedure as described above in 94% yield (62 mg;dr = 10:1). It was purified by flash chromatography (30% EtOAc/hexane; $R_f = 0.5$) to afford yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 4.79 (ddd, J = 8.0, 5.5, 2.7 Hz, 1H), 3.59 (q, J = 7.0 Hz, 2H), 3.39 (dt, J = 14.7, 4.3 Hz, 1H), 2.69 (ddd, J = 15.5, 13.3, 6.1 Hz, 1H), 2.54 – 2.47 (m, 1H), 2.47 – 2.41 (m, 1H), 2.38 (dd, J = 14.0, 5.6 Hz, 1H), 2.27 – 2.17 (m, 1H), 2.13 (dd, J = 14.0, 7.3 Hz, 1H), 1.82 – 1.66

(m, 1H), 1.35 (s, 3H), 1.18 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 210.7, 188.8, 166.1, 135.7, 79.8, 65.2, 62.1, 39.2, 37.5, 26.4, 23.9, 22.9, 15.7; HRMS (ESI) calcd for C₁₃H₁₉O₃ [M+H]⁺: 223.1328; found: 223.1320; [α]²⁰_D = -137.20° (*c* 1.0, CHCl₃); 99:1*er*; Chiral HPLC analysis of the product: Daicel Chiralpak IC 250X4.6 mm 5 μ column; hexane/2-propanol = 80:20,detected at 240 nm, Flow rate = 1 mL/min, Retention times: 8.75 min (minor), 11.75 min (major).

(2S,7aR)-2-Isopropoxy-7a-methyl-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2c):

Prepared according to the general procedure as described above in 52% yield (36 mg; dr = >20:1). It was purified by flash chromatography (20% EtOAc/hexane; $R_f = 0.5$) to afford yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.90 (s, 1H), 4.85 – 4.77 (m, 1H), 3.90 – 3.78 (m, 1H), 3.38 (d, J = 14.7 Hz, 1H), 2.74 – 2.62 (m, 1H), 2.54 – 2.39 (m, 2H), 2.33 (dd, J = 13.9, 5.7 Hz, 1H), 2.23 – 2.11 (m, 2H), 1.85 – 1.70 (m, 1H), 1.34 (s, 3H), 1.17 (d, J = 6.0 Hz, 3H), 1.16 (d, J = 6.1 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 210.9, 188.8, 165.4, 136.1, 78.2, 72.1, 61.9, 40.7, 37.6, 26.4, 23.8, 23.3, 22.9, 22.4; HRMS (ESI) calcd for C₁₄H₂₀O₃ [M]: 236.1412; found: 236.1413; [α]²⁰_D = -110.30° (c 1.0, CHCl₃); 95:5er; Chiral HPLC analysis of the product: Daicel Chiralpak IC 250X4.6 mm 5µ column; hexane/2-propanol = 80:20, detected at 247 nm, Flow rate = 1 mL/min, Retention times: 8.48 min (major), 11.12 min (minor).

<Peak Table> DA Ch1 247nm Area% 94.987 eak# Height Height% Area <u>Ret. Time</u> 664557 1 8.486 59254 95.963 2 35072 5.013 4.037 11.128 2493 699630 61747 100.000 100.000 Total

PDAC	:h1 247nm				
Peak#	Ret. Time	Area	Height	Area%	Height%
1	8.887	2153812	134881	50.404	56.007
2	11.066	2119308	105947	49.596	43.993
Total		4273120	240828	100.000	100.000

Prepared according to the general procedure as described above in 76% yield (57 mg; dr = 18:1). It was purified by flash chromatography (40% EtOAc/hexane; $R_f = 0.4$) to afford yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.92 (s, 1H), 4.75 (ddd, J = 7.7, 5.3, 2.7 Hz, 1H), 3.58 (qd, J = 7.0, 1.6 Hz, 2H), 3.39 (dt, J = 14.5, 4.1 Hz, 1H), 2.67 (ddd, J = 15.2, 13.5, 6.2 Hz, 1H), 2.50 – 2.40 (m, 2H), 2.35 (dd, J = 14.3, 5.3 Hz, 1H), 2.26 – 2.11 (m, 2H),1.81 – 1.67 (m, 2H), 1.55 – 1.47 (m, 1H), 1.35 – 1.21 (m, 1H), 1.18 (t, J = 7.0 Hz, 3H), 1.13 – 1.03 (m, 1H), 0.90 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 210.2, 187.9, 168.5, 136.3, 79.1, 68.3, 65.5, 41.0, 38.1, 34.5, 24.4, 23.2, 18.4, 15.7, 14.5; HRMS (ESI) calcd for C₁₅H₂₃O₃ [M+H]⁺: 251.1641; found: 251.1634; [α]²⁰_D = +87.60° (c 1.0, CHCl₃); 93:7% er; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5 μ column; hexane/2-propanol = 80:20, detected at 254 nm, Flow rate = 1 mL/min, Retention times: 5.45 min (major), 5.97 min (minor).

PDAC	h1 254nm				
Peak#	Ret. Time	Area	Height	Area%	Height%
1	5.459	10319502	968758	92.982	91.158
2	5.976	778895	93966	7.018	8.842
Total		11098397	1062725	100.000	100.000

PDAC	h1 254nm				
Peak#	Ret. Time	Area	Height	Area%	Height%
1	5.417	5520956	539871	49.754	48.546
2	5.886	5575543	572203	50.246	51.454
Total		11096499	1112073	100.000	100.000

(2*S*,7a*R*) 7a-(Cyclohexylmethyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2e):

Prepared according to the general procedure as described above in 72% yield (65 mg; dr = >20:1). It was purified by flash chromatography (30% EtOAc/hexane; $R_f = 0.5$) to afford colourless liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.90 (s, 1H), 4.75 (ddd, J = 7.6, 5.1, 2.6 Hz, 1H), 3.62 – 3.53 (m, 2H), 3.37 (dt, J = 14.5, 2.7 Hz, 1H), 2.70 (ddd, J = 14.8, 13.7, 6.2 Hz, 1H), 2.55 – 2.43 (m, 2H), 2.40 (dd, J = 14.3, 5.1 Hz, 1H), 2.24 – 2.15 (m, 1H),2.18 (dd, J = 14.3, 7.5 Hz, 1H),1.80 (dd, J = 14.0, 5.3 Hz, 1H), 1.72 (ddd, J = 13.4, 11.2, 6.7 Hz, 1H), 1.66 – 1.52 (m, 5H), 1.34 (dd, J = 14.1, 6.0 Hz, 1H), 1.30 – 1.20 (m, 2H), 1.17 (t, J = 7.0 Hz, 3H), 1.14 – 1.00 (m, 2H), 0.97 – 0.83 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 209.9, 188.6, 166.3, 136.0, 80.1, 67.3, 65.1, 46.1, 38.2, 36.2, 35.0, 34.8, 34.7, 26.3 (2C), 26.1, 24.7, 23.2, 15.7; HRMS (ESI) calcd for C₁₉H₂₉O₃ [M+H]⁺: 305.2111; found: 305.2110; [α]²⁰_D = -127.79° (c 1.0, CHCl₃); 91:9er; Chiral HPLC analysis of the product: Daicel Chiralpak IC 250X4.6 mm 5 μ column; hexane/2-propanol = 98:02, detected at 254 nm, Flow rate = 1 mL/min, Retention times: 32.77 min (minor), 45.37 min (major).

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area%	Height%		
1	32.779	2266247	47407	9.071	12.218		
2	45.372	22718224	340589	90.929	87.782		
Total		24984471	387996	100.000	100.000		

<Peak Table>

PDAC	h1 254nm				
Peak#	Ret. Time	Area	Height	Area%	Height%
1	32.677	8358339	155933	49.695	54.601
2	45.666	8460942	129655	50.305	45.399
Total		16819280	285588	100.000	100.000

(2S,7aR)-7a-Allyl-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2f):

Prepared according to the general procedure as described above in 78% yield (58 mg; dr = >5:1). It was purified by flash chromatography (30% EtOAc/hexane; $R_f = 0.4$) to afford yellow liquid;¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 5.59 – 5.44 (m, 1H), 5.17 – 5.08 (m, 1H), 4.74 – 4.67 (m, 1H), 3.58 (qd, J = 7.0, 1.0 Hz, 2H), 3.42 (dt, J = 14.7, 2.6 Hz, 1H), 2.72 – 2.61 (m, 1H), 2.53 – 2.36 (m, 5H), 2.35 – 2.19 (m, 3H), 1.85 – 1.66 (m, 1H), 1.18 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ

209.3, 188.5, 164.2, 136.8, 131.3, 119.9, 80.1, 66.8, 65.3, 42.4, 37.9, 36.1, 24.0, 23.0, 15.7; HRMS (ESI) calcdfor $C_{15}H_{21}O_3$ [M+H]⁺: 249.1485; found: 249.1493; $[\alpha]^{20}D = +61.00^{\circ}$ (*c* 1.0, CHCl₃); 97:3*er*; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5µ column; hexane/2-propanol = 80:20, detected at 254 nm, Flow rate = 1 mL/min, Retention times: 6.14 min (major), 7.07 min (minor).

PDAC	h1 254nm				
Peak#	Ret. Time	Area	Height	Area%	Height%
1	6.144	4033603	314394	49.579	48.855
2	7.075	4102059	329132	50.421	51.145
Total		8135662	643526	100.000	100.000

(2S,7aR)-7a-Benzyl-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2g):

Prepared according to the general procedure as described above in 88% yield (78 mg; dr= >5:1). It was purified by column chromatography (30% EtOAc/hexane; $R_f = 0.5$) to afford brown liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 7.26 – 7.23 (m, 3H), 7.02 – 6.98 (m, 2H), 3.78 (td, J = 6.9, 2.8 Hz, 1H), 3.56 – 3.49 (m, 1H), 3.45 – 3.35 (m, 2H), 3.06 (d, *J* = 13.3 Hz, 1H), 2.86 (d, *J* = 13.3 Hz, 1H), 2.78 (ddd, *J* = 15.5, 10.2, 4.7 Hz, 1H), 2.69 – 2.59 (m, 1H), 2.54 (dt, *J* = 15.5, 3.8 Hz, 1H), 2.35 (dd, *J* = 14.0, 7.2 Hz, 1H), 2.31 – 2.22 (m, 1H), 2.14 (dd, *J* = 14.0, 6.2 Hz, 1H), 1.82 (ddt, *J* = 26.2, 13.2, 4.4 Hz, 1H), 1.08 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 210.2, 188.7, 162.8, 138.0, 135.2, 130.1, 128.5, 127.6, 79.7, 67.4, 65.2, 43.5, 38.4, 36.8, 24.0, 23.5, 15.6; HRMS (ESI) calcd for C₁₉H₂₃O₃ [M+H]⁺: 299.1641; found: 299.1634; [α]²⁰D= -73.43°(*c*1.0, CHCl₃); 96:4 *er*; Chiral HPLC analysis of the product: DaicelChiralpak IC 250X4.6 mm 5µ column; hexane/2-propanol = 70:30, detected at 254 nm, Flow rate = 1 mL/min, Retention times: 7.97 min (minor), 8.32 min (major).

<peak table=""></peak>							
PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area%	Height%		
1	7.975	370640	41426	4.437	5.959		
2	8.325	7982312	653727	95.563	94.041		
Total		8352952	695153	100.000	100.000		

PDAC	n1254nm				
Peak#	Ret. Time	Area	Height	Area%	Height%
1	7.963	9436081	829354	50.061	51.525
2	8.332	9413034	780260	49.939	48.475
Total		18849114	1609614	100.000	100.000

(2S,7aR)-2-Ethoxy-7a-(4-methylbenzyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2h):

Prepared according to the general procedure as described above in 80% yield (74 mg; dr = >20:1). It was purified by column chromatography (40% EtOAc/hexane; $R_f = 0.4$) to afford colourless liquid;¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 7.05 (d, J = 7.8 Hz, 2H), 6.88 (d, J = 8.0 Hz, 2H), 3.85 (td, J = 7.0, 2.8 Hz, 1H), 3.51 (dt, J = 16.6, 4.0 Hz, 1H), 3.41 (tdd, J = 9.1, 7.0, 2.1 Hz, 2H), 3.02 (d, J = 13.3 Hz, 1H), 2.83 (d, J = 13.3 Hz, 1H), 2.78 (ddd, J = 15.5, 13.2, 6.0 Hz, 1H), 2.63 (dddd, J = 15.3, 12.7, 5.4, 2.9 Hz, 1H), 2.53 (dt, J = 15.5, 3.2 Hz, 1H), 2.34 (dd, J = 14.0, 7.2 Hz, 1H), 2.31 (s, 3H), 2.29 – 2.21 (m, 1H), 2.13 (dd, J = 14.0, 6.2 Hz, 1H), 1.81 (ddt, J = 26.3, 13.2, 4.4 Hz, 1H), 1.09 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 210.3, 188.7, 163.2, 137.9, 137.3, 132.0, 129.9, 129.2, 79.8, 67.6, 65.1, 43.2, 38.4, 36.7, 24.0, 23.5, 21.2, 15.6; HRMS (ESI) calcd for C₂₀H₂₅O₃ [M+H]⁺: 313.1798; found: 313.1792; [α]²⁰_D = -23.39° (*c* 1.0, CHCl₃); 96:4*er*; Chiral HPLC analysis of the product: Chiral HPLC analysis of the product: Daicel Chiralpak IC 250X4.6 mm 5 μ column; hexane/2-propanol = 80:20, detected at 254 nm, Flow rate = 1 mL/min, Retention times: 11.66 min (minor), 12.38 min(major).

<Peak Table> n<u>1 254nm</u> Ret. Time PDACh 'eak# Area Height Area% Height% 1273753 72038 4.486 1 11.660 5.217 27119496 2 12.386 1308764 95.514 94.783 Total 28393249 1380802 100.000 100.000

PDA CI	h1 254nm				
Peak#	Ret. Time	Area	Height	Area%	Height%
1	11.547	12497808	685877	50.319	52.681
2	12.360	12339592	616061	49.681	47.319
Total		24837399	1301938	100.000	100.000
	•	· · ·			·

(2S,7aR)-2-Ehoxy-7a-(4-fluorobenzyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2i):

Prepared according to the general procedure as described above in 71% yield (67 mg; dr = >20:1). It was purified by flash chromatography (40% EtOAc/hexane; $R_f = 0.3$) to afford yellow liquid; ¹H NMR (500 MHz, CDCl₃) δ 9.81 (s, 1H), 7.00 – 6.91 (m, 4H), 3.84 (td, J = 6.9, 2.9 Hz, 1H), 3.53 (dt, J = 13.7, 3.1 Hz, 1H), 3.48 – 3.37 (m, 2H), 3.02 (d, J = 13.5 Hz, 1H), 2.85 (d, J = 13.5 Hz, 1H), 2.76 (ddd, J = 15.5, 13.2, 6.0 Hz, 1H), 2.65 – 2.57 (m, 1H), 2.57 – 2.52 (m, 1H), 2.30 (dd, J = 14.1, 7.2 Hz, 1H),

2.28 – 2.23 (m, 1H), 2.15 (dd, J = 14.1, 6.2 Hz, 1H), 1.83 (ddt, J = 26.3, 13.2, 4.4 Hz, 1H)), 1.10 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 209.6, 187.9, 168.4, 162.19 (d, $J_{CF} = 247.23$ Hz), 137.1, 132.2 (d, $J_{CF} = 2.7$ Hz), 131.5(d, $J_{CF} = 7.42$ Hz), 115.5 (d, $J_{CF} = 21.33$ Hz), 78.7, 68.7, 65.6, 44.1, 38.9, 34.7, 24.4, 23.7, 15.7; ¹⁹F NMR (471 MHz, CDCl₃) δ -113.21.HRMS (ESI)calcd for C₁₉H₂₂O₃F [M+H]⁺: 317.1547; found: 317.1552; [α]²⁰_D = +62.09° (*c*1.0, CHCl₃); 91:9*er*; Chiral HPLC analysis of the product: Daicel Chiralpak IC 250X4.6 mm 5 μ column; hexane/2-propanol = 90:10, detected at 254 nm, Flow rate = 1 mL/min, Retention times: 16.88 min (major), 24.52 min(minor).

<peak table=""></peak>							
PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area%	Height%		
1	16.888	12000018	492343	91.383	92.873		
2	24.521	1131562	37780	8.617	7.127		
Total		13131580	530123	100.000	100.000		

	h1 054nm		I		
Peak#	Ret. Time	Area	Height	Area%	Height%
1	16.917	1104225	44343	50.471	57.679
2	24.440	1083618	32536	49.529	42.321
Total		2187843	76879	100.000	100.000

(2S,7aR)-7a-(4-Chlorobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2j):

Prepared according to the general procedure as described above in 77% yield (76 mg; dr = >20:1). It was purified by flash chromatography (30% EtOAc/hexane; $R_f = 0.4$) to afford colourless liquid;¹H NMR (500 MHz, CDCl₃) δ 9.81 (s, 1H), 7.24 (d, J = 8.2 Hz, 2H), 6.94 (d, J = 8.3 Hz, 2H), 3.90 (td, J = 6.9, 2.7 Hz, 1H), 3.54 (dt, J = 14.7, 3.7 Hz, 1H), 3.49 – 3.37 (m, 2H), 3.01 (d, J = 13.4 Hz, 1H), 2.86 (d, J = 13.5 Hz, 1H), 2.76 (ddd, J = 15.4, 13.2, 5.9 Hz, 1H), 2.65 – 2.58 (m, 1H), 2.58 – 2.51 (m, 1H), 2.29 (dd, J = 14.1, 7.2 Hz, 1H), 2.26 – 2.22 (m, 1H), 2.16 (dd, J = 14.2, 6.1 Hz, 1H), 1.82 (tdd, J = 17.3, 8.8, 4.2 Hz, 1H), 1.10 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.9, 188.9, 162.3, 137.9, 133.8, 133.7, 131.3, 128.7, 79.8, 67.3, 65.2, 42.7, 38.3, 36.7, 24.0, 23.5, 15.6;HRMS (ESI) calcd for C₁₉H₂₂O₃Cl [M+H]⁺: 333.1252; found: 333.1263; [α]²⁰_D = +17.33° (c 1.0, CHCl₃); 93:7er; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5 μ column; hexane/2-propanol = 90:10, detected at 254 nm, Flow rate = 1mL/min, Retention times: 17.21 min (major), 19.48 min (minor).

<Peak lable>

1254nm				
Ret. Time	Area	Height	Area%	Height%
17.211	30694502	906895	92.912	91.483
19.489	2341462	84432	7.088	8.517
	33035963	991327	100.000	100.000
	<u>1 254nm</u> Ret. Time 17.211 19.489	1 254nm Ret. Time Area 17.211 30694502 19.489 2341462 33035963	1 254nm Height Ret. Time Area Height 17.211 30694502 906895 19.489 2341462 84432 33035963 991327	1.254nm Area Height Area% Ret. Time Area Height Area% 17.211 30694502 906895 92.912 19.489 2341462 84432 7.088 33035963 991327 100.000

(2S,7aR)-7a-(4-Bromobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2k):

339366

100.000

100.000

9423032

Total

Prepared according to the general procedure as described above in 81% yield (91mg; dr = >20:1). It was purified by flash chromatography (30% EtOAc/hexane; $R_f = 0.4$) to afford colourless liquid;¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 7.39 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.4 Hz, 2H), 3.91 (td, J = 7.0, 2.8 Hz, 1H), 3.54 (dt, J = 6.3, 3.7 Hz, 1H), 3.43 (dddd, J = 16.1, 9.1, 7.0, 2.1 Hz, 2H), 2.99 (d, J = 13.4 Hz, 1H), 2.84 (d, J = 13.4 Hz, 1H), 2.76 (ddd, J = 15.5, 13.1, 6.0 Hz, 1H), 2.62 (ddd, J = 12.2, 5.3, 2.8 Hz, 1H), 2.54 (dt, J = 8.8, 4.0 Hz, 1H), 2.28 (dd, J = 14.1, 7.2 Hz, 1H), 2.26 – 2.21 (m, 1H), 2.16 (dd, J = 14.2, 6.1 Hz, 1H), 1.82 (dddd, J = 22.0, 13.2, 9.0, 4.5 Hz, 1H), 1.11 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.5, 187.8, 168.2, 137.2, 135.4, 131.7, 131.3, 121.5, 78.7, 68.5, 65.6, 44.3, 38.9, 34.6, 24.4, 23.7, 15.7; HRMS (ESI) calcd for C₁₉H₂₂O₃Br [M+H]⁺: 377.0746; found: 377.0750; [α]²⁰_D = -26.19° (c 1.0, CHCl₃); 98:2er, Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5 μ column; hexane/2-propanol = 90:10, detected at 254 nm, Flow rate = 1 mL/min, Retention times: 10.86 min (major), 12.02 min (minor).

<pe< th=""><th>ak</th><th>Tal</th><th>bl</th><th>e></th></pe<>	ak	Tal	bl	e>

PDAC	h1 254nm				
Peak#	Ret. Time	Area	Height	Area%	Height%
1	10.869	25211989	1317765	97.532	97.295
2	12.021	638009	36630	2.468	2.705
Total		25849998	1354395	100.000	100.000

<peak table=""></peak>							
PDAC	PDA Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area%	Height%		
1	10.536	6424947	340644	50.268	52.110		
2	11.625	6356404	313062	49.732	47.890		
Total		12781350	653706	100.000	100.000		

(2*S*,7a*R*)-7a-([1,1'-Biphenyl]-4-ylmethyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2l):

Prepared according to the general procedure as described above in 70% yield (78 mg; dr = >20:1). It was purified by flash chromatography (50% EtOAc/hexane; $R_f = 0.3$) to afford colourless liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.83 (s, 1H), 7.57 (dd, J = 8.3, 1.2 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H), 7.43 (t, J = 7.5 Hz, 2H), 7.37 – 7.32 (m, 1H), 7.08 (d, J = 8.2 Hz, 2H), 3.93 (td, J = 7.0, 2.8 Hz, 1H), 3.55 (dt, J = 14.9, 2.9 Hz, 1H), 3.50 – 3.35 (m, 2H), 3.09 (d, J = 13.3 Hz, 1H), 2.93 (d, J = 13.3 Hz, 1H), 2.81 (ddd, J = 15.4, 13.2, 6.0 Hz, 1H), 2.67 (dddd, J = 15.4, 12.3, 5.2, 2.7 Hz, 1H)), 2.56 (dt, J = 15.4, 3.2 Hz, 1H), 2.39 (dd, J = 14.0, 7.2 Hz, 1H), 2.33 – 2.23 (m, 1H), 2.18 (dd, J = 14.1, 6.1 Hz, 1H), 1.84 (dddd, J = 22.0, 13.2, 8.9, 4.5 Hz, 1H), 1.09 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 210.1, 188.7, 162.8, 140.5, 140.4, 137.9, 134.3, 130.5, 129.0, 127.6, 127.1, 127.1, 79.8, 67.5, 65.2, 43.2, 38.4, 36.8, 24.1, 23.6, 15.6; HRMS (ESI) calcd for C₂₅H₂₇O₃N [M+H]⁺: 375.1954; found: 375.1947; [α]²⁰_D = -6.99° (c 1.0, CHCl₃); 91:9er; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5 μ column; hexane/2-propanol = 90:10, detected at 290 nm, Flow rate = 1 mL/min, Retention times: 11.40 min (minor), 12.80 min (major).

<peak table=""></peak>								
PDA Ch1 290nm								
Peak#	Ret. Time	Area	Height	Area%	Height%			
1	11.406	1521547	98478	9.269	12.798			
2	12.801	14894219	671023	90.731	87.202			
Total		16415766	769501	100.000	100.000			

<peak table=""></peak>								
PDAC	PDA Ch1 290nm							
Peak#	Ret. Time	Area	Height	Area%	Height%			
1	11.412	3611368	182784	50.179	52.283			
2	12.874	3585663	166822	49.821	47.717			
Total		7197030	349606	100.000	100.000			

(2S,7aR)-2-Methoxy-7a-(4-nitrobenzyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2m):

Prepared according to the general procedure as described above in 66% yield (67 mg; dr = 7:1). It was purified by flash chromatography (50% EtOAc/hexane; $R_f = 0.3$) to afford red liquid;¹H NMR (500 MHz, CDCl₃) δ 9.82 (s, 1H), 8.14 (d, J = 8.7 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), 3.96 (td, J = 6.9, 2.8 Hz, 1H), 3.58 (dt, J = 14.8, 3.1 Hz, 1H), 3.49 – 3.37 (m, 2H), 3.10 (d, J = 13.4 Hz, 1H), 3.04 (d, J = 13.4 Hz, 1H), 2.78 (ddd, J = 15.5, 13.1, 6.0 Hz, 1H), 2.66 – 2.56 (m, 2H), 2.33 – 2.21 (m, 1H),2.24 (ddd, J = 20.3, 14.3, 6.6 Hz, 2H),1.85 (ddt, J = 26.5, 13.1, 4.5 Hz, 1H), 1.10 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 209.1, 188.6, 161.6, 147.4, 142.5, 138.0, 130.9, 123.7, 79.7, 67.0, 65.4, 42.9, 38.3, 36.5, 24.0, 23.5, 15.6; HRMS (ESI) calcd for C₁₉H₂₀O₅N [M-H]⁺: 342.1336; found: 342.1339; [α]²⁰_D = -73.30° (*c* 1.0, CHCl₃); 89:11*er*; Chiral HPLC analysis of the product: Daicel Chiralpak IC 250X4.6 mm 5 μ column; hexane/2-propanol = 80:20, detected at 254 nm, Flow rate = 1 mL/min, Retention times: 12.39 min (major), 18.48 min (minor).

PDAC	h1 254nm				
Peak#	Ret. Time	Area	Height	Area%	Height%
1	12.394	21095539	1145248	89.199	91.226
2	18.486	2554360	110150	10.801	8.774
Total		23649899	1255398	100.000	100.000

<peak table=""></peak>								
PDA Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area%	Height%			
1	12.459	50073819	2513895	49.205	58.074			
2	18.555	51692391	1814904	50.795	41.926			
Total		101766210	4328799	100.000	100.000			

(2S,7aR)-2-Ethoxy-7a-(3-methoxybenzyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2n):

Prepared according to the general procedure as described above in 78% yield (76 mg; dr = >20:1). It was purified by flash chromatography (40% EtOAc/hexane; $R_f = 0.4$) to afford colourless liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 7.17 (t, J = 7.9 Hz, 1H), 6.79 (dd, J = 8.2, 2.2 Hz, 1H), 6.59 (d, J = 7.6 Hz, 1H), 6.54 (d, J = 1.9 Hz, 1H), 3.92 (td, J = 6.8, 2.8 Hz, 1H), 3.75 (s, 3H), 3.52 (dt, J = 1.9 Hz, 1H), 3.92 (td, J = 6.8, 2.8 Hz, 1H), 3.75 (s, 3H), 3.52 (dt, J = 1.9 Hz, 1H), 3.92 (td, J = 6.8, 2.8 Hz, 1H), 3.75 (s, 3H), 3.52 (dt, J = 1.9 Hz, 1H), 3.92 (td, J = 6.8, 2.8 Hz, 1H), 3.75 (s, 3H), 3.52 (dt, J = 1.9 Hz, 1H), 3.92 (td, J = 6.8, 2.8 Hz, 1H), 3.75 (s, 3H), 3.52 (dt, J = 1.9 Hz, 1H), 3.92 (td, J = 6.8, 2.8 Hz, 1H), 3.75 (s, 3H), 3.52 (dt, J = 1.9 Hz, 1H), 3.92 (td, J = 6.8, 2.8 Hz, 1H), 3.75 (s, 3H), 3.52 (dt, J = 1.9 Hz, 1H), 3.92 (td, J = 6.8, 2.8 Hz, 1H), 3.75 (s, 3H), 3.52 (dt, J = 1.9 Hz, 1H), 3.92 (td, J = 6.8, 2.8 Hz, 1H), 3.75 (s, 3H), 3.52 (dt, J = 1.9 Hz, 1H), 3.92 (td, J = 6.8, 2.8 Hz, 1H), 3.75 (s, 3H), 3.52 (dt, J = 1.9 Hz, 1H), 3.92 (td, J = 6.8, 2.8 Hz, 1H), 3.75 (s, 3H), 3.52 (dt, J = 1.9 Hz, 1H), 3.92 (td, J = 6.8, 2.8 Hz, 1H), 3.75 (s, 3H), 3.52 (dt, J = 1.9 Hz, 1H), 3.92 (td, J = 1.9 Hz, 1H), 3.9

14.7, 3.7 Hz, 1H), 3.47 - 3.38 (m, 2H), 3.03 (d, J = 13.3 Hz, 1H), 2.84 (d, J = 13.3 Hz, 1H), 2.78 (ddd, J = 15.5, 13.2, 6.1 Hz, 1H), 2.68 - 2.58 (m, 1H), 2.54 (dt, J = 15.5, 3.2 Hz, 1H), 2.36 (dd, J = 14.0, 7.2 Hz, 1H), 2.30 - 2.21 (m, 1H), 2.15 (dd, J = 14.2, 6.1 Hz, 1H)), 1.82 (tdd, J = 17.6, 8.9, 4.4 Hz, 1H), 1.10 (t, J = 7.0 Hz, 3H); 13 C NMR (101 MHz, CDCl₃) δ 210.1, 188.7, 162.9, 159.5, 138.0, 136.7, 129.5, 122.5, 116.2, 112.6, 79.8, 67.4, 65.2, 55.4, 43.5, 38.4, 36.8, 24.0, 23.5, 15.6;HRMS (ESI) calcd for C₂₀H₂₄O₄Na [M+Na]⁺: 351.1566 found: 351.1555; $[\alpha]^{20}$ _D = -25.50° (c1.0, CHCl₃); >99:1er; Chiral HPLC analysis of the product: Daicel Chiralpak IC 250X 4.6 mm 5µ column; hexane/2-propanol = 80:20, detected at 254 nm, Flow rate = 1 mL/min, Retention times: 15.31 min (major), 17.98 min (minor).

<Peak Table> DACh1254nm Height Area% Height% Ret. Time Area 'eak# 471236 1 <u>15.316</u> <u>11668212</u> 99.680 99.840 2 17.984 37460 755 0.320 0.160 Total 11705672 471991 100.000 100.000

PDAC	h1 254nm				
Peak#	Ret. Time	Area	Height	Area%	Height%
1	14.695	4420731	144588	50.285	57.466
2	18.063	4370622	107017	49.715	42.534
Total		8791353	251605	100.000	100.000

(2S,7aR)-2-Ethoxy-7a-(3-fluorobenzyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2o):

Prepared according to the general procedure as described above in 70% yield (66 mg; dr= >20:1). It was purified by flash chromatography (30% EtOAc/hexane; $R_f = 0.4$) to afford red liquid; ¹H NMR (500 MHz, CDCl₃) δ 9.83 (s, 1H), 7.23 (td, J = 8.0, 6.0 Hz, 1H), 6.96 (tdd, J = 8.5, 2.5, 0.6 Hz, 1H)), 6.78 (d, J = 7.7 Hz, 1H), 6.73 (dt, J = 9.6, 1.9 Hz, 1H), 3.92 (td, J = 7.0, 2.8 Hz, 1H), 3.53 (dt, J = 14.8, 3.1 Hz, 1H), 3.49 – 3.38 (m, 2H), 3.03 (d, J = 13.4 Hz, 1H), 2.88 (d, J = 13.4 Hz, 1H), 2.77 (ddd, J = 15.5, 13.2, 6.0 Hz, 1H), 2.66 – 2.58 (m, 1H), 2.55 (dt, J = 15.6, 4.2 Hz, 1H), 2.32 (dd, J = 14.2, 7.2 Hz, 1H), 2.26 (dddd, J = 11.8, 8.9, 5.9, 3.1 Hz, 1H), 2.17 (dd, J = 14.2, 6.1 Hz, 1H), 1.83 (ddt, J = 26.3, 13.2, 4.4 Hz, 1H), 1.10 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.7, 188.6, 162.6 (d, J_{CF} = 248.08 Hz), 162.4,138.0, 137.7(d, J_{CF} = 7.38 Hz), 129.96 (d, J_{CF} = 8.2 Hz), 125.75 (d, J_{CF} = 2.2 Hz), 117.0 (d, J_{CF} = 21.18 Hz), 114.59 (d, J_{CF} = 29.21 Hz), 79.7, 67.2, 65.3, 43.0, 38.3, 36.6, 24.0, 23.5, 15.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.7; HRMS (ESI) calcd for C₁₉H₂₂O₃F [M+H]⁺: 317.1547; found: 317.1542; [α]²⁰_D = +47.80° (*c* 1.0, CHCl₃); 91:9*er*; Chiral HPLC analysis of the product: Daicel Chiralpak IC 250X4.6 mm 5 μ column; hexane/2-propanol = 90:10, detected at 290 nm, Flow rate = 1 mL/min, Retention times: 16.72 min (major), 18.38 min (minor).

PDAC	h1 290nm				
Peak#	Ret. Time	Area	Height	Area%	Height%
1	16.729	2966201	112569	91.036	88.596
2	18.382	292058	14490	8.964	11.404
Total		3258259	127059	100.000	100.000

PDA C	h1 290nm				
Peak#	Ret. Time	Area	Height	Area%	Height%
1	16.535	1103006	42544	50.158	51.923
2	18.050	1096036	39392	49.842	48.077
Total		2199041	81936	100.000	100.000

(2S,7aR)-7a-(3-Chlorobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2p):

Prepared according to the general procedure as described above in 71% yield (70 mg; dr = >20:1). It was purified by flash chromatography (30% EtOAc/hexane; $R_f = 0.4$) to afford colourless liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.82 (s, 1H), 7.23 (t, J = 1.5 Hz, 1H), 7.19 (t, J = 7.7 Hz, 1H), 7.01 (t, J = 1.7 Hz, 1H), 6.88 (d, J = 7.5 Hz, 1H), 3.92 (td, J = 7.0, 2.8 Hz, 1H), 3.53 (dt, J = 14.8, 3.2 Hz, 1H), 3.48 – 3.39 (m, 2H), 3.00 (d, J = 13.4 Hz, 1H), 2.86 (d, J = 13.4 Hz, 1H), 2.76 (ddd, J = 15.5, 13.1, 6.0 Hz, 1H), 2.66 – 2.58 (m, 1H), 2.55 (dt, J = 6.6, 4.0 Hz, 1H), 2.30 (dd, J = 14.2, 7.2 Hz, 1H), 2.26 – 2.21 (m, 1H), 2.17 (dd, J = 14.2, 6.1 Hz, 1H), 1.86 (ddt, J = 26.2, 13.0, 4.5 Hz, 1H)), 1.10 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.7, 188.5, 162.4, 138.0, 137.3, 134.3, 130.1, 129.7, 128.1, 127.8, 79.7, 67.2, 65.3, 42.9, 38.3, 36.6, 24.0, 23.5, 15.5; HRMS (ESI) calcd for C₁₉H₂₂O₃Cl [M+H]⁺: 333.1252; found: 333.1243; [α]²⁰_D = -26.60° (*c* 1.0, CHCl₃); 93:7*er*; Chiral HPLC analysis of the product: Daicel Chiralpak IC 250X4.6 mm 5 μ column; hexane/2-propanol = 80:20, detected at 254 nm, Flow rate = 1 mL/min, Retention times: 23.62 min (major), 30.21 min (minor).

PDA Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area%	Height%			
1	23.625	10258262	193997	92.643	93.439			
2	30.216	814646	13621	7.357	6.561			
Total		11072908	207618	100.000	100.000			

	<peak table=""></peak>								
PD.	PDA Ch1 254nm								
Pea	ak#	Ret. Time	Area	Height	Area%	Height%			
	-	23.429	11689697	227057	50.134	58.289			
	2	29.692	11627119	162477	49.866	41.711			
T	otal		23316816	389534	100.000	100.000			

(2S,7aR)-7a-(3-Bromobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2q):

Prepared according to the general procedure as described above in 75% yield (84 mg; dr = >20:1). It was purified by flash chromatography (40% EtOAc/hexane; $R_f = 0.5$) to afford colourless liquid; ¹H NMR (500 MHz, CDCl₃) δ 9.83 (s, 1H), 7.40 (ddd, J = 8.0, 1.8, 0.9 Hz, 1H), 7.17 (t, J = 1.7 Hz, 1H),

7.13 (t, J = 7.8 Hz, 1H), 6.92 (d, J = 7.7 Hz, 1H), 3.89 (td, J = 7.0, 2.9 Hz, 1H), 3.53 (dt, J = 14.8, 3.1 Hz, 1H), 3.49 – 3.38 (m, 2H), 2.99 (d, J = 13.4 Hz, 1H), 2.85 (d, J = 13.4 Hz, 1H), 2.76 (ddd, J = 15.5, 13.1, 6.0 Hz, 1H), 2.64 – 2.59 (m, 1H), 2.55 (dt, J = 8.6, 3.7 Hz, 1H), 2.29 (dd, J = 14.2, 7.2 Hz, 1H), 2.27 – 2.22 (m, 1H), 2.17 (dd, J = 14.2, 6.1 Hz, 1H), 1.88 – 1.77 (m, 1H), 1.10 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.7, 188.5, 162.3, 138.1, 137.5, 133.1, 130.7, 130.0, 128.6, 122.5, 79.7, 67.2, 65.2, 42.8, 38.3, 36.6, 24.0, 23.5, 15.5; HRMS (ESI) calcd for C₁₉H₂₂O₃NBr [M+H]⁺: 377.0746; found: 377.0751; $[\alpha]^{20}_{D} = -24.00^{\circ}$ (*c* 1.0, CHCl₃); >99:1*er*; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5µ column; hexane/2-propanol = 90:10, detected at 254 nm, Flow rate = 1 mL/min, Retention times: 13.42 min (major), 14.54 min (minor).

PDAC	DA Ch1 254nm								
°eak#	Ret. Time	Area	Height	Area%	Height%				
1	13.426	14680946	566644	99.540	99.552				
2	14.546	67879	2551	0.460	0.448				
Total		14748825	569195	100.000	100.000				

<Peak Table>

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area%	Height%		
1	13.772	5452842	238604	50.410	51.926		
2	14.504	5364092	220900	49.590	48.074		
Total		10816934	459504	100.000	100.000		

(2S,7aR)-2-Ethoxy-7a-(3-nitrobenzyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2r):

Prepared according to the general procedure as described above in 62% yield (63 mg; dr = >20:1). It was purified by flash chromatography (50% EtOAc/hexane; $R_f = 0.3$) to afford yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.84 (s, 1H), 8.14 (ddd, J = 8.2, 2.2, 0.9 Hz, 1H), 7.91 (t, J = 1.9 Hz, 1H), 7.47 (t, J = 7.9 Hz, 1H), 7.34 (d, J = 7.8 Hz, 1H), 3.94 (td, J = 6.7, 2.8 Hz, 1H), 3.57 (dt, J = 14.9, 3.2 Hz, 1H), 3.43 (qq, J = 9.1, 7.0 Hz, 2H), 3.08 (q, J = 13.6 Hz, 2H), 2.80 (ddd, J = 15.6, 13.1, 6.0 Hz, 1H), 2.71 – 2.63 (m, 1H), 2.60 (dt, J = 15.8, 3.1 Hz, 1H), 2.36 – 2.28 (m, 1H), 2.25 (qd, J = 14.4, 6.6 Hz, 2H), 1.86 (ddt, J = 26.3, 13.2, 4.5 Hz, 1H), 1.10 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.1, 188.3, 162.0, 148.2, 138.2, 137.3, 135.9, 129.5, 124.8, 122.7, 79.6, 67.1, 65.4, 42.7, 38.3, 36.3, 24.1, 23.4, 15.5; HRMS (ESI) calcd for C₁₉H₂₂O₅N [M+H]⁺: 344.1492; found: 344.1496; $[\alpha]^{20}_{D} = -3.20^{\circ}$ (*c* 1.0, CHCl₃); 86:14*er*; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5 μ column; hexane/2-propanol = 90:10, detected at 254 nm, Flow rate = 1 mL/min, Retention times: 34.59 min (minor), 37.23 min (major).

<peak table=""></peak>									
PDA Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area%	Height%				
1	34.596	554398	10253	14.271	19.721				
2	37.239	3330323	41736	85.729	80.279				
Total		3884721	51988	100.000	100.000				

<Peak Table>

PDA Ch1 254nm

Peak#Ret Time Area Height Area% Height%			
reading re	e Area He	Ret. Time	Peak#
1 34.786 11268378 199923 50.388 51.80	5 11268378 1	34.786	1
2 36.982 11094868 186027 49.612 48.20	2 11094868 1	36.982	2
Total 22363247 385950 100.000 100.00	22363247 3		Total

(2S,7aR)-7a-(2-Chlorobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2s):

Prepared according to the general procedure as described above in 82% yield (81 mg; dr = >20:1). It was purified by flash chromatography (30% EtOAc/hexane; $R_f = 0.5$) to afford colourless liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 7.36 (dd, J = 7.7, 1.6 Hz, 1H), 7.18 (dtd, J = 16.8, 7.4, 1.6 Hz, 2H), 6.98 (dd, J = 7.4, 1.8 Hz, 1H), 4.09 (td, J = 6.8, 2.9 Hz, 1H), 3.53 – 3.42 (m, 3H), 3.22 (d, J = 13.7 Hz, 1H), 3.09 (d, J = 13.8 Hz, 1H), 2.79 (ddd, J = 15.4, 13.1, 5.9 Hz, 1H), 2.66 (dddd, J = 15.3, 12.6, 5.3, 3.0 Hz, 1H), 2.55 (dt, J = 15.4, 3.3 Hz, 1H), 2.42 (dd, J = 14.1, 7.0 Hz, 1H), 2.29 – 2.19 (m, 1H), 2.06 (dd, J = 14.1, 6.5 Hz, 1H), 1.87 – 1.73 (m, 1H), 1.10 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.9, 188.7, 163.4, 137.8, 135.0, 133.6, 131.9, 130.1, 129.0, 126.8, 80.0, 66.8, 65.2, 39.7, 38.6, 36.5, 24.0, 23.8, 15.6; HRMS (ESI) calcd for C₁₉H₂₂O₃Cl [M+H]⁺: 333.1252; found: 333.1266; [α]²⁰_D = -68.92° (c 1.0, CHCl₃); 91:9er; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5 μ column; hexane/2-propanol = 90:10, detected at 254 nm, Flow rate = 1 mL/min, Retention times: 8.21 (minor), 10.50 min (major).

<Peak Table> 254nm et. Time PDA Ch1 eak# Area Height Area% Height% Ret 651781 9.230 1 8.212 46661 11.584 356158 6409914 2 90.770 10.504 88.416 7061695 402820 100.000 Total 100.000

<Peak Table>

PDAC	h1 254nm				
Peak#	Ret. Time	Area	Height	Area%	Height%
1	8.191	991847	58271	49.785	50.863
2	10.472	1000396	56292	50.215	49.137
Total		1992243	114563	100.000	100.000

(2S,7aR)-7a-(2-Bromobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2t):

Prepared according to the general procedure as described above in 86% yield (97 mg; dr = 11:1). It was purified by flash chromatography (30% EtOAc/hexane; $R_f = 0.4$) to afford colourless liquid; ¹H NMR (400 MHz, CDCl₃) $\delta = 9.88$ (s, 1H), 7.56 (d, *J*=8.0, 1H), 7.26 (d, *J*=0.9, 1H), 7.20 (t, *J*=7.5, 1H), 7.12 (t, *J*=7.6, 1H), 6.96 (d, *J*=7.6, 1H), 4.17 (td, *J*=6.6, 2.7, 1H), 3.55 – 3.43 (m, 3H), 3.29 (d, *J*=13.9, 1H)

1H), 3.11 (d, *J*=13.9, 1H), 2.79 (ddd, *J*=14.9, 13.6, 5.9, 1H), 2.71 – 2.60 (m, 1H), 2.60 – 2.52 (m, 1H), 2.43 (dd, *J*=14.1, 7.1, 1H), 2.29 – 2.19 (m, 1H), 2.08 (dd, *J*=14.1, 6.4, 1H), 1.87 – 1.74 (m, 1H), 1.12 (t, *J*=7.0, 3H);¹³C NMR (101 MHz, CDCl₃) δ 209.9, 188.8, 163.3, 137.8, 135.4, 133.5, 131.6, 129.2, 127.4, 126.0, 80.1, 66.9, 65.3, 42.1, 38.7, 36.4, 24.0, 23.8, 15.6; HRMS(ESI) calcd for C₁₉H₂₂O₃Br [M+H]⁺: 377.0746; found: 377.0751; [α]²⁰_D = +48.50° (*c* 1.0, CHCl₃); 97:3*er*; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5µ column; hexane/2-propanol = 90:10, detected at 254 nm, Flow rate = 1 mL/min, Retention time: 8.11 min (major), 10.77 min(minor).

	<peak table=""></peak>								
PDA Ch1 254nm									
Peak#	Ret. Time	Area	Height	Area%	Height%				
1	8.119	19189186	1283651	96.569	96.853				
2	10.774	681671	41711	3.431	3.147				
Total		19870857	1325362	100.000	100.000				

<Peak Table>

PDA Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area%	Height%			
1	8.105	12412304	816438	50.200	54.397			
2	10.750	12313202	684455	49.800	45.603			
Total		24725506	1500893	100.000	100.000			

(2*S*,7a*R*)-7a-(3,4-Dimethoxybenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2u):

Prepared according to the general procedure as described above in 76% yield (81mg; dr= 14:1). It was purified by flash chromatography (50% EtOAc/hexane; $R_f = 0.3$) to afford yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.80 (s, 1H), 6.75 (d, J = 8.2 Hz, 1H), 6.56 (dd, J = 8.2, 2.0 Hz, 1H), 6.49 (d, J = 1.9 Hz, 1H), 3.89 (dd, J = 11.3, 5.0 Hz, 1H), 3.85 (s, 3H), 3.80 (s, 3H), 3.54 (dt, J = 6.4, 3.6 Hz, 1H), 3.49 – 3.35 (m, 2H), 3.04 (d, J = 13.5 Hz, 1H), 2.80 (d, J = 14.0, 7.2 Hz, 1H), 2.77 – 2.69 (m, 1H), 2.67 – 2.57 (m, 1H), 2.53 (dt, J = 15.6, 3.4 Hz, 1H), 2.35 (dd, J = 14.0, 7.2 Hz, 1H), 2.29 – 2.20 (m, 1H), 2.14 (dd, J = 13.9, 6.1 Hz, 1H), 1.90 – 1.73 (m, 1H), 1.10 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 210.5, 188.9, 162.7, 148.7, 148.6, 137.8, 127.6, 122.5, 113.3, 111.1, 79.9, 67.5, 65.1, 56.1, 56.0, 43.3, 38.4, 37.0, 23.9, 23.6, 15.6; HRMS (ESI) calcd for C₂₁H₂₇O₅ [M+H]⁺: 359.1853; found: 359.1847; [α]²⁰_D = -40.66° (c 1.0, CHCl₃); 90:10er; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5 μ column; hexane/2-propanol = 92:08, detected at 254 nm, Flow rate = 1 mL/min, Retention times: 17.19 min (major), 18.35 min (minor).

<peak table=""></peak>								
PDA Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area%	Height%			
1	17.198	1820446	64945	89.769	88.146			
2	18.358	207480	8734	10.231	11.854			
Total		2027926	73679	100.000	100.000			

PDAC	h1 254nm				
Peak#	Ret. Time	Area	Height	Area%	Height%
1	17.311	10926119	407111	50.410	52.180
2	18.468	10748341	373093	49.590	47.820
Total		21674460	780203	100.000	100.000

(2*S*,7a*R*)-7a-(2,3-Dichlorobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2v):

Prepared according to the general procedure as described above in 85% yield (93mg; dr= >20:1, with inseparableimpurities). It was purified by flash chromatography (50% EtOAc/hexane; $R_f = 0.4$) to afford colourless liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.88 (s, 1H), 7.39 (dd, J = 8.0, 1.5 Hz, 1H), 7.11 (t, J = 7.9 Hz, 1H), 6.89 (dd, J = 7.8, 1.5 Hz, 1H), 4.23 (td, J = 6.7, 2.9 Hz, 1H), 3.55 – 3.44 (m, 3H), 3.31 (d, J = 14.0 Hz, 1H), 3.12 (d, J = 14.0 Hz, 1H), 2.78 (ddd, J = 15.4, 13.0, 6.0 Hz, 1H), 2.68 – 2.60 (m, 1H), 2.59 – 2.53 (m, 1H), 2.35 (dd, J = 14.2, 7.0 Hz, 1H), 2.31 – 2.18 (m, 1H), 2.10 (dd, J = 14.2, 6.4 Hz, 1H), 1.81 (ddt, J = 26.1, 13.1, 4.4 Hz, 1H), 1.12 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.8, 187.9, 167.9, 137.5, 137.1, 133.7, 133.2, 130.8, 129.6, 127.1, 78.9, 67.8, 65.7, 42.2, 39.3, 35.4, 24.1, 23.9, 15.6; HRMS (ESI) calcd for C₁₉H₂₁O₃Cl₂ [M+H]⁺: 367.0862; found: 367.0859; [α]²⁰_D = -81.65° (c 1.0, CHCl₃); 98:2er; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5 μ column; hexane/2-propanol = 90:10, detected at 254 nm, Flow rate = 1 mL/min, Retention times: 8.42 min (major), 10.29 min (minor).

PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area%	Height%		
1	8.421	12417949	765351	97.983	97.955		
2	10.297	255603	15982	2.017	2.045		
Total		12673552	781333	100.000	100.000		

<peak table=""></peak>								
PDA Ch1 254nm								
Peak#	Ret. Time	Area	Height	Area%	Height%			
1	8.580	4070035	257172	50.095	53.274			
2	10.561	4054650	225563	49.905	46.726			
Total		8124685	482735	100.000	100.000			

(2*S*,7a*R*)-2-Ethoxy-7a-(naphthalen-1-ylmethyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2w):

Prepared according to the general procedure as described above in 72% yield (75 mg; dr = >20:1). It was purified by flash chromatography (50% EtOAc/hexane; $R_f = 0.3$) to afford yellow liquid;¹H NMR

(400 MHz, CDCl₃) δ 10.02 (s, 1H), 8.21 – 8.17 (m, 1H), 7.86 – 7.83 (m, 1H), 7.76 (d, J = 8.2 Hz, 1H), 7.52 – 7.45 (m, 2H), 7.38 (dd, J = 8.2, 7.2 Hz, 1H), 7.18 (dd, J = 7.1, 0.8 Hz, 1H), 4.63 (dd, J = 5.0, 2.0 Hz, 1H), 3.95 (d, J = 14.2 Hz, 1H), 3.70 (d, J = 14.2 Hz, 1H), 3.66 – 3.55 (m, 2H), 3.24 (dt, J =14.6, 3.0 Hz, 1H), 2.59 – 2.43 (m, 2H), 2.18 – 2.15 (m, 2H), 2.09 (ddd, J = 14.6, 12.9, 5.3 Hz, 1H), 2.03 – 1.94 (m, 1H), 1.57 – 1.41 (m, 1H), 1.27 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 211.2, 187.9, 169.1, 137.8, 134.1, 133.4, 132.9, 128.9, 128.2, 128.0, 126.2, 125.9, 125.3, 124.5, 78.8, 69.1, 65.9, 42.0, 40.0, 37.0, 24.2, 23.7, 15.7; HRMS:(ESI) calcd for C₂₃H₂₅O₃[M+H]⁺: 349.1798; found: 349.1791; [α]²⁰_D = +45.50° (*c* 1.0, CHCl₃); 83:17*er*; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5μ column; hexane/2-propanol = 90:10, detected at 290 nm, Flow rate = 1 mL/min, Retention times: 9.00 min (major), 9.93 min (minor).

<Peak Table>

PDA Ch1 290nm							
Peak#	Ret. Time	Area	Height	Area%	Height%		
1	9.005	16937764	1042415	82.889	80.948		
2	9.930	3496579	245351	17.111	19.052		
Total		20434342	1287766	100.000	100.000		

PDAC	h1 290nm				
Peak#	Ret. Time	Area	Height	Area%	Height%
1	9.006	11495496	696312	50.457	51.615
2	9.933	11287181	652744	49.543	48.385
Total		22782677	1349055	100.000	100.000

(2*S*,7a*R*)-2-Ethoxy-7-oxo-7a-(thiophen-2-ylmethyl)-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2x):

Prepared according to the general procedure as described above in 84% yield (76 mg; dr = >20:1). It was purified by flash chromatography (40% EtOAc/hexane; $R_f = 0.3$) to afford red liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 7.17 (dd, J = 5.2, 1.1 Hz, 1H), 6.92 (dd, J = 5.2, 3.5 Hz, 1H), 6.75 (d, J = 2.7 Hz, 1H), 4.14 (ddd, J = 7.4, 5.7, 2.8 Hz, 1H), 3.54 – 3.43 (m, 3H), 3.25 (d, J = 14.5 Hz, 1H), 3.15 (d, J = 14.5 Hz, 1H), 2.76 (ddd, J = 15.5, 13.1, 6.1 Hz, 1H), 2.65 – 2.58 (m, 1H), 2.54 (dt, J = 15.2, 3.8 Hz, 1H), 2.39 (dd, J = 14.3, 7.3 Hz, 1H),2.30 (dd, J = 14.3, 5.6 Hz, 1H), 2.31 – 2.22 (m, 1H), 1.90 – 1.76 (m, 1H), 1.12 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.4, 188.5, 162.6, 138.2, 136.4, 127.7, 127.0, 125.4, 80.0, 67.8, 65.3, 38.2, 37.8, 36.8, 24.0, 23.3, 15.6; HRMS (ESI) calcd for C₁₇H₂₁O₃S [M+H]⁺: 305.1205; found: 305.1216; [α]²⁰_D = -18.09° (c 1.0, CHCl₃); 91:9er; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5 μ column; hexane/2-propanol = 80:20, detected at 254nm, Flow rate = 1 mL/min, Retention times: 13.40 min (minor), 19.69 min (major).

<peak< th=""><th>Table></th></peak<>	Table>
---	--------

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area%	Height%	
1	13.403	511536	20684	8.972	15.647	
2	19.691	5190222	111508	91.028	84.353	
Total		5701758	132192	100.000	100.000	

(2S,7aR)-2-Ethoxy-7a-(furan-2-ylmethyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde(2y):

Prepared according to the general procedure as described above in 82% yield (70 mg; dr = >20:1). It was purified by flash chromatography (40% EtOAc/hexane; $R_f = 0.3$) to red liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 7.28 (dd, J = 1.9, 0.8 Hz, 1H), 6.27 (dd, J = 3.2, 1.9 Hz, 1H), 6.05 (d, J = 3.6 Hz, 1H), 4.33 (ddd, J = 7.4, 5.7, 2.8 Hz, 1H), 3.57 – 3.48 (m, 2H), 3.45 (dt, J = 6.2, 3.7 Hz, 1H), 3.02 (s, 2H), 2.76 (ddd, J = 15.5, 13.2, 6.1 Hz, 1H), 2.64 – 2.57 (m, 1H), 2.52 (dt, J = 15.5, 4.0 Hz, 1H), 2.39 (dd, J = 14.2, 7.3 Hz, 1H), 2.29 (dd, J = 14.3, 5.6 Hz, 1H), 2.25 – 2.20 (m, 1H), 1.79 (ddt, J = 26.2, 13.2, 4.5 Hz, 1H), 1.14 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 209.2, 188.5, 163.4, 149.8, 142.5, 137.4, 110.7, 108.9, 79.8, 66.8, 65.2, 38.1, 36.9, 36.5, 24.0, 23.2, 15.6; HRMS (ESI) calcd for C₁₇H₂₁O₄ [M+H]⁺: 289.1434; found: 289.1425; $[\alpha]^{20}_{D} = +12.62^{\circ}$ (c 0.5, CHCl₃); 94:6 er; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5 μ column; hexane/2-propanol = 80:20, detected at 254 nm, Flow rate = 1 mL/min, Retention times: 8.87 min (minor), 10.12 min (major).

PDAC	PDA Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area%	Height%			
1	8.871	926721	74391	5.883	8.599			
2	10.124	14826207	790681	94.117	91.401			
Total		15752928	865072	100.000	100.000			

<Peak Table>

PDA Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area%	Height%	
1	8.823	7305066	453432	49.613	53.318	
2	10.154	7418895	396992	50.387	46.682	
Total		14723961	850424	100.000	100.000	

IIb. One mmol-Scale reaction and Synthetic utility

IIba. One-mmol Scale reaction:

To a stirred solution of enal-tethered Cyclohexane 1,3-dione **1g** (270 mg, 1.0 mmol) in EtOH (5 mL, 0.2 M) at -20 °C was added Jørgensen-Hayashi catalyst **C-I** (16 mg, 0.05 mmol, 5 mol%) under nitrogen atmosphere. The reaction was allowed to stir at the same temperature until complete
consumption of starting material (monitored by TLC). Afterward, the solvent was evaporated under reduced pressure and the crude residue was directly purified by column chromatography on silica gel (EtOAc in Hexane) to give the desired product**2g** in 82% yield (244 mg); $[\alpha]_{20}^{D} = -85.91^{\circ}$ (*c* 1.0, CHCl₃); 96:4 *er*.

IIbb. Synthetic utility:

(2*S*,3a*R*)-3a-Benzyl-1-((*Z*)-3-(4-bromophenyl)-3-oxoprop-1-en-1-yl)-2-ethoxy-2,3,3a,5,6,7-hexahydro-4*H*-inden-4-one (5):

The solution of aldehyde **2g** (60 mg, 0.2 mmol, 1 equiv) in CH₂Cl₂ (4 mL, 0.05 M) was added 4-bromo phenyl phosphorene**3** (138 mg, 0.30 mmol, 1.5 equiv) in one portion at room temperature under a nitrogen atmosphere. The reaction mixture was stirred at 65 °C using preheated oil bath for 12h and then concentrated in vacuo. The crude reaction mixture was purified by flash column chromatography (20% EtOAc/hexane; $R_f = 0.4$) to give dienone**5** in 75% yields (72 mg, dr = >20:1) as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, J = 8.6 Hz, 2H), 7.60 (d, J = 15.3 Hz, 1H)), 7.60 (d, J = 8.7 Hz, 2H), 7.24 – 7.21 (m, 3H), 7.13 (d, J = 15.3 Hz, 1H), 6.99 (dd, J = 6.5, 2.9 Hz, 2H), 3.73 (td, J = 6.8, 2.6 Hz, 1H), 3.44 (dq, J = 9.0, 7.0 Hz, 1H), 3.25 (dq, J = 9.1, 7.0 Hz, 1H), 3.12 – 3.05 (m, 2H), 2.85 – 2.74 (m, 2H), 2.65 – 2.56 (m, 1H), 2.53 (dt, J = 15.2, 3.0 Hz, 1H), 2.36 (dd, J = 13.7, 7.2 Hz, 1H), 2.30 – 2.23 (m, 1H), 2.19 (dd, J = 13.8, 6.7 Hz, 1H), 1.75 (dt, J = 26.2, 13.2, 4.4 Hz, 1H), 1.16 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 211.0, 189.9, 155.0, 137.2, 135.8, 135.7, 135.3, 132.0, 130.1, 130.0, 128.3, 127.9, 127.3, 123.0, 80.9, 66.8, 63.1, 43.3, 38.5, 35.8, 24.7, 23.8, 15.7; HRMS (ESI) calcd for C₂₇H₂₇O₃BrNa [M+Na]⁺: 501.1035; found: 501.1048; [α]²⁰_D = -101.99° (*c* 1.0, CHCl₃).

Ethyl (E)-3-((2S,7aR)-7a-benzyl-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-inden-3-yl)acrylate(6):

The solution of aldehyde **2g** (60 mg, 0.2 mmol, 1 equiv) in CH₂Cl₂ (3 mL, 0.1 M) was added desired phosphorene (105 mg, 0.30 mmol, 1.5 equiv) in one portion at room temperature under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 2h and then concentrated in vacuo. The crude reaction mixture was purified by flash column chromatography (20% EtOAc/hexane; $R_f = 0.5$) to give bicyclic ester **6** in 72% yield (53 mg, dr = >20:1) as an yellow oil;¹H NMR (500 MHz, CDCl₃) δ 7.43 (d, J = 15.8 Hz, 1H), 7.24 – 7.19 (m, 3H), 6.99 – 6.95 (m, 2H), 5.97 (d, J = 15.7 Hz, 1H), 4.27 – 4.12 (m, 2H), 3.60 (td, J = 6.7, 2.7 Hz, 1H), 3.37 (dq, J = 9.0, 7.0 Hz, 1H), 3.19 (dq, J = 9.0, 7.0 Hz, 1H), 3.06 (d, J = 13.2 Hz, 1H), 3.00 (dt, J = 14.5, 2.9 Hz, 1H), 2.77 (d, J = 13.2 Hz, 1H), 2.76 (ddd, J = 19.5, 11.3, 3.9 Hz, 1H)), 2.60 – 2.53 (m, 1H), 2.50 (dt, J = 15.3, 4.3 Hz, 1H), 2.31 (dd, J = 13.8, 7.1 Hz, 1H), 2.26 – 2.19 (m, 1H), 2.12 (dd, J = 13.8, 6.5 Hz, 1H), 1.74 (dt, J = 26.4, 13.2, 4.4 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H), 1.10 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 211.3, 167.8, 152.3, 135.7, 135.5, 134.9, 130.1, 128.3, 127.3, 120.0, 80.8, 66.5, 63.4, 60.5, 43.2, 38.6, 35.9, 24.7, 23.6, 15.5, 14.5; HRMS (ESI) calcdfor C₂₃H₂₈O₄Na [M+Na]⁺: 391.1885; found: 391.1889; [α]²⁰_D = -17.00° (*c*1.0, CHCl₃).

(2S,3aR)-3a-Benzyl-2-ethoxy-1-(hydroxymethyl)-2,3,3a,5,6,7-hexahydro-4*H*-inden-4-one (7):

To a solution of **2**g(60 mg, 0.2 mmol, 1 equiv) and CeCl₃· 7H₂O (112 mg, 1.5 equiv) in 3 mL of MeOH was addedNaBH₄(11 mg, 1.5 equiv) over a period of 5 min. The reactionmixture was stirred for 30 min at room temperature, quenched with H₂O (5 mL), extracted with ethyl acetate (3×5 mL), dried overNa₂SO₄, concentrated under vacuo, and then purified byflashchromatography (30% EtOAc in hexanes; R_f = 0.3) to afford a colour less oil (49 mg, 82% yield*dr* = >20:1);¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.21 (m, 3H), 7.04 – 6.98 (m, 2H), 4.22 (d, *J* = 12.4 Hz, 1H), 3.99 (d, *J* = 12.4 Hz, 1H), 3.50 – 3.38 (m, 2H), 3.19 (dq, *J* = 9.1, 7.0 Hz, 1H), 2.99 (d, *J* = 13.2 Hz, 1H), 2.79 – 2.70 (m, 3H), 2.47 (dt, *J* = 15.2, 3.1 Hz, 1H), 2.43 – 2.33 (m, 2H), 2.28 (dd, *J* = 13.5, 6.8 Hz, 1H), 2.22 – 2.11 (m, 1H), 2.02 (dd, *J* = 13.5, 6.7 Hz, 1H), 1.79 (dt, *J* = 26.4, 13.2, 4.4 Hz, 1H), 1.08 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 212.4, 142.2, 136.7, 136.1, 130.2, 128.1, 127.2, 84.2, 65.9, 64.6, 58.4, 42.5, 38.6, 36.9, 25.2, 22.8, 15.5; HRMS (ESI) calcd for C₁₉H₂₄O₃Na [M+Na]⁺: 323.1623; found: 323.1631; [α]²⁰_D = +15.83 ° (*c* 1.0, CHCl₃).

(2*S*,7a*R*)-7a-Benzyl-2-ethoxy-7-oxo-N-(pyridin-2-yl)-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carboxamide(8):

A sealable reaction tube equipped with a magnetic stirrer bar was charged with aldehyde 2g (60 mg, 0.2 mmol), amines (22 mg, 1.2 equiv, 0.2 mmol), CuI (5 mg, 0.05 equiv, 0.03 mmol), tert-butyl hydroperoxide (TBHP, 36 mg, 2 equiv, 0.4 mmol), water (1 mL). The reaction vessel was carried out at room temperature. After stirring the mixture for 6 h, it was diluted with ethyl acetate, washed with water and brine, dried with Mg₂SO₄. After the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to afford the corresponding product in 78% yield (61 mg; dr = >20:1). It was purified by flash chromatography (10% EtOAc/hexane; $R_f = 0.4$) to afford a yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 10.17 (s, 1H), 8.32 (dd, J = 58.4, 6.2 Hz, 2H), 7.80 (t, J = 7.3 Hz, 1H), 7.28 - 7.25 (m, 3H), 7.11 -7.02 (m, 3H), 3.89 (dt, J = 15.5, 3.4 Hz, 1H), 3.86 – 3.78 (m, 1H), 3.63 – 3.53 (m, 1H), 3.52 – 3.43 (m, 1H), 3.10 (d, J = 13.3 Hz, 1H), 2.86 (d, J = 13.2 Hz, 1H), 2.79 (dd, J = 18.6, 11.1, 4.2 Hz, 1H), 2.74 – 2.64 (m, 1H), 2.52 (dt, J = 15.3, 3.6 Hz, 1H), 2.40 (dd, J = 13.6, 6.9 Hz, 1H), 2.27 – 2.20 (m, 1H), 2.17 (dd, *J* = 13.7, 6.6 Hz, 1H), 1.80 (ddt, *J* = 26.0, 13.0, 4.5 Hz, 1H), 1.25 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 211.3, 163.5, 160.2, 151.1, 135.3, 130.6, 130.3, 130.0, 128.6, 128.4, 127.5, 119.6, 115.1, 80.8, 66.2, 64.5, 43.4, 38.5, 36.7, 24.6, 24.2, 15.4; HRMS (ESI) calcd for $C_{24}H_{27}O_{3}N_{2} [M+H]^{+}: 391.2016; \text{ found: } 391.2029; [\alpha]^{20}D = +11.00^{\circ} (c \ 1.0, CHCl_{3}).$

(2*S*,3a*R*)-3a-Benzyl-2-ethoxy-1-ethynyl-2,3,3a,5,6,7-hexahydro-4*H*-inden-4-one (9):

To a solution of 2g (60 mg, 0.2 mmol) and dimethyldiazomethylphosphonate (Ohira-Bestmann reagent) (46 mg, 1.25 equiv, 0.25 mmol) in dry methanol (2mL), was added potassium carbonate (41 mg, 1.5 equiv, 0.3mmol) at 0 °C under argon atmosphere. The mixture was stirred at 0°C for 30 min and room temperature for 12h. After addition of EtOAc (5 mL) and aqueous saturated ammonium chloride (2 mL), the organic layer was separated, and the aqueous layer was extracted with EtOAc (5

mL x 2). The combined organic layers were dried, concentrated. Flash column chromatography of crude reaction mixture on silica gel (20% EtOAc/hexane; $R_f = 0.6$) to afford desired alkyne **9** in 80% yield (47 mg, dr = >20:1) as a brown solid; mp = 80–82 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.24 (m, 3H), 7.05 – 7.02 (m, 2H), 3.48 – 3.33 (m, 3H), 3.12 (br.s, 1H), 3.03 (d, J = 13.2 Hz, 1H), 2.97 (dt, J = 14.5, 4.3 Hz, 1H), 2.77 (d, J = 13.2 Hz, 1H), 2.70 (ddd, J = 19.4, 11.4, 3.9 Hz, 1H), 2.56 – 2.41 (m, 2H), 2.28 (dd, J = 13.7, 7.1 Hz, 1H), 2.22 – 2.10 (m, 1H), 2.06 (dd, J = 13.7, 7.0 Hz, 1H), 1.76 (tdd, J = 17.8, 8.9, 4.5 Hz, 1H), 1.09 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 211.5, 154.4, 135.8, 130.2, 128.3, 127.3, 121.9, 82.5, 82.1, 78.4, 65.7, 64.6, 42.8, 38.5, 37.2, 24.7, 24.5, 15.5; HRMS (ESI) calcd for C₂₀H₂₂O₂Na [M+Na]⁺: 317.1512; found: 317.1517; [α]²⁰_D = -40.57° (*c* 1.0, CHCl₃).

IIbc. Standard reaction with 1g in BnOH solvent:

To a stirred solution of enal-tethered cyclohexane 1,3-dione **1g** (0.3 mmol) in BnOH (1.5 mL, 0.2 M) at room temperature was added piperidine (10.2 mg, 0.03 mmol, 10 mol%) under nitrogen atmosphere. The reaction was allowed to stir at the same temperature until complete consumption of starting material (monitored by TLC). Afterward, the solvent was evaporated under reduced pressure at 40- 45° C (rotary evaporator water bath) and the crude residue was directly purified by column chromatography on silica gel (EtOAc in Hexane) to give the desired product **2g'** in >10% yield with 1:1.4 ratio of diastereoselectivity (*dr*). However, asymmetric reaction with Jørgensen-Hayashi catalyst **C-I** at various temperatures failed to give the desired product and most of the starting material was recovered.

To a stirred solution of enal-tethered cyclohexane 1,3-dione **1g** (30 mg,0.1 mmol) in EtOH (1.0 mL, 0.1 M) and $H_2^{18}O$ (0.1 mL) at -20 °C was added Jørgensen-Hayashi catalyst **C-I** (3.6 mg, 0.01 mmol, 10 mol%) under nitrogen atmosphere. The reaction was allowed to stir at the same temperature until complete consumption of starting material (monitored by TLC). Afterward, the solvent was concentrated under reduced pressure and residue was directly subjected to flash column chromatography on silica gel (hexanes/ethyl acetate) to afford the desired product **2g** in 32% yield (10 mg). No ¹⁸O incorporation was detected in HRMS analysis.

Elemental Composition Report

Single Mass Analysis Tolerance = 15.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 291 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-20 H: 0-23 N: 0-1 O: 0-4 Na: 0-1 S: 0-1 Br: 0-1 I: 0-2

17-Oct-2023

17OCT2023_CRB_A_298_1 18 (0.341) AM2 (Ar,12000.0,0.00,0.00); Cm (15:21-(24:30+6:11))

1: TOF MS ES+ 5.09e+007 450 1010 400.0551

¹⁰⁰ 65.0318	91.0477 141.06	647 165.	0649 2	225.1229	6.1389 253	3.1184	321.1424	⁴ 354.1851	39	9.0934	456.12	10 470.2	498 4	88.2551
60	80 100 120	140 160	180	200 220	240 26	0 280	300 320	340 360	380	400	420 440	460	480	500
Minimum: Maximum:		5.0	15.0	-1.5 50.0										
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula						
321.1424	321.1467	-4.3	-13.4	8.5	511.7	n/a	n/a	C19 H22	03 Na	a				

17-Oct-2023

42

IId. General procedure for the synthesis of enal-tethered cyclohexane 1,3-diones 1 & analytical data:

IIda. Synthesis and analytical data of substrate 1:

2-substituted 1,3-cyclohexadienones S 4 were prepared using to Ramachary reductive coupling protocol.¹

To a CH₂Cl₂ (300 mL) solution of (*Z*)-2-buten-1,4-diol (**S5**) (44.0 g, 41.2 mL, 0.5 mol) at 0 °C was added hydrobromic acid (HBr, 8.8M, 142 mL, 1.25 mol) over 20 min. The resulting mixture was then allowed to react at room temperature for 12 h and the reaction mixture slowly becoming into dark grey colour. The reaction was quenched by adding brine solution (300 mL) and extracted with CH₂Cl₂ (6 × 300 mL). The combined organic extracts were dried over MgSO₄, filtrated, and the solvent was removed with a rotary evaporator (30 °C, 300 mbar). The residue was purified by flash column chromatography (silica gel, CH₂Cl₂) to afford the bromo allyl alcohol**S6** (42.8 g, 57%, *E/Z* = 9:1) as a grey liquid.²

General procedure:

To a solution of 2-methylcyclohexane-1,3-dione(**S4**), (630 mg, 5.0 mmol, 1.0 equiv) and aqueous Bu₄NOH (40% in H₂O, 3.3 mL, 1 equiv) was added a solution of substituent (E)-4-bromobut-2-en-1-ol (6.0 mmol, 1.2 equiv) in dioxane (5 mL). The solution was stirred for 36 h. The solution was neutralized with 10% aqueous HCl. The two liquid layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine and dried with Na₂SO4, and the solvent was evaporated. The residue was purified by column chromatography on silica gel to give the corresponding enol-tethered cyclohexane 1,3-dione **S7** product.³

To a stirred solution of allyl alcohol **S7** (5.0 mmol) in 25 mL of CH₂Cl₂ was added Dess Martin Periodinane (3.18 g; 7.5 mmol, 1.5 equiv) in portion wise at 0 °C. The resulting reaction mixture was stirred at room temperature for 1h. Then the reaction mixture was diluted with water (15 mL) and extracted with CH₂Cl₂ (25 mL × 3). The combined organic solvent was washed with NaHCO₃ (25 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography (EtOAc/hexane) to give the desired enal-tethered cyclohexane 1,3-diones **1** in good yields and the *Z/E* ratio of all substrates varies from 1:1 to >20:1.⁴

4-(1-Methyl-2,6-dioxocyclohexyl)but-2-enal (1a):

Prepared according to the general procedure as described above in 68% yield (660 mg, E/Z = 10:1). It was purified by flash chromatography (40% EtOAc/hexane; $R_f = 0.3$) to afford a colourless liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.38 (d, J = 7.9 Hz, 1H), 6.61 (dt, J = 15.4, 7.7 Hz, 1H), 6.05 (ddd, J = 15.6, 7.8, 1.0 Hz, 1H), 2.80 – 2.70 (m, 4H), 2.61 – 2.52 (m, 2H), 2.04 (tt, J = 12.0, 5.9 Hz, 1H), 1.81 (dtd, J = 19.8, 10.0, 5.0 Hz, 1H), 1.34 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 208.9, 193.7, 152.9, 135.8, 65.0, 37.8, 36.7, 23.3, 17.5; HRMS (ESI) calcd for C₁₁H₁₅O₃ [M+H]⁺: 195.1015; found: 195.1019.

4-(2,6-Dioxo-1-propylcyclohexyl)but-2-enal (1d):

Prepared according to the general procedure as described above in 64% yield (710 mg, E/Z = 9:1). It was purified by flash chromatography (40% EtOAc/hexane; $R_f = 0.3$) to afford a yellow liquid; ¹H NMR (500 MHz, CDCl₃) δ 9.42 (d, J = 7.9 Hz, 1H), 6.62 (dt, J = 15.5, 7.3 Hz, 1H), 6.09 (ddt, J = 15.6, 7.9, 1.2 Hz, 1H), 2.79 (dd, J = 7.3, 1.2 Hz, 2H), 2.77 – 2.70 (m, 2H), 2.57 (dt, J = 10.3, 5.4 Hz, 2H), 2.14 – 2.04 (m, 1H), 1.80 – 1.74 (m, 3H), 1.23 – 1.15 (m, 2H), 0.88 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 208.9, 193.8, 153.5, 135.9, 69.6, 40.1, 38.7, 34.8, 17.9, 17.4, 14.3;HRMS (ESI) calcd for C₁₃H₁₉O₃ [M+H]⁺: 223.1328; found: 223.1330.

4-(1-(Cyclohexylmethyl)-2,6-dioxocyclohexyl)but-2-enal (1e):

Prepared according to the general procedure as described above in 71% yield (979 mg, E/Z = 12:1). It was purified by flash chromatography (40% EtOAc/hexane; $R_f = 0.5$) to afford a colourless liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.39 (d, J = 7.9 Hz, 1H), 6.58 (dt, J = 15.6, 7.8 Hz, 1H), 6.07 (ddd, J = 15.6, 7.8, 1.1 Hz, 1H), 2.83 – 2.74 (m, 4H), 2.54 (dt, J = 16.2, 5.3 Hz, 2H), 2.14 – 2.04 (m, 1H), 1.83 – 1.75 (m, 1H), 1.73 (d, J = 5.6 Hz, 2H), 1.62 (d, J = 14.1 Hz, 2H), 1.52 (d, J = 12.9 Hz, 2H), 1.36 – 1.25 (m, 1H), 1.23 – 1.03 (m, 4H), 0.93 – 0.82 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 209.1, 193.8, 153.5, 135.8, 69.2, 45.5, 38.7, 35.7, 34.7, 34.1, 26.2, 25.9, 17.5; HRMS (ESI) calcd for C₁₇H₂₅O₃ [M+H]⁺: 277.1798; found: 277.1791.

4-(1-Allyl-2,6-dioxocyclohexyl)but-2-enal (1f):

Prepared according to the general procedure as described above in 62% yield (682 mg, E/Z =10:1). It was purified by flash chromatography (40% EtOAc/hexane; $R_f = 0.4$) to afford a colourless liquid;¹H NMR (400 MHz, CDCl₃) δ 9.36 (d, J = 7.8 Hz, 1H), 6.56 (dt, J = 15.6, 7.3 Hz, 1H), 6.03 (ddt, J = 15.6, 7.9, 1.2 Hz, 1H), 5.50 (ddt, J = 17.5, 10.2, 7.4 Hz, 1H), 5.12 – 5.02 (m, 2H), 2.73 (dd, J = 7.3, 1.2 Hz, 2H), 2.66 (ddd, J = 16.4, 10.7, 5.6 Hz, 2H), 2.56 (dt, J = 10.8, 5.4 Hz, 2H), 2.50 (d, J = 7.4 Hz, 2H), 2.10 – 2.00 (m, 1H), 1.81 – 1.69 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 208.5, 193.6, 152.9, 135.9, 130.8, 120.5, 68.7, 41.9, 38.8, 35.3, 17.0; HRMS (ESI) calcd for C₁₃H₁₇O₃ [M+H]⁺: 221.1172; found: 221.1175.

4-(1-Benzyl-2,6-dioxocyclohexyl)but-2-enal (1g):

Prepared according to the general procedure as described above in 80% yield (1.08 g, E/Z=>20:1). It was purified by flash chromatography (30% EtOAc/hexane; $R_f = 0.5$) to afford colourless liquid; ¹H NMR (500 MHz, CDCl₃) δ 9.38 (d, J = 7.8 Hz, 1H), 7.26 – 7.20 (m, 3H), 6.97 (dd, J = 7.4, 2.0 Hz,

2H), 6.51 (dt, J = 15.4, 7.6 Hz, 1H), 6.05 (ddt, J = 15.5, 7.7, 1.0 Hz, 1H), 3.10 (s, 2H), 2.84 (dd, J = 7.6, 1.0 Hz, 2H), 2.41 (ddd, J = 17.1, 7.1, 4.7 Hz, 2H), 2.21 (ddd, J = 17.1, 9.7, 5.2 Hz, 2H), 1.58 (ddq, J = 19.1, 9.6, 4.7 Hz, 1H), 1.41 (dtt, J = 14.1, 7.1, 5.2 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 210.5, 193.4, 151.6, 136.1, 135.2, 129.9, 128.8, 127.7, 69.0, 45.4, 40.5, 38.6, 15.9; HRMS (ESI) calcd for C₁₇H₁₉O₃ [M+H]⁺: 271.1328; found: 271.1324.

4-(1-(4-Methylbenzyl)-2,6-dioxocyclohexyl)but-2-enal (1h):

Prepared according to the general procedure as described above in 72% yield (1.02 g, E/Z= 2:1). It was purified by flash chromatography (40% EtOAc/hexane; $R_f = 0.4$) to afford a yellow liquid;¹H NMR (500 MHz, CDCl₃.) for mixture of isomers: δ 9.96 (d, J = 7.9 Hz, 0.3H), 9.35 (d, J = 7.8 Hz, 0.7H), 7.02 (d, J = 7.1 Hz, 2H), 6.84 (d, J = 7.9 Hz, 2H), 6.50 (dt, J = 15.4, 7.6 Hz, 0.7H), 6.21 (dt, J = 10.7, 8.6 Hz, 0.3H), 6.02 (ddd, J = 15.5, 7.8, 0.7 Hz, 0.7H), 5.89 – 5.84 (m, 0.3H), 3.09 (d, J = 8.5 Hz, 0.6H), 3.05 (d, J = 9.5 Hz, 2 H), 2.81 (d, J = 7.5 Hz, 1.4H), 2.45 – 2.34 (m, 2H), 2.26 (s, 3H), 2.25 – 2.14 (m, 2H), 1.62 – 1.51 (m, 1H), 1.50 – 1.38 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 210.9, 210.5, 193.5, 191.2, 151.9, 145.3, 137.4, 136.0, 132.3, 131.9, 129.7, 129.7, 129.5, 129.5, 69.2, 69.1, 45.6, 45.2, 40.6, 40.4, 38.3, 34.1, 21.1, 16.0, 15.8; HRMS (ESI) calcd for C₁₈H₂₁O₃ [M+H]⁺: 285.1485; found: 285.1481.

4-(1-(4-Fluorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1i):

Prepared according to the general procedure as described above in 70% yield (1.0 g, E/Z =>20:1). It was purified by flash chromatography (20% EtOAc/hexane; $R_f = 0.4$) to afford a colourless liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.39 (d, J = 7.7 Hz, 1H), 6.97 – 6.90 (m, 4H), 6.50 (dt, J = 15.4, 7.6 Hz, 1H), 6.05 (ddt, J = 15.6, 7.7, 1.2 Hz, 1H), 3.08 (s, 2H), 2.81 (dd, J = 7.6, 1.2 Hz, 2H), 2.43 (ddd, J = 17.1, 7.4, 4.8 Hz, 2H), 2.23 (ddd, J = 17.2, 9.3, 5.2 Hz, 2H), 1.63 (ddq, J = 18.9, 9.5, 4.8 Hz, 1H), 1.43 (dtt, J = 10.4, 7.4, 5.2 Hz, 1H);¹³C NMR (101 MHz, CDCl₃) δ 210.4, 193.3, 162.3(d, $J_{CF} = 250.82$ Hz), 151.1, 136.2, 131.6(d, $J_{CF} = 7.87$ Hz), 131.1(d, $J_{CF} = 3.54$ Hz), 115.7 (d, $J_{CF} = 21.40$ Hz), 68.9,

43.9, 40.4, 38.9, 15.9;¹⁹F NMR (471 MHz, CDCl₃) δ -112.10. HRMS (ESI) calcd for C₁₇H₁₈O₃F [M+H]⁺: 289.1234; found: 289.1229.

4-(1-(4-Chlorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1j):

Prepared according to the general procedure as described above in 73% yield (1.1 g, E/Z=>20:1). It was purified by flash chromatography (30% EtOAc/hexane; $R_f = 0.4$) to afford a colourless liquid;¹H NMR (400 MHz, CDCl₃) δ 9.42 (d, J = 7.7 Hz, 1H), 7.22 (d, J = 8.4 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 6.52 (dt, J = 15.4, 7.6 Hz, 1H), 6.07 (ddd, J = 15.6, 7.7, 1.0 Hz, 1H), 3.09 (s, 2H), 2.82 (dd, J = 7.6, 1.0 Hz, 2H), 2.45 (ddd, J = 17.1, 7.4, 4.8 Hz, 2H), 2.24 (ddd, J = 17.2, 9.3, 5.2 Hz, 2H), 1.65 (ddq, J = 18.9, 9.4, 4.8 Hz, 1H), 1.46 (dtt, J = 10.5, 7.4, 5.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 210.3, 193.2, 150.9, 136.3, 133.9, 133.7, 131.4, 129.0, 68.8, 44.0, 40.5, 39.0, 16.0; HRMS (ESI) calcd for C₁₇H₁₈O₃Cl [M+H]⁺: 305.0939; found: 305.0951.

4-(1-(4-Bromobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1k):

Prepared according to the general procedure as described above in 76% yield (1.1 g, E/Z = 4:1). It was purified by flash chromatography (30% EtOAc/hexane; $R_f = 0.5$) to afford a colourless liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.95 (d, J = 7.8 Hz, 0.2H), 9.39 (d, J = 7.7 Hz, 0.8H), 7.35 (d, J = 8.4 Hz, 2H), 6.85 (d, J = 8.3 Hz, 2H), 6.50 (dt, J = 15.2, 7.6 Hz, 0.8 H), 6.22 (dt, J = 11.2, 8.1 Hz, 0.2H), 6.04 (ddd, J = 16.6, 8.2, 1.7 Hz, 0.8H), 5.91 (ddd, J = 11.2, 7.8, 1.3 Hz, 0.2H), 3.12 – 3.00 (m, 2.2H), 2.79 (d, J = 7.6 Hz, 1.8H), 2.43 (ddt, J = 14.7, 12.2, 6.1 Hz, 2H), 2.28 – 2.18 (m, 2H), 1.64 (ddq, J = 18.7, 9.3, 4.6 Hz, 1H), 1.50 – 1.38 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 210.5, 210.1, 193.2, 190.9, 150.9, 144.5, 136.2, 134.3, 132.5, 131.9, 131.8, 131.6, 131.6, 121.7, 68.6, 68.6, 44.3, 43.7, 40.6, 40.3, 38.9, 34.6, 15.9, 15.8; HRMS (ESI) calcd for C₁₇H₁₈O₃Br [M+H]⁺: 349.0433; found: 349.0438.

4-(1-([1,1'-Biphenyl]-4-ylmethyl)-2,6-dioxocyclohexyl)but-2-enal (11):

Prepared according to the general procedure as described above in 65% yield (1.1 g, E/Z = >20:1). It was purified by flash chromatography (40% EtOAc/hexane; $R_f = 0.4$ to afford a colourless liquid;¹H NMR (400 MHz, CDCl₃) δ 9.40 (d, J = 7.8 Hz, 1H), 7.55 (dd, J = 8.3, 1.2 Hz, 2H), 7.49 (d, J = 8.3 Hz, 2H), 7.41 (t, J = 7.5 Hz, 2H), 7.35 – 7.30 (m, 1H), 7.06 (d, J = 8.3 Hz, 2H), 6.54 (dt, J = 15.4, 7.6 Hz, 1H), 6.07 (ddt, J = 15.6, 7.8, 0.9 Hz, 1H), 3.15 (s, 2H), 2.87 (dd, J = 7.6, 1.0 Hz, 2H), 2.45 (ddd, J = 17.0, 7.0, 4.8 Hz, 2H), 2.29 (ddd, J = 17.0, 9.6, 5.3 Hz, 2H), 1.61 (ddq, J = 19.1, 9.6, 4.8 Hz, 1H), 1.49 (dtt, J = 14.1, 7.0, 5.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 210.4, 193.3, 151.6, 140.3, 140.2, 136.1, 134.2, 130.3, 128.9, 127.5, 127.3, 126.9, 69.0, 44.8, 40.4, 38.5, 16.0; HRMS (ESI) calcd for C₂₃H₂₃O₃ [M+H]⁺: 347.1641; found: 347.1645.

4-(1-(4-Nitrobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1m):

Prepared according to the general procedure as described above in 56% yield (882mg, E/Z=>20:1). It was purified by flash chromatography (50% EtOAc/hexane; $R_f = 0.4$) to afford a yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.43 (d, J = 7.7 Hz, 1H), 8.07 (dd, J = 8.7, 1.8 Hz, 2H), 7.17 (d, J = 7.3 Hz, 2H), 6.52 (dt, J = 15.5, 7.6 Hz, 1H), 6.06 (dddd, J = 15.6, 7.7, 2.4, 1.3 Hz, 1H), 3.21 (s, 2H), 2.80 (d, J = 7.6 Hz, 2H), 2.50 (ddd, J = 17.1, 8.0, 5.0 Hz, 2H), 2.29 (ddd, J = 17.2, 8.6, 5.1 Hz, 2H), 1.82 – 1.68 (m, 1H), 1.45 (dtt, J = 13.3, 8.2, 5.1 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 209.5, 193.0, 149.9, 147.3, 143.3, 136.5, 131.1, 123.8, 68.6, 42.5, 40.1, 39.5, 16.0; HRMS (ESI) calcd for C₁₇H₁₆O₅N [M-H]⁺: 314.1023; found: 314.1038.

4-(1-(3-Methoxybenzyl)-2,6-dioxocyclohexyl)but-2-enal (1n):

Prepared according to the general procedure as described above in 48% yield (806 mg, E/Z= 8:1). It was purified by flash chromatography (40% EtOAc/hexane; $R_f = 0.4$) to afford a colourless liquid;¹H NMR (500 MHz, CDCl₃) δ 9.96 (d, J = 7.9 Hz, 1H), 7.14 (t, J = 8.0 Hz, 1H)), 6.74 (ddd, J = 8.3, 2.5, 0.7 Hz, 1H), 6.54 (d, J = 7.6 Hz, 1H), 6.50 (t, J = 6.5 Hz, 1H), 6.21 (dt, J = 11.2, 8.5 Hz, 1H), 5.88 (ddt, J = 10.6, 8.2, 1.3 Hz, 1H), 3.72 (s, 3H), 3.11 (dd, J = 8.5, 1.1 Hz, 2H), 3.07 (s, 2H), 2.38 (ddd, J = 17.2, 7.1, 4.6 Hz, 2H), 2.18 (ddd, J = 17.1, 9.7, 5.2 Hz, 2H), 1.57 (dtt, J = 14.3, 9.5, 4.6 Hz, 1H),

1.40 (qdd, J = 11.6, 6.1, 3.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 210.9, 191.1, 159.8, 145.0, 136.7, 132.4, 129.9, 122.1, 115.5, 113.1, 68.8, 55.3, 45.9, 40.74, 3.48, 15.7; HRMS (ESI) calcd for C₁₈H₂₁O₄ [M+H]⁺: 301.1434; found: 301.1428.

4-(1-(3-Fluorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (10):

Prepared according to the general procedure as described above in 59% yield (993 mg, E/Z =20:1). It was purified by flash chromatography (40% EtOAc/hexane; $R_f = 0.4$) to afford a yellow liquid;¹H NMR (400 MHz, CDCl₃) δ 9.43 (d, J = 7.7 Hz, 1H), 7.26 – 7.20 (m, 1H), 6.94 (tdd, J = 8.5, 2.6, 0.7 Hz, 1H), 6.78 (d, J = 7.7 Hz, 1H), 6.74 – 6.70 (dt, J = 9.6, 1.9 Hz, 1H), 6.52 (dt, J = 15.4, 7.6 Hz, 1H), 6.08 (ddt, J = 15.6, 7.7, 1.1 Hz, 1H), 3.11 (s, 2H), 2.84 (dd, J = 7.6, 1.1 Hz, 2H), 2.45 (ddd, J = 17.2, 7.5, 4.8 Hz, 2H), 2.26 (ddd, J = 17.2, 9.2, 5.2 Hz, 2H), 1.66 (dtt, J = 14.1, 9.4, 4.8 Hz, 1H), 1.45 (dtt, J = 14.2, 7.5, 5.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 210.2, 193.3, 162.8 (d, $J_{CF} = 246.19$ Hz),150.9, 137.7 (d, $J_{CF} = 6.96$ Hz), 136.4, 130.4(d, $J_{CF} = 8.27$ Hz), 125.76 (d, $J_{CF} = 2.4$ Hz), 117.0(d, $J_{CF} = 21.35$ Hz), 114.7(d, $J_{CF} = 20.65$ Hz), 68.7, 44.3, 40.5, 39.2, 16.0.¹⁹F NMR (471 MHz, CDCl₃) δ -112.1; HRMS (ESI) calcd for C₁₇H₁₈FO₃ [M+H]⁺: 289.1234; found: 289.1229.

4-(1-(3-Chlorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1p):

Prepared according to the general procedure as described above in 68% yield (1.0 g, E/Z=>20:1). It was purified by flash chromatography (40% EtOAc/hexane; $R_f = 0.4$) to afford a colourless liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.33 (d, J = 7.8 Hz, 1H), 7.16 – 7.09 (m, 2H), 6.91 (s, 1H), 6.81 (dd, J = 5.0, 1.6 Hz, 1H), 6.46 (dt, J = 15.4, 7.6 Hz, 1H), 5.98 (ddd, J = 15.6, 7.8, 1.1 Hz, 1H), 3.01 (s, 2H), 2.75 (d, J = 7.6 Hz, 2H), 2.40 (ddd, J = 16.9, 7.2, 5.0 Hz, 2H), 2.23 (ddd, J = 17.1, 9.2, 5.2 Hz, 2H), 1.60 (ddt, J = 18.8, 9.4, 4.6 Hz, 1H), 1.42 (tdd, J = 12.7, 7.3, 5.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 209.8, 193.1, 150.9, 137.3, 136.1, 134.3, 129.9, 129.8, 128.1, 127.7, 68.5, 43.6, 40.1, 38.7, 15.9; HRMS (ESI) calcd for C₁₇H₁₈O₃Cl [M+H]⁺: 305.0939; found: 305.0932.

4-(1-(3-Bromobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1q):

Prepared according to the general procedure as described above in 74% yield (1.2 g, E/Z = >20:1). It was purified by flash chromatography (40% EtOAc/hexane; $R_f = 0.5$) to afford a colourless liquid;¹H NMR (400 MHz, CDCl₃) δ 9.42 (d, J = 7.7 Hz, 1H), 7.37 (ddd, J = 8.0, 1.9, 1.0 Hz, 1H), 7.17 – 7.14 (m, 1H),7.12 (d, J = 7.9 Hz, 1H), 6.92 (dt, J = 7.9, 1.4 Hz, 1H), 6.52 (dt, J = 15.4, 7.6 Hz, 1H), 6.07 (ddt, J = 15.6, 7.7, 1.2 Hz, 1H), 3.07 (s, 2H), 2.83 (dd, J = 7.6, 1.2 Hz, 2H), 2.46 (ddd, J = 17.2, 7.5, 4.8 Hz, 2H), 2.26 (ddd, J = 17.2, 9.3, 5.2 Hz, 2H), 1.66 (dtt, J = 14.1, 9.5, 4.8 Hz, 1H), 1.47 (dtt, J = 14.2, 7.5, 5.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 210.1, 193.3, 150.9, 137.7, 136.4, 132.9, 130.9, 130.4, 128.7, 122.9, 68.7, 44.1, 40.5, 39.1, 16.0;HRMS (ESI) calcd for C₁₇H₁₈O₃Br[M+H]⁺: 349.0433; found: 349.0428.

4-(1-(3-Nitrobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1r):

Prepared according to the general procedure as described above in 52% yield (819 mg, E/Z=20:1). It was purified by flash chromatography (50% EtOAc/hexane; $R_f = 0.3$) to afford a yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.42 (d, J = 7.7 Hz, 1H), 8.06 (ddd, J = 8.2, 2.1, 1.0 Hz, 1H), 7.85 (t, J = 1.8 Hz, 1H), 7.43 (t, J = 7.9 Hz, 1H), 7.34 (d, J = 7.7 Hz, 1H), 6.53 (dt, J = 15.3, 7.6 Hz, 1H), 6.06 (ddd, J = 15.6, 7.7 Hz, 1H), 3.22 (s, 2H), 2.80 (d, J = 7.6 Hz, 2H), 2.53 (ddd, J = 17.1, 8.1, 5.0 Hz, 2H), 2.36 (ddd, J = 17.1, 8.6, 5.1 Hz, 2H), 1.76 (tdd, J = 13.6, 8.7, 5.0 Hz, 1H), 1.51 (dtt, J = 18.6, 8.1, 5.1 Hz, 1H));¹³C NMR (101 MHz, CDCl₃) δ 209.3, 193.1, 150.0, 148.4, 137.7, 136.6, 136.4, 129.7, 124.9, 122.7, 68.7, 42.2, 40.0, 39.1, 16.2; HRMS (ESI) calcd for C₁₇H₁₆O₅N[M-H]⁻: 314.1023; found: 314.1030.

4-(1-(2-Chlorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1s):

Prepared according to the general procedure as described above in 66% yield (1.0 mg, E/Z = >20:1). It was purified by flash chromatography (30% EtOAc/hexane; $R_f = 0.4$) to afford a colourless liquid; ¹H NMR (500 MHz, CDCl₃) δ 9.37 (d, J = 7.8 Hz, 1H), 7.37 (dd, J = 7.4, 1.9 Hz, 1H), 7.25 – 7.18 (m, 2H), 7.06 (dd, J = 7.1, 2.2 Hz, 1H), 6.47 (dt, J = 15.5, 7.4 Hz, 1H), 6.06 (ddt, J = 15.6, 7.8, 1.2 Hz, 1H), 3.27 (s, 2H), 2.90 (dd, J = 7.4, 1.2 Hz, 2H), 2.61 – 2.49 (m, 4H), 1.94 – 1.85 (m, 1H), 1.73 – 1.63 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 209.1, 193.6, 152.4, 136.4, 135.0, 132.8, 132.5, 130.2, 129.4, 127.1, 68.9, 41.6, 40.0, 36.5, 16.7;HRMS (ESI) calcd for C₁₇H₁₈O₃Cl [M+H]⁺: 305.0952; found: 305.0939.

4-(1-(2-bromobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1t):

Prepared according to the general procedure as described above in 69% yield (1.2 g, E/Z = >20:1). It was purified by flash chromatography (30% EtOAc/hexane; $R_f = 0.5$) to afford a colourless liquid; ¹H NMR (500 MHz, CDCl₃) δ 9.32 (d, *J* = 7.8 Hz, 1H), 7.51 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.20 (td, *J* = 7.5, 1.3 Hz, 1H), 7.09 (td, *J* = 7.7, 1.7 Hz, 1H), 7.01 (dd, *J* = 7.7, 1.7 Hz, 1H), 6.44 (dt, *J* = 15.5, 7.4 Hz, 1H), 6.00 (dd, *J* = 15.7, 7.8 Hz, 1H), 3.27 (s, 2H), 2.86 (dd, *J* = 7.4, 1.0 Hz, 2H), 2.60 – 2.47 (m, 4H), 1.91 – 1.82 (m, 1H), 1.66 (tdd, *J* = 15.0, 10.0, 5.3 Hz, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 208.9, 193.5, 152.4, 136.2, 134.5, 133.5, 132.1, 129.4, 127.6, 125.6, 68.9, 43.4, 39.9, 36.3, 16.6; HRMS (ESI) calcd for C₁₇H₁₈O₃Br [M+H]⁺: 349.0438; found: 349.0438.

4-(1-(3,4-Dimethoxybenzyl)-2,6-dioxocyclohexyl)but-2-enal (1u):

Prepared according to the general procedure as described above in 58% yield (957 mg, E/Z = >20:1). It was purified by flash chromatography (20% EtOAc/hexane; $R_f = 0.3$) to afford a colourless liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.96 (d, J = 7.9 Hz, 1H), 6.71 (d, J = 8.2 Hz, 1H), 6.51 (dd, J = 8.2, 2.1 Hz, 1H), 6.47 (d, J = 2.0 Hz, 1H), 6.21 (dt, J = 11.2, 8.5 Hz, 1H), 5.88 (ddt, J = 11.1, 8.0, 1.2 Hz, 1H), 3.80 (s, 3H), 3.78 (s, 3H), 3.10 (dd, J = 8.5, 1.1 Hz, 2H), 3.06 (s, 2H), 2.37 (ddd, J = 17.2, 7.2, 4.6 Hz, 2H), 2.14 (ddd, J = 17.2, 9.6, 5.1 Hz, 2H), 1.56 (ddq, J = 18.9, 9.4, 4.6 Hz, 1H), 1.36 (dtt, J = 10.3, 7.2, 5.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 211.4, 191.1, 148.9, 148.4, 144.9, 132.4, 127.6, 122.0, 112.8, 111.2, 68.9, 56.0, 55.9, 45.8, 40.9, 34.7, 15.7; HRMS (ESI) calcd for C₁₉H₂₃O₅ [M+H]⁺: 331.1540; found: 331.1531.

4-(1-(2,3-Dichlorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1v):

Prepared according to the general procedure as described above in 54% yield (912 mg, E/Z =20:1). It was purified by flash chromatography (20% EtOAc/hexane; $R_f = 0.3$) to afford a colourless liquid; ¹H NMR (400 MHz, CDCl₃) δ 10.02 (d, J = 7.8 Hz, 1H), 7.40 (dd, J = 8.0, 1.4 Hz, 1H), 7.14 (t, J = 7.9 Hz, 1H), 6.98 (dd, J = 7.7, 1.4 Hz, 1H), 6.16 (dt, J = 11.2, 8.2 Hz, 1H), 5.87 (dd, J = 11.2, 7.9 Hz, 1H), 3.32 (s, 2H), 3.15 (d, J = 8.2 Hz, 2H), 2.56 – 2.52 (m, 4H), 1.95 – 1.83 (m, 1H), 1.72 (td, J = 14.7, 7.9 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 208.8, 193.5, 151.9, 136.4, 135.2, 134.0, 133.4, 130.4, 130.1, 127.3, 68.6, 41.8, 39.9, 36.6, 16.6; HRMS (ESI) calcd for C₁₇H₁₇O₃Cl₂ [M+H]⁺: 339.0549; found: 339.0557.

4-(1-(Naphthalen-1-ylmethyl)-2,6-dioxocyclohexyl)but-2-enal (1w):

Prepared according to the general procedure as described above in 60% yield (960 mg, E/Z = 20:1). It was purified by flash chromatography (20% EtOAc/hexane; $R_f = 0.2$) to afford a colourless liquid; ¹H NMR (500 MHz, CDCl₃) δ 9.37 (d, J = 7.8 Hz, 1H), 7.87 (d, J = 8.5 Hz, 1H), 7.82 (dd, J = 8.2, 0.9 Hz, 1H), 7.76 (d, J = 8.2 Hz, 1H), 7.53 – 7.44 (m, 2H), 7.36 (d, J = 8.0, 7.2 Hz, 1H), 7.16 (d, J = 6.5 Hz, 1H), 6.49 (dt, J = 15.4, 7.6 Hz, 1H), 6.07 (dd, J = 15.6, 7.8 Hz, 1H), 3.59 (s, 2H), 3.03 (dd, J = 7.6, 0.9 Hz, 2H), 2.30 (ddd, J = 17.0, 6.4, 4.5 Hz, 2H), 1.83 (ddd, J = 21.8, 10.4, 5.2 Hz, 2H), 1.45 – 1.35 (m, 1H), 1.28 – 1.18 (m, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 211.0, 193.5, 151.9, 136.3, 133.9, 131.9, 131.7, 128.9, 128.8, 128.7, 126.7, 126.1, 125.3, 123.8, 69.1, 42.3, 40.7, 38.8, 15.7; HRMS (ESI) calcd for C₂₁H₂₄O₃N [M+NH₄]⁺: 338.1750; found: 338.1754.

4-(2,6-dioxo-1-(Thiophen-2-ylmethyl)cyclohexyl)but-2-enal (1x):

Prepared according to the general procedure as described above in 63% yield (869 mg, E/Z =20:1). It was purified by flash chromatography (20% EtOAc/hexane; $R_f = 0.3$) to afford a orange liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.39 (d, J = 7.7 Hz, 1H), 7.09 (d, J = 5.1 Hz, 1H), 6.85 (t, J = 4.3 Hz, 1H), 6.67 (d, J = 3.3 Hz, 1H), 6.53 (dt, J = 15.5, 7.6 Hz, 1H), 6.04 (ddd, J = 15.6, 7.7, 0.8 Hz, 1H), 3.31 (s, 2H), 2.78 (d, J = 7.6 Hz, 2H), 2.50 – 2.33 (m, 4H), 1.76 – 1.64 (m, 1H), 1.56 – 1.44 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 209.9, 193.2, 150.8, 136.8, 136.1, 127.9, 127.1, 125.2, 68.8, 40.1, 38.9, 37.5, 16.0; HRMS (ESI) calcd for C₁₅H₁₇O₃S [M+H]⁺: 277.0892; found: 277.0906.

4-(1-(Furan-2-ylmethyl)-2,6-dioxocyclohexyl)but-2-enal (1y):

Prepared according to the general procedure as described above in 55% yield (791 mg, E/Z =17:1). It was purified by flash chromatography (20% EtOAc/hexane; $R_f = 0.3$) to afford a orange liquid; ¹H NMR (400 MHz, CDCl₃) δ 9.38 (d, J = 7.8 Hz, 1H), 7.25 (dd, J = 1.9, 0.8 Hz, 1H), 6.55 (dt, J = 15.4, 7.7 Hz, 1H), 6.24 (dd, J = 3.2, 1.9 Hz, 1H), 6.08 – 5.99 (m, 2H), 3.13 (s, 2H), 2.79 (dd, J = 7.5, 1.2 Hz, 2H), 2.55 – 2.44 (m, 4H), 1.71 (qd, J = 6.9, 1.5 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 209.2, 193.4, 151.6, 149.4, 142.2, 136.1, 110.8, 108.9, 67.4, 39.4, 37.6, 36.5, 16.5; HRMS (ESI) calcd for C₁₅H₁₇O₄ [M+H]⁺: 261.1121; found: 261.1125.

4-(1-methyl-2,5-dioxocyclopentyl)but-2-enal (1z):

Prepared according to the general procedure as described above in 50% yield (450 mg, E/Z =17:1). It was purified by flash chromatography (60% EtOAc/hexane; $R_f = 0.3$) to afford a orange liquid;¹H NMR (400 MHz, CDCl₃) $\delta = 9.38$ (d, *J*=7.8, 1H), 6.62 (dd, *J*=15.4, 7.7, 1H), 6.01 (ddt, *J*=15.6, 7.8, 1.3, 1H), 2.88 – 2.80 (m, 2H), 2.72 – 2.63 (m, 2H), 2.53 (dd, *J*=7.6, 1.3, 2H), 1.13 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 214.7, 193.3, 150.5, 136.2, 56.0, 36.3, 35.0, 19.9.HRMS (ESI) calcd for C₁₀H₁₃O₃ [M+H]⁺: 181.0865; found: 181.0870.

III. References:

- 1. (a) D. B. Ramachary, M. Kishor, Org. Biomol. Chem., 2008, 6, 4176.
- X.-W. Li, A. Ear, L. Roger, Dr. N. Riache, A. Deville, B. Nay. Chem. Eur. J. 2013,19, 16389 – 16393.
- 3. C. Zhu, D. Wang, Y. Zhao, W. Sun, and Z. Shi, J. Am. Chem. Soc. 2017, 139, 16486.
- 4. S. B. Thopate, L. R. Magham, S. Dinda, R. Chegondi, Org. Lett. 2023, 25, 1072.

IV. X-Ray crystallographic data

X-ray crystallographic data for compound 9:

The purified compound 9 was dissolved in a mixed solvent of dichloromethane/*n*-hexane (1:3), and placed in a dark cabinet for slowly evaporation. Colorless crystals were collected after few days for X-ray analysis.

Figure caption: ORTEP diagram of compound **9** (KB690) compound with the atom-numbering. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius.

Crystal data for compound 9: C₂₀H₂₂O₂, M = 294.37, Monoclinic, space group $P2_1$ (No.4), a = 8.546(4)Å, b = 6.518(3)Å, c = 15.600(8)Å, $a = 90^{\circ}$, $\beta = 105.428(9)^{\circ}$, $\gamma = 90^{\circ}$, V = 837.6(7)Å³, Z = 2, $D_c = 1.167$ g/cm³, $F_{000} = 316$, Bruker D8 QUEST PHOTON-III C7 HPAD detector, Mo-Ka radiation, $\lambda = 0.71073$ Å, T = 100(2)K, $2\theta_{max} = 60^{\circ}$, $\mu = 0.074$ mm⁻¹, 17575 reflections collected, 5101 unique (R_{int} = 0.0555), 200 parameters, R1 = 0.0440, wR2 = 0.0899, R indices based on 3824 reflections with I > 2 σ (I) (refinement on F^2), Flack parameter = 0.3(5), Final *GooF* = 1.051, largest difference hole and peak = -0.183 and 0.236 e.Å⁻³. **CCDC deposition number 2296090** contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

Data collection and Structure solution details: Single crystal X-ray data were collected at room temperature on a Bruker D8 QUEST equipped with a four-circle kappa diffractometer and PHOTON-III C7 HPAD detector. An Iµs microfocus Mo source (λ =0.71073Å) supplied the multi-mirror monochromated incident beam. A combination of Phi and Omega scans were used to collect the necessary data. Integration and scaling of intensity data were accomplished using SAINT program.¹ The structures were solved by Direct Methods using SHELXS97 and refinement was carried out by full-matrix least-squares technique using SHELXL-2019/2.¹⁻⁴ Anisotropic displacement parameters were included for all non-hydrogen atoms. All H atoms were positioned geometrically and treated as riding on their parent C atoms, with C-H distances of 0.93--0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}$ for methyl atoms.CCDC deposition number 2296090 contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

- 1. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
- 2. G. M. Sheldrick, ActaCrystallogr., 2015, C71, 3-8.
- 3. C. B. Hübschle, G. M. Sheldrick and B. Dittrich, ShelXle: a Qt graphical user interface for SHELXL, *J. Appl. Cryst.*, 2011, 44, 1281-1284.
- Muller, P, Herbst-Imer, R, Spek, A. L, Schneider, T. R, and Sawaya, M. R. Crystal Structure Refinement: A Crystallographer's Guide to SHELXL. Muller, P. Ed. 2006 Oxford University Press: Oxford, New York, pp. 57–91.

V. ¹H &¹³C NMR Spectra

(2S,7aR)-2-Methoxy-7a-methyl-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2a):

(2S,7aR)-2-Ethoxy-7a-methyl-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2b):

11100080108010	MN0088000688001	りら4 ろろろろ 1 0 の 7 らん	044MNNH0000	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
000000000000000000000000000000000000000	VVV0000444444	4 4 4 4 4 4 4 4 A M M M M		
0.4.4.4.4.4.4.m.m.m.m.m.m.m.m.m.m.m.m.m.		, , , , , , , , , , , , , , , , , , ,		

(2S,7aR)-2-Isopropoxy-7a-methyl-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2c):

(2S,7aR)2-Ethoxy-7-oxo-7a-propyl-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2d):

V V 0 0 0 4 0 1 1 0 0 8 V 0 0	0 2 0 0 2 0 0 0 4 0 0 0 0 4 0 0	0 - 0 & C + M 0 6 & 0 *	1000001001040104010	8010880108
, , , , , , , , , , , , , , , , , , ,	4 0 0 0 0 0 0 0 4 4 4 4 4	4 4 4 0 0 0 0 0 0 1 1 1 1 1	<u>+ </u>	. 4 0 0 1 1 1 1 6 6 8
44444440000000000	~~~~~~~~~~~~~~~~~	, , , , , , , , , , , , , , , , , , ,	<u> </u>	

(2*S*,7a*R*) 7a-(Cyclohexylmethyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3carbaldehyde (2e):

(2*S*,7*aR*)-7*a*-Allyl-2-ethoxy-7-oxo-2,4,5,6,7,7*a*-hexahydro-1*H*-indene-3-carbaldehyde (2*f*):

(2*S*,7*aR*)-7*a*-Benzyl-2-ethoxy-7-oxo-2,4,5,6,7,7*a*-hexahydro-1*H*-indene-3-carbaldehyde (2*g*):

(2*S*,7a*R*)-2-Ethoxy-7a-(4-methylbenzyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2h):

(2*S*,7a*R*)-2-Ehoxy-7a-(4-fluorobenzyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2i):

— -113.21

(2*S*,7a*R*)-7a-(4-Chlorobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2*j*):

	, . , . , . , . , . , . , . , . , . , .	 	

(2*S*,7a*R*)-7a-(4-Bromobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2k):

(2*S*,7a*R*)-7a-([1,1'-Biphenyl]-4-ylmethyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2l):

(2*S*,7a*R*)-2-Ethoxy-7a-(3-methoxybenzyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2n):

(2*S*,7*aR*)-2-Ethoxy-7a-(3-fluorobenzyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2o):

(2*S*,7*aR*)-7*a*-(3-Chlorobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7*a*-hexahydro-1*H*-indene-3-carbaldehyde (2*p*):

(2*S*,7*aR*)-7*a*-(3-Bromobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7*a*-hexahydro-1*H*-indene-3-carbaldehyde (2*q*):

(2S,7aR)-2-Ethoxy-7a-(3-nitrobenzyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2r):

(2S,7aR)-7a-(2-Chlorobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2s):

(2*S*,7a*R*)-7a-(2-Bromobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2t):

(2*S*,7a*R*)-7a-(3,4-Dimethoxybenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2u):

(2*S*,7a*R*)-7a-(2,3-Dichlorobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2v):

(2*S*,7a*R*)-2-Ethoxy-7a-(naphthalen-1-ylmethyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2w):

(2*S*,7a*R*)-2-Ethoxy-7-oxo-7a-(thiophen-2-ylmethyl)-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2x):

(2*S*,7a*R*)-2-Ethoxy-7a-(furan-2-ylmethyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carbaldehyde (2y):

(2*S*,3a*R*)-3a-Benzyl-1-((*Z*)-3-(4-bromophenyl)-3-oxoprop-1-en-1-yl)-2-ethoxy-2,3,3a,5,6,7-hexahydro-4*H*-inden-4-one (5):

7.7.8 7.7.8 7.7.7 7.

Ethyl (*E*)-3-((2*S*,7a*R*)-7a-benzyl-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1*H*-inden-3-yl)acrylate(6):

(2*S*,3a*R*)-3a-Benzyl-2-ethoxy-1-(hydroxymethyl)-2,3,3a,5,6,7-hexahydro-4*H*-inden-4-one (7):

(2S,7aR)-7a-Benzyl-2-ethoxy-7-oxo-N-(pyridin-2-yl)-2,4,5,6,7,7a-hexahydro-1*H*-indene-3-carboxamide(8):

(2*S*,3a*R*)-3a-Benzyl-2-ethoxy-1-ethynyl-2,3,3a,5,6,7-hexahydro-4*H*-inden-4-one (9):

4-(1-Methyl-2,6-dioxocyclohexyl)but-2-enal (1):

4-(2,6-Dioxo-1-propylcyclohexyl)but-2-enal (1d):

4-(1-(Cyclohexylmethyl)-2,6-dioxocyclohexyl)but-2-enal (1e):

4-(1-Allyl-2,6-dioxocyclohexyl)but-2-enal (1f):

9.37 9.35 6.56 6.56 6.56 6.56 6.56 6.52 6.56	6 0.05 6 0.02 6 0.03 6 0.04 7 0.02 7 0.02	5.03 5.03 5.07 5.03 5.03 5.03 5.03 5.03 5.03 5.03 5.03	2.69 2.66 2.66 2.66 2.65 2.65 2.65 2.55 2.55	1.78 1.77 1.76 1.75 1.75 1.75 1.75 1.73
	<u>, , , , , , , , , , , , , , , , , , , </u>			

4-(1-Benzyl-2,6-dioxocyclohexyl)but-2-enal(1g):

60	ъц	о LO	4	4	\sim	3	m	\sim	- 0	∞ (χı	\sim	·و	4 (\sim	- 0	ה כ	ıα	< r	< r	< v	ວ ເເ	പ	7 4	- 4	4	· က	2	0	S	S	m	m	γ (nα	V -	+ C	о	6	8	4	∞	\sim			\sim	pα	o c	ρœ		o	ŝ	4	m	NC	v –	• •	б
í n	'nς	5	Ń	Ń	2	2	\sim	\sim	\sim	ס ס	הפ	50	הו	Λı	n ı	۰ n	t •	4 0						Ċ	Ó	Ć	0	0	-	8	8	00 0	~ 00	4 4	4 4	1 4	- 4	· m	ŝ	ŝ	Ń	2	2	\sim	2	\sim		÷υ	റഗ	ഹ	ŝ	ŝ	4	4.	4 7	- 4	. 4	õ
								-											•				-									•				-			•			-										•						
6	ר ת	~ ~			~			► r	\sim	o ر	v	v٩	o،	v و	o ،	o١	o١	o١	οu	ъч	עכ	עכ	o c	s c	s c	9	9	9	m	2	2	2	\sim	2 0	νr	7 V	4 う		2	2	2	2	\sim	\sim	2	\sim	くつ	ч -			-		-				. –	
L	L	_				-	-		-	-	-	-	-	-	-	-	-	L	_	-			_ L	_ L		د			L	_	-		-	-	-	_	-		-		L	- L-	- L-	L	ι.	۰.	<u>ب</u> ر		ر ا		_	-	-	-		_	_	_

4-(1-(4-Methylbenzyl)-2,6-dioxocyclohexyl)but-2-enal (1h):

4-(1-(4-Fluorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1i):

4-(1-(4-Chlorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1j):

4-(1-(4-Bromobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1k):

4-(1-([1,1'-Biphenyl]-4-ylmethyl)-2,6-dioxocyclohexyl)but-2-enal (11):

4-(1-(4-Nitrobenzyl)-2,6-dioxocyclohexyl)but-2-enal(1m):

4-(1-(3-Methoxybenzyl)-2,6-dioxocyclohexyl)but-2-enal (1n):

4-(1-(3-Fluorobenzyl)-2,6-dioxocyclohexyl)but-2-enal(10):

$\begin{array}{c} 44\\ 42\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\$	99 99 99 99 99 99 99 99 99 99 99 99 99	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
000000000000000000000000000000000000000		

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220

4-(1-(3-Chlorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1p):

4-(1-(3-Bromobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1q):

4-(1-(3-Nitrobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1j):

4-(1-(2-Chlorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1s):

4-(1-(2-bromobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1t):

	8055577777777777	$\begin{array}{c} 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 $	33 2 2 2 2 2 2 3 2 3 3 2 3 3 3 3 3 3 3
66777777777777	200000000000000000000000000000000000000		

4-(1-(3,4-Dimethoxybenzyl)-2,6-dioxocyclohexyl)but-2-enal (1u):

4-(1-(Naphthalen-1-ylmethyl)-2,6-dioxocyclohexyl)but-2-enal (1w):

4-(2,6-dioxo-1-(Thiophen-2-ylmethyl)cyclohexyl)but-2-enal (1x): $\begin{array}{c} -2.79\\ -2.77\\ -2.77\\ -2.44\\ -2.42\\ -2.42\\ -2.42\\ -2.42\\ -2.42\\ -2.42\\ -2.42\\ -2.42\\ -2.42\\ -2.42\\ -2.42\\ -2.73\\ -2.77\\ -2$ 7.107.096.866.836.686.676.676.676.676.676.676.676.676.676.676.606.00 $< \frac{9.40}{9.38}$ — 3.31 ş Ĉ ¹H NMR (400 MHz, CDCl₃) A (m) 2.41 B (m) 1.69 ⊢ 0.7-0.8-0.8-0.8-0.8-1 0.8H 1.6-≖ 1.0H 0.9H 0.8≖ 1.6= 3.8-6.0 11.0 10.5 9.5 7.0 6.5 4.5 3.5 3.0 2.5 2.0 1.5 1.0 -0.5 10.0 9.0 8.5 8.0 7.5 5.5 5.0 f1 (ppm) 4.0 0.5 0.0 $< {136.8} \\ < {136.1} \\ 136.1 \\ < {127.9} \\ < {127.1} \\ < {125.2} \end{cases}$ — 150.8 — 193.2 --- 68.8 $\frac{40.1}{38.9}$ — 16.0 ò С ¹³C NMR (101 MHz, CDCl₃) 110 100 f1 (ppm) 60 40 30 20 10 210 200 190 180 170 160 150 140 130 120 90 80 70 50 0

4-(1-(Furan-2-ylmethyl)-2,6-dioxocyclohexyl)but-2-enal (1y):

4-(1-methyl-2,5-dioxocyclopentyl)but-2-enal (1z):

