Supplementary Information

Organocatalytic Enantioselective Desymmetrization of Enal-Tethered Cyclohexane-1,3-diones

Lakshmi Revati Magham, ${ }^{\text {a,c }}$ Abdus Samad ${ }^{\text {a,c }}$ Satish B. Thopate, ${ }^{\text {a,c }}$ Jagadeesh Babu Nanubolu ${ }^{\mathrm{b}, \mathrm{c}}$ and Rambabu Chegondi ${ }^{*, \mathrm{a}, \mathrm{c}}$

${ }^{a}$ Department of Organic Synthesis \& Process Chemistry, ${ }^{b}$ Department of Analytical and Structural Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. ${ }^{c}$ Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.

E-mail: rchegondi@iict.res.in/cramhcu@gmail.com
Pages
I. General details 02
II. Experimental procedures and analytical data
IIa. Experimental procedures and analytical data of products 03 to 36
IIb. One millimole-scale reaction and Synthetic utility 36 to 41
IIc. Labelling studies 41 to 42
IId. Experimental procedures and analytical data of substrates 43 to 53
III. References 54
IV. X-ray crystallographic data 55 to 56
V. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra 57 to114

I. General details:

Unless otherwise noted, all reagents were used as received from commercial suppliers. TMS-Prolinol catalysts were purchased from Sigma-Aldrich and used without further purification. All reactions were performed under a nitrogen atmosphere and in flame-dried or oven-dried glassware with magnetic stirring. Unless otherwise noted, all solvents were purchased from Merk, Finar, or Spectrochem, and used without further purification. Reactions were monitored using thin-layer chromatography $\left(\mathrm{SiO}_{2}\right)$. TLC plates were visualized with UV light (254 nm), iodine treatment, or using p-anisaldehyde stain or β-naphthol stain. Column chromatography was carried out using silica gel ($60-120$ mesh \& 100-200 mesh) packed in glass columns. NMR spectra were recorded at $300,400,500 \mathrm{MHz}(\mathrm{H})$ and 75,100 , $125 \mathrm{MHz}(\mathrm{C})$, respectively. Chemical shifts (δ) are reported in ppm, using the residual solvent peak in $\mathrm{CDCl}_{3}(\mathrm{H}: \delta=7.26$ and $\mathrm{C}: \delta=77.16 \mathrm{ppm}$) as internal standard, and coupling constants (J) are given in Hz.The following abbreviations were used to designate the multiplicities: $\mathrm{s}=$ singlet; $\mathrm{d}=$ doublet; t $=$ triplet; $\mathrm{q}=$ quartet; $\mathrm{dd}=$ doublet of doublet; $\mathrm{dt}=$ doublet of triplet; $\mathrm{dq}=$ doublet of quartet; $\mathrm{m}=$ multiplet; br.s = broad singlet; qd = quartet of doublet. HRMS were recorded using ESI-TOF techniques. Enantiomeric ratio (er) values were determined by chiral HPLC of the purified product with hexane and i-PrOH as solvents and diastereomer ratio ($d r$) values were determined by ${ }^{1} \mathrm{H}$ NMR analysis. All chiral compound's optical rotation was measured on a Horiba SEPA-300.

II. Experimental Procedures and Analytical Data

IIa. Experimental procedures and analytical data of products:

General Procedure for organocatalytic enantioselective desymmetrization:

To a stirred solution of enal-tethered cyclohexane 1,3-dione $\mathbf{1}(0.3 \mathrm{mmol})$ in EtOH ($1.5 \mathrm{~mL}, 0.2 \mathrm{M}$) at $-20{ }^{\circ} \mathrm{C}$ was added Jørgensen-Hayashi catalyst C-I ($10.2 \mathrm{mg}, 0.03 \mathrm{mmol}, 10 \mathrm{~mol} \%$) under nitrogen atmosphere. The reaction was allowed to stir at the same temperature until complete consumption of starting material (monitored by TLC). Afterward, the solvent was evaporated under reduced pressure at $40-45^{\circ} \mathrm{C}$ (rotary evaporator water bath) and the crude residue was directly purified by column chromatography on silica gel (EtOAc in Hexane) to give the desired product 2with from 5:1 to $>20: 1$ ratio of diastereoselectivity $(d r)$. [Note: For racemic products, Piperidine catalyst ($10 \mathrm{~mol} \%$) was used at room temperature and followed the same procedure as above]. The enantiomeric excess was determined by chiral HPLC analysis. Here, diastereoselectivity ($d r$) was measured from ${ }^{1} \mathrm{H}$ NMR analysis of crude product and reported the NMR data for major isomer of product 2.
(2S,7aR)-2-Methoxy-7a-methyl-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2a):

Prepared according to the general procedure as described above in 82% yield ($51 \mathrm{mg} ; d r=>20: 1$). It was purified by flash chromatography ($30 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$) to afford yellow liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.92(\mathrm{~s}, 1 \mathrm{H}), 4.72$ (ddd, $\left.J=7.5,5.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.42-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J$ $=0.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.70(\mathrm{ddd}, J=15.4,13.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{dd}, J=14.0,5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.29-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{dd}, J=14.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.3,188.5,166.8,135.6,81.3,62.3,57.0,38.1,37.5,26.4,24.1,23.0$; HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 209.1178; found: 209.1226; $[\alpha]^{20}{ }_{\mathrm{D}}=-125.22^{\circ}$ (c 1.0, CHCl_{3}); 85:15er; Chiral HPLC analysis of the product: Daicel Chiralpak IC 250X4.6 mm 5μ column; hexane/2propanol $=80: 20$, detected at 280 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 18.64 min (minor), 20.37 min (major).

<Peak Table>					
PDACh1280nm					
Peak\#	et. Time	Area	Height	Area\%	Height\%
1	18.639	207841	9498	15.001	18.459
2	20.376	1177659	41956	84.999	81.541
Total		1385500	51453	100.000	100.000

<Peak Table>

PDACh1280nm					
PeakAR Ret. Time	Area	Height	Area\%	Height\%	
1	18.776	367629	14570	49.537	
2	20.589	374508	13747	50.463	
Total		742137	28317	100.000	

(2S,7aR)2-Ethoxy-7a-methyl-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2b):

Prepared according to the general procedure as described above in 94% yield ($62 \mathrm{mg} ; d r=10: 1$). It was purified by flash chromatography ($30 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.5$) to afford yellow liquid; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{ddd}, J=8.0,5.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.39$ $(\mathrm{dt}, J=14.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{ddd}, J=15.5,13.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.41(\mathrm{~m}$, $1 \mathrm{H}), 2.38(\mathrm{dd}, J=14.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=14.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.66$
(m, 1H), $1.35(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.7$, 188.8, 166.1, 135.7, 79.8, 65.2, 62.1, 39.2, 37.5, 26.4, 23.9, 22.9, 15.7; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 223.1328; found: 223.1320; $[\alpha]^{20} \mathrm{D}=-137.20^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$; 99:1er; Chiral HPLC analysis of the product: Daicel Chiralpak IC 250X4.6 mm 5μ column; hexane $/ 2$-propanol $=80: 20$, detected at 240 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 8.75 min (minor), 11.75 min (major).

<Peak Table>

PDACh1240nm					
Peak\# Ret. Time	Area	Height	Area\%	Height\%	
1	8.757	52116	1194	1.317	
2	11.754	3903953	235268	98.683	
Total		3956069	236462	100.000	

<Peak Table>

PDACh1240nm					
Peak\#	t. Time	Area	Height	Area\%	Height\%
1	8.887	4192839	263403	49.958	55.883
2	11.066	4199831	207940	50.042	44.117
Total		8392670	471343	100.000	100.000

(2S,7aR)-2-Isopropoxy-7a-methyl-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2c):

Prepared according to the general procedure as described above in 52% yield ($36 \mathrm{mg} ; d r=>20: 1$). It was purified by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.5$) to afford yellow liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 4.85-4.77(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.74-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{dd}, J=13.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.85-$ $1.70(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 210.9,188.8,165.4,136.1,78.2,72.1,61.9,40.7,37.6,26.4,23.8,23.3,22.9,22.4 ;$ HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}[\mathrm{M}]:$ 236.1412; found: 236.1413; $[\alpha]^{20}{ }_{\mathrm{D}}=-110.30^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ;$ 95:5er ; Chiral HPLC analysis of the product: Daicel Chiralpak IC 250X4.6 mm 5μ column; hexane/2-propanol $=80: 20$, detected at 247 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 8.48 min (major), 11.12 min (minor).

<Peak Table>

PDACh1247nm					
PeakAR Ret. Time	Area	Height	Area\%	Height\%	
1	8.486	664557	59254	94.987	
2	11.128	35072	2493	5.013	

<Peak Table>

PRACh1247nm		Area	Height	a	
1	8.887	2153812	134881	50.404	56.007
2	11.066	2119308	105947	49.596	43.993
Total		4273120	240828	100.000	100.000

(2S,7aR)2-Ethoxy-7-oxo-7a-propyl-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2d):

Prepared according to the general procedure as described above in 76% yield ($57 \mathrm{mg} ; d r=18: 1$). It was purified by flash chromatography ($40 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$) to afford yellow liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.92(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{ddd}, J=7.7,5.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{qd}, J=7.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.39 (dt, $J=14.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (ddd, $J=15.2,13.5,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{dd}, J$ $=14.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.21(\mathrm{~m}$, $1 \mathrm{H}), 1.18(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.13-1.03(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 210.2,187.9,168.5,136.3,79.1,68.3,65.5,41.0,38.1,34.5,24.4,23.2,18.4,15.7,14.5 ;$ HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 251.1641$; found: 251.1634 ; $[\alpha]^{20}{ }_{\mathrm{D}}=+87.60^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$; 93:7\% er; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5μ column; hexane $/ 2$-propanol $=80: 20$, detected at 254 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 5.45 min (major), 5.97 min (minor).

<Peak Table>

PDACh1254nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	5.459	10319502	968758	92.982	91.158
2	5.976	778895	93966	7.018	8.842
Total		11098397	1062725	100.000	100.000

<Peak Table>

PDACh1254nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	5.417	5520956	539871	49.754	48.546
2	5.886	5575543	572203	50.246	51.454
Total		11096499	1112073	100.000	100.000

(2S,7aR) 7a-(Cyclohexylmethyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3carbaldehyde (2e):

Prepared according to the general procedure as described above in 72% yield $(65 \mathrm{mg} ; d r=>20: 1)$. It was purified by flash chromatography $\left(30 \% \mathrm{EtOAc} /\right.$ hexane; $\left.\mathrm{R}_{f}=0.5\right)$ to afford colourless liquid; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 4.75(\mathrm{ddd}, J=7.6,5.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.37$ $(\mathrm{dt}, J=14.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddd}, J=14.8,13.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{dd}, J=$ $14.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{dd}, \mathrm{J}=14.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{dd}, \mathrm{J}=14.0,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.72(\mathrm{ddd}, \mathrm{J}=13.4,11.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.34(\mathrm{dd}, J=14.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.20$ $(\mathrm{m}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.14-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.97-0.83(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 209.9,188.6,166.3,136.0,80.1,67.3,65.1,46.1,38.2,36.2,35.0,34.8,34.7,26.3$ (2C), 26.1, 24.7, 23.2, 15.7; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 305.2111$; found: 305.2110 ; $[\alpha]^{20} \mathrm{D}=$ $-127.79^{\circ}\left(\right.$ c $\left.1.0, \mathrm{CHCl}_{3}\right)$; 91:9er; Chiral HPLC analysis of the product: Daicel Chiralpak IC 250X4.6 $\mathrm{mm} 5 \mu$ column; hexane $/ 2$-propanol $=98: 02$, detected at 254 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 32.77 min (minor), 45.37 min (major).

<Peak Table>

PDACh1254nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	32.779	2266247	47407	9.071	12.218
2	45.372	22718224	340589	90.929	87.782
Total		24984471	387996	100.000	100.000

<Peak Table>

PDACh1254nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	32.677	8358339	155933	49.695	54.601
2	45.666	8460942	129655	50.305	45.399
Total		16819280	285588	100.000	100.000

(2S,7aR)-7a-Allyl-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2f):

Prepared according to the general procedure as described above in 78% yield ($58 \mathrm{mg} ; d r=>5: 1$). It was purified by flash chromatography ($30 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$) to afford yellow liquid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 5.59-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.17-5.08(\mathrm{~m}, 1 \mathrm{H}), 4.74-4.67(\mathrm{~m}, 1 \mathrm{H}), 3.58$ (qd, $J=7.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.42(\mathrm{dt}, J=14.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.36(\mathrm{~m}, 5 \mathrm{H})$, $2.35-2.19(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
209.3, 188.5, 164.2, 136.8, 131.3, 119.9, 80.1, 66.8, 65.3, 42.4, 37.9, 36.1, 24.0, 23.0, 15.7; HRMS (ESI) calcdfor $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 249.1485$; found: 249.1493; $[\alpha]^{20}{ }_{\mathrm{D}}=+61.00^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ; 97: 3 \mathrm{er}$; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5μ column; hexane/2propanol $=80: 20$, detected at 254 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 6.14 min (major), 7.07 \min (minor).

<Peak Table>

PDACh1254nm					
Peak\#	Time	Area	Height	Area\%	Height\%
1	6.143	7241744	585854	96.729	95.754
2	7.070	244910	25981	3.271	4.246
Total		7486654	611835	100.000	100.000

<Peak Table>

<Peak lable>					
PDACh1254nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	6.144	4033603	314394	49.579	48.855
2	7.075	4102059	329132	50.421	51.145
Total		8135662	643526	100.000	100.000

Prepared according to the general procedure as described above in 88% yield ($78 \mathrm{mg} ; d r=>5: 1$). It was purified by column chromatography ($30 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.5$) to afford brown liquid; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{td}, \mathrm{J}=6.9$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.06(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=13.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.78(\mathrm{ddd}, J=15.5,10.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{dt}, J=15.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ $(\mathrm{dd}, J=14.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{dd}, J=14.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{ddt}, J=26.2$, $13.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.2,188.7,162.8,138.0$, $135.2,130.1,128.5,127.6,79.7,67.4,65.2,43.5,38.4,36.8,24.0,23.5,15.6$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 299.1641$; found: 299.1634; $[\alpha]^{20}{ }_{\mathrm{D}}=-73.43^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ; 96: 4$ er; Chiral HPLC analysis of the product: DaicelChiralpak IC $250 \mathrm{X} 4.6 \mathrm{~mm} 5 \mu$ column; hexane $/ 2$-propanol $=70: 30$, detected at 254 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 7.97 min (minor), 8.32 min (major).

<Peak Table>

PDACh1254nm	Height\%				
Peak\# Ret. Time	Area	Height	Area\%	Heiqh	
1	7.975	370640	41426	4.437	
2	8.325	7982312	653727	95.563	

<Peak Table>

PDACh1254nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	7.963	9436081	829354	50.061	51.525
2	8.332	9413034	780260	49.939	48.475
Total		18849114	1609614	100.000	100.000

(2S,7aR)-2-Ethoxy-7a-(4-methylbenzyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2h):

Prepared according to the general procedure as described above in 80% yield $(74 \mathrm{mg} ; d r=>20: 1)$. It was purified by column chromatography $\left(40 \% \mathrm{EtOAc} /\right.$ hexane; $\left.\mathrm{R}_{f}=0.4\right)$ to afford colourless liquid; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{td}, J$ $=7.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{dt}, J=16.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{tdd}, J=9.1,7.0,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.02(\mathrm{~d}, J=$ $13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{ddd}, J=15.5,13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{dddd}, J=15.3$, $12.7,5.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dt}, J=15.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=14.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$, $2.29-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{dd}, J=14.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{ddt}, J=26.3,13.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.3,188.7,163.2,137.9,137.3,132.0,129.9,129.2$, $79.8,67.6,65.1,43.2,38.4,36.7,24.0,23.5,21.2,15.6$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 313.1798; found: $313.1792 ;[\alpha]^{20}{ }_{D}=-23.39^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ; 96: 4 \mathrm{er}$; Chiral HPLC analysis of the product: Chiral HPLC analysis of the product: Daicel Chiralpak IC $250 \mathrm{X} 4.6 \mathrm{~mm} 5 \mu$ column; hexane/2propanol $=80: 20$, detected at 254 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 11.66 min (minor), 12.38 min (major).

<Peak Table>

PDACh1254nm	Height\%				
Peak\# Ret. Time	Area	Height	Area\%	Height	
1	11.660	1273753	72038	4.486	
2	12.386	27119496	1308764	95.514	
Total		28393249	1380802	100.000	

<Peak Table>

PDACh1254nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	11.547	12497808	685877	50.319	52.681
2	12.360	12339592	616061	49.681	47.319
Total		24837399	1301938	100.000	100.000

(2S,7aR)-2-Ehoxy-7a-(4-fluorobenzyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2i):

Prepared according to the general procedure as described above in 71% yield ($67 \mathrm{mg} ; d r=>20: 1$). It was purified by flash chromatography $\left(40 \% \mathrm{EtOAc} /\right.$ hexane; $\left.\mathrm{R}_{f}=0.3\right)$ to afford yellow liquid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.00-6.91(\mathrm{~m}, 4 \mathrm{H}), 3.84(\mathrm{td}, J=6.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dt}, J=$ $13.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ (ddd, $J=15.5,13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=14.1,7.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$2.28-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=14.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{ddt}, J=26.3,13.2,4.4 \mathrm{~Hz}, 1 \mathrm{H})$), $1.10(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.6,187.9,168.4,162.19\left(\mathrm{~d}, J_{\mathrm{CF}}=247.23 \mathrm{~Hz}\right), 137.1$, $132.2\left(\mathrm{~d}, J_{\mathrm{CF}}=2.7 \mathrm{~Hz}\right), 131.5\left(\mathrm{~d}, J_{\mathrm{CF}}=7.42 \mathrm{~Hz}\right), 115.5\left(\mathrm{~d}, J_{\mathrm{CF}}=21.33 \mathrm{~Hz}\right), 78.7,68.7,65.6,44.1,38.9$, 34.7, 24.4, 23.7, 15.7; ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-113.21.HRMS (ESI)calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~F}$ $[\mathrm{M}+\mathrm{H}]^{+}: 317.1547$; found: 317.1552; $[\alpha]^{20}{ }_{\mathrm{D}}=+62.09^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$; 91:9er; Chiral HPLC analysis of the product: Daicel Chiralpak IC 250X4.6 mm 5 μ column; hexane $/ 2$-propanol $=90: 10$, detected at 254 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 16.88 min (major), 24.52 min (minor).

<Peak Table>

PDACh1254nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	16.888	12000018	492343	91.383	92.873
2	24.521	1131562	37780	8.617	7.127
Total		13131580	530123	100.000	100.000

<Peak Table>

PDACh1254nm					
Peak\#	et. Time	Area	Height	Area\%	Height\%
1	16.917	1104225	44343	50.471	57.679
2	24.440	1083618	32536	49.529	42.321
Total		2187843	76879	100.000	100.000

(2S,7aR)-7a-(4-Chlorobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2j):

Prepared according to the general procedure as described above in 77% yield $(76 \mathrm{mg} ; d r=>20: 1)$. It was purified by flash chromatography ($30 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$) to afford colourless liquid; ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{td}, J$ $=6.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dt}, J=14.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ $(\mathrm{d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{ddd}, J=15.4,13.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.51(\mathrm{~m}, 1 \mathrm{H})$, $2.29(\mathrm{dd}, J=14.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{dd}, J=14.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{tdd}, J=$ $17.3,8.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.9,188.9,162.3$, $137.9,133.8,133.7,131.3,128.7,79.8,67.3,65.2,42.7,38.3,36.7,24.0,23.5,15.6 ; H R M S$ (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$: 333.1252 ; found: 333.1263; $[\alpha]^{20}{ }_{\mathrm{D}}=+17.33^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$; 93:7er; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5μ column; hexane/2-propanol $=90: 10$, detected at 254 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 17.21 min (major), 19.48 min (minor).

景Peak $=$ lable>

PDACh1254nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	17.211	30694502	906895	92.912	91.483
2	19.489	2341462	84432	7.088	8.517
Total		33035963	991327	100.000	100.000

<Peak Table>

PDACh1254nm					
Peak\# Ret. Time	Area	Height	Area\%	Height\%	
1	17.145	4750826	190721	50.417	
2	19.244	4672206	148645	49.583	
Total		9423032	339366	100.000	

(2S,7aR)-7a-(4-Bromobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2k):

Prepared according to the general procedure as described above in 81% yield $(91 \mathrm{mg} ; d r=>20: 1)$. It was purified by flash chromatography ($30 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$) to afford colourless liquid; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{td}, J$ $=7.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dt}, J=6.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dddd}, J=16.1,9.1,7.0,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~d}$, $J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{ddd}, J=15.5,13.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{ddd}, J=12.2$, $5.3,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dt}, J=8.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dd}, J=14.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.21(\mathrm{~m}, 1 \mathrm{H})$, $2.16(\mathrm{dd}, J=14.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dddd}, J=22.0,13.2,9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 209.5,187.8,168.2,137.2,135.4,131.7,131.3,121.5,78.7,68.5,65.6$, $44.3,38.9,34.6,24.4,23.7,15.7$; $\mathrm{HRMS}(\mathrm{ESI})$ calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$: 377.0746; found: $377.0750 ;[\alpha]^{20} \mathrm{D}=-26.19^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ; 98: 2 e r$, Chiral HPLC analysis of the product: Daicel Chiralpak AD-H $250 \mathrm{X} 4.6 \mathrm{~mm} 5 \mu$ column; hexane/2-propanol $=90: 10$, detected at 254 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 10.86 min (major), 12.02 min (minor).

<Peak Table>

\left.| PDACh1254nm | Height | Area\% | Height\% | |
| ---: | ---: | ---: | ---: | ---: |
| Peak\#Ret. Time | Area | He | 97.295 | |
| 1 | 10.869 | 25211989 | 1317765 | 97.532 |$\right)$

<Peak Table>

$\begin{array}{\|l} \text { PDACh1254nm } \\ \text { Peak\#Ret. Time } \\ \hline \end{array}$					
		Area	Height	Area\%	Height\%
1	10.536	6424947	340644	50.268	52.110
2	11.625	6356404	313062	49.732	47.890
Total		12781350	653706	100.000	100.000

(2S,7aR)-7a-([1,1'-Biphenyl]-4-ylmethyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3carbaldehyde (21):

Prepared according to the general procedure as described above in 70% yield ($78 \mathrm{mg} ; d r=>20: 1$). It was purified by flash chromatography ($50 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.3$) to afford colourless liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{td}, J=7.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55$ (dt, $J=14.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.81(\mathrm{ddd}, J=15.4,13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dddd}, \mathrm{J}=15.4,12.3,5.2,2.7 \mathrm{~Hz}, 1 \mathrm{H})$), $2.56(\mathrm{dt}, J=15.4$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=14.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=14.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.84$ (dddd, J = 22.0, 13.2, 8.9, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.1$, $188.7,162.8,140.5,140.4,137.9,134.3,130.5,129.0,127.6,127.1,127.1,79.8,67.5,65.2,43.2,38.4$, 36.8, 24.1, 23.6, 15.6; HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 375.1954$; found: 375.1947; $[\alpha]^{20}{ }_{\mathrm{D}}$ $=-6.99^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ; 91: 9 e r$; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 $\mathrm{mm} 5 \mu$ column; hexane $/ 2$-propanol $=90: 10$, detected at 290 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 11.40 min (minor), 12.80 min (major).

<Peak Table>

PDACh1290nm					
Peak\#	t. Time	Area	Height	Area\%	Height\%
1	11.406	1521547	98478	9.269	12.798
2	12.801	14894219	671023	90.731	87.202
Total		16415766	769501	100.000	100.000

<Peak Table>

PDACh1290nm					
Peak\#	t. Time	Area	Height	Area\%	Height\%
1	11.412	3611368	182784	50.179	52.283
2	12.874	3585663	166822	49.821	47.717
Total		7197030	349606	100.000	100.000

(2S,7aR)-2-Methoxy-7a-(4-nitrobenzyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2m):

Prepared according to the general procedure as described above in 66% yield ($67 \mathrm{mg} ; d r=7: 1$). It was purified by flash chromatography ($50 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.3$) to afford red liquid, ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{td}, J=6.9,2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.58(\mathrm{dt}, J=14.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.37(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=$ $13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{ddd}, J=15.5,13.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.24$ (ddd, $J=20.3,14.3,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.85(\mathrm{ddt}, J=26.5,13.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 209.1,188.6,161.6,147.4,142.5,138.0,130.9,123.7,79.7,67.0,65.4$, $42.9,38.3,36.5,24.0,23.5,15.6 ; \mathrm{HRMS}(E S I)$ calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}-\mathrm{H}]^{+}: 342.1336$; found: 342.1339; $[\alpha]^{20} \mathrm{D}=-73.30^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ; 89: 11 \mathrm{er}$; Chiral HPLC analysis of the product: Daicel Chiralpak IC 250X4.6 mm 5 μ column; hexane $/ 2$-propanol $=80: 20$, detected at 254 nm , Flow rate $=1$ $\mathrm{mL} / \mathrm{min}$, Retention times: 12.39 min (major), 18.48 min (minor).

<Peak Table>

PDACh1254nm					
Peak\#	et. Time	Area	Height	Area\%	Height\%
1	12.394	21095539	1145248	89.199	91.226
2	18.486	2554360	110150	10.801	8.774
Total		23649899	1255398	100.000	100.000

<Peak Table>

PRAC	1254 nm	A	Heioht	Area\%	Heicht\%
1	12.459	50073819	2513895	49.205	58.074
2	18.555	51692391	1814904	50.795	41.926
Total		101766210	4328799	100.000	100.000

(2S,7aR)-2-Ethoxy-7a-(3-methoxybenzyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2n):

Prepared according to the general procedure as described above in 78% yield $(76 \mathrm{mg} ; d r=>20: 1)$. It was purified by flash chromatography ($40 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$) to afford colourless liquid; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.59$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{td}, J=6.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{dt}, J=$
$14.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ (ddd, $J=15.5,13.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{dt}, J=15.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=14.0,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.30-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=14.2,6.1 \mathrm{~Hz}, 1 \mathrm{H})$), $1.82(\mathrm{tdd}, \mathrm{J}=17.6,8.9,4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.1,188.7,162.9,159.5,138.0,136.7$, 129.5, 122.5, 116.2, 112.6, 79.8, 67.4, 65.2, 55.4, 43.5, 38.4, 36.8, 24.0, 23.5, 15.6;HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 351.1566$ found: $351.1555 ;[\alpha]^{20}{ }_{\mathrm{D}}=-25.50^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ;>99$:1er; Chiral HPLC analysis of the product: Daicel Chiralpak IC 250X $4.6 \mathrm{~mm} 5 \mu$ column; hexane/2-propanol $=$ 80:20, detected at 254 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 15.31 min (major), 17.98 min (minor).

<Peak Table>

PDACh1254nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	15.316	11668212	471236	99.680	99.840
2	17.984	37460	755	0.320	0.160
Total		11705672	471991	100.000	100.000

<Peak Table>

PDACh1254nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	14.695	4420731	144588	50.285	57.466
2	18.063	4370622	107017	49.715	42.534
Total		8791353	251605	100.000	100.000

Prepared according to the general procedure as described above in 70% yield ($66 \mathrm{mg} ; d r=>20: 1$). It was purified by flash chromatography ($30 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$) to afford red liquid; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{td}, J=8.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{tdd}, J=8.5,2.5,0.6 \mathrm{~Hz}, 1 \mathrm{H})$), $6.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dt}, J=9.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{td}, J=7.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dt}, J=14.8$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{ddd}, J=$ $15.5,13.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{dt}, J=15.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{dd}, J=14.2,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.26$ (dddd, $J=11.8,8.9,5.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=14.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.83$ (ddt, $J=26.3$, $13.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.7,188.6,162.6\left(\mathrm{~d}, J_{\mathrm{CF}}\right.$ $=248.08 \mathrm{~Hz}), 162.4,138.0,137.7\left(\mathrm{~d}, J_{\mathrm{CF}}=7.38 \mathrm{~Hz}\right), 129.96\left(\mathrm{~d}, J_{\mathrm{CF}}=8.2 \mathrm{~Hz}\right), 125.75\left(\mathrm{~d}, J_{\mathrm{CF}}=2.2 \mathrm{~Hz}\right)$, $117.0\left(\mathrm{~d}, J_{\mathrm{CF}}=21.18 \mathrm{~Hz}\right), 114.59\left(\mathrm{~d}, J_{\mathrm{CF}}=29.21 \mathrm{~Hz}\right), 79.7,67.2,65.3,43.0,38.3,36.6,24.0,23.5$, 15.6.; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.7$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{~F}[\mathrm{M}+\mathrm{H}]^{+}: 317.1547$; found: 317.1542; $[\alpha]^{20}{ }_{\mathrm{D}}=+47.80^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ; 91: 9 \mathrm{er}$; Chiral HPLC analysis of the product: Daicel Chiralpak IC 250X4.6 mm 5 μ column; hexane $/ 2$-propanol $=90: 10$, detected at 290 nm , Flow rate $=1$ $\mathrm{mL} / \mathrm{min}$, Retention times: 16.72 min (major), 18.38 min (minor).

「Peak ${ }^{\text {Yable }}$?

PDACh1290nm	Height				
Peak\# Ret. Time	Area	Area\%	Height\%		
1	16.729	2966201	112569	91.036	88.596
2	18.382	292058	14490	8.964	11.404
Total		3258259	127059	100.000	100.000

<Peak Table>

PDACh1290nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	16.535	1103006	42544	50.158	51.923
2	18.050	1096036	39392	49.842	48.077
Total		2199041	81936	100.000	100.000

(2S,7aR)-7a-(3-Chlorobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2p):

Prepared according to the general procedure as described above in 71% yield $(70 \mathrm{mg} ; d r=>20: 1)$. It was purified by flash chromatography $\left(30 \% \mathrm{EtOAc} /\right.$ hexane; $\left.\mathrm{R}_{f}=0.4\right)$ to afford colourless liquid; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=$ $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{td}, J=7.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dt}, J=14.8,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.48-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{ddd}, J=15.5,13.1$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{dt}, J=6.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=14.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26$ $-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=14.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{ddt}, \mathrm{J}=26.2,13.0,4.5 \mathrm{~Hz}, 1 \mathrm{H})), 1.10(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.7,188.5,162.4,138.0,137.3,134.3,130.1,129.7,128.1$, $127.8,79.7,67.2,65.3,42.9,38.3,36.6,24.0,23.5,15.5$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$: 333.1252; found: 333.1243; $[\alpha]^{20}{ }_{\mathrm{D}}=-26.60^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$; 93:7er; Chiral HPLC analysis of the product: Daicel Chiralpak IC $250 \mathrm{X} 4.6 \mathrm{~mm} 5 \mu$ column; hexane/2-propanol $=80: 20$, detected at 254 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 23.62 min (major), 30.21 min (minor).

<Peak Table>

PDACh1254nm	Height				Area\%
Peak\# Ret. Time	Area	Height\%			
1	23.625	10258262	193997	92.643	93.439
2	30.216	814646	13621	7.357	6.561
Total		11072908	207618	100.000	100.000

<Peak Table>

PDACh1254nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	23.429	11689697	227057	50.134	58.289
2	29.692	11627119	162477	49.866	41.711
Total		23316816	389534	100.000	100.000

(2S,7aR)-7a-(3-Bromobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2q):

Prepared according to the general procedure as described above in 75% yield ($84 \mathrm{mg} ; d r=>20: 1$). It was purified by flash chromatography ($40 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.5$) to afford colourless liquid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{ddd}, J=8.0,1.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{td}, J=7.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dt}, J=14.8,3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.49-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ (ddd, $J=15.5$, $13.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{dt}, J=8.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=14.2,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.27-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=14.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.7,188.5,162.3,138.1,137.5,133.1,130.7,130.0,128.6,122.5,79.7$, 67.2, 65.2, 42.8, 38.3, 36.6, 24.0, 23.5, 15.5; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{NBr}[\mathrm{M}+\mathrm{H}]^{+}: 377.0746$; found: $377.0751 ;[\alpha]^{20}{ }_{\mathrm{D}}=-24.00^{\circ}\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right) ;>99: 1 \mathrm{er}$; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5μ column; hexane/2-propanol $=90: 10$, detected at 254 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 13.42 min (major), 14.54 min (minor).

<Peak Table>
PDACh1254nm Peak\# Ret. Time Area Height Area\% Height\% 1 13.426 14680946 566644 99.540 2 14.546 67879 2551 0.460 Total 14748825 569195 100.000

<Peak Table>

PDACh1254nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	13.772	5452842	238604	50.410	51.926
2	14.504	5364092	220900	49.590	48.074
Total		10816934	459504	100.000	100.000

Prepared according to the general procedure as described above in 62% yield ($63 \mathrm{mg} ; d r=>20: 1$). It was purified by flash chromatography ($50 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.3$) to afford yellow liquid; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.84(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{ddd}, J=8.2,2.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{td}, J=6.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dt}, J=14.9,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.43(\mathrm{qq}, J=9.1,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{q}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{ddd}, J=15.6,13.1,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.71-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{dt}, J=15.8,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{qd}, J=14.4,6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.86(\mathrm{ddt}, J=26.3,13.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 209.1, 188.3, 162.0, 148.2, 138.2, 137.3, 135.9, 129.5, 124.8, 122.7, 79.6, 67.1, 65.4, 42.7, 38.3, 36.3, 24.1, 23.4, 15.5; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}: 344.1492$; found: $344.1496 ;[\alpha]^{20}{ }_{\mathrm{D}}=-$ 3.20° ($c 1.0, \mathrm{CHCl}_{3}$); 86:14er; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 $\mathrm{mm} 5 \mu$ column; hexane $/ 2$-propanol $=90: 10$, detected at 254 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 34.59 min (minor), 37.23 min (major).

<Peak Table>

PDACh1254nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	34.596	554398	10253	14.271	19.721
2	37.239	3330323	41736	85.729	80.279
Total		3884721	51988	100.000	100.000

<Peak Table>

PDACh1254nm					
1	34.786	11268378	199923	50.388	51.800
2	36.982	11094868	186027	49.612	48.200
Total		22363247	385950	100.000	100.000

(2S,7aR)-7a-(2-Chlorobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2s):

Prepared according to the general procedure as described above in 82% yield $(81 \mathrm{mg} ; d r=>20: 1)$. It was purified by flash chromatography ($30 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.5$) to afford colourless liquid; ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dtd}, J=16.8,7.4,1.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=7.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{td}, J=6.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.42(\mathrm{~m}, 3 \mathrm{H}), 3.22(\mathrm{~d}, J$ $=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{ddd}, J=15.4,13.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dddd}, J=15.3$, $12.6,5.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dt}, J=15.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=14.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.19(\mathrm{~m}$, $1 \mathrm{H}), 2.06(\mathrm{dd}, J=14.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.87-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.9,188.7,163.4,137.8,135.0,133.6,131.9,130.1,129.0,126.8,80.0,66.8,65.2$, 39.7, 38.6, 36.5, 24.0, 23.8, 15.6; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$: 333.1252; found: 333.1266; $[\alpha]^{20} \mathrm{D}=-68.92^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) ; 91: 9 \mathrm{er}$; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5μ column; hexane/2-propanol $=90: 10$, detected at 254 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 8.21 (minor), 10.50 min (major).

<Peak Table>					
PDACh1254nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	8.212	651781	46661	9.230	11.584
2	10.504	6409914	356158	90.770	88.416
Total		7061695	402820	100.000	100.000

<Peak Table>

PDACh1254nm					
Peak\# Ret. Time	Area	Heiqht	Area\%	Height\%	
1	8.191	991847	58271	49.785	
2	10.472	1000396	56292	50.215	
Total		1992243	114563	100.000	

(2S,7aR)-7a-(2-Bromobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2t):

Prepared according to the general procedure as described above in 86% yield ($97 \mathrm{mg} ; d r=11: 1$). It was purified by flash chromatography ($30 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$) to afford colourless liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.88(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0,1 \mathrm{H}), 7.26(\mathrm{~d}, J=0.9,1 \mathrm{H}), 7.20(\mathrm{t}, J=7.5,1 \mathrm{H})$, $7.12(\mathrm{t}, J=7.6,1 \mathrm{H}), 6.96(\mathrm{~d}, J=7.6,1 \mathrm{H}), 4.17(\mathrm{td}, J=6.6,2.7,1 \mathrm{H}), 3.55-3.43(\mathrm{~m}, 3 \mathrm{H}), 3.29(\mathrm{~d}, J=13.9$,
$1 \mathrm{H}), 3.11(\mathrm{~d}, J=13.9,1 \mathrm{H}), 2.79$ (ddd, $J=14.9,13.6,5.9,1 \mathrm{H}), 2.71-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.52(\mathrm{~m}, 1 \mathrm{H})$, 2.43 (dd, $J=14.1,7.1,1 H$), $2.29-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{dd}, J=14.1,6.4,1 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.12$ $(\mathrm{t}, J=7.0,3 \mathrm{H}){ }^{13}{ }^{13} \mathrm{C}$ NRR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.9,188.8,163.3,137.8,135.4,133.5,131.6,129.2$, 127.4, 126.0, 80.1, 66.9, 65.3, 42.1, 38.7, 36.4, 24.0, 23.8, 15.6; HRMS(ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Br}$ $[\mathrm{M}+\mathrm{H}]^{+}: 377.0746$; found: $377.0751 ;[\alpha]^{20} \mathrm{D}=+48.50^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$; 97:3er; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5 μ column; hexane $/ 2$-propanol $=90: 10$, detected at 254 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention time: 8.11 min (major), 10.77 min (minor).

<Peak Table>

PDACh1254nm					
Peak\#	t. Time	Area	Heiqht	Area\%	Height\%
1	8.119	19189186	1283651	96.569	96.853
2	10.774	681671	41711	3.431	3.147
Total		19870857	1325362	100.000	100.000

<Peak Table>

PDACh1254nm					
Peak\#	Ret. Time	Area	Heiqht	Area\%	Height\%
1	8.105	12412304	816438	50.200	54.397
2	10.750	12313202	684455	49.800	45.603
Total		24725506	1500893	100.000	100.000

Prepared according to the general procedure as described above in 76% yield ($81 \mathrm{mg} ; d r=14: 1$). It was purified by flash chromatography ($50 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.3$) to afford yellow liquid; ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dd}, J=8.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=11.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{dt}, J=6.4,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.49-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.67-$ $2.57(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{dt}, J=15.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=14.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.14$ (dd, $J=13.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.5,188.9,162.7,148.7,148.6,137.8,127.6,122.5,113.3,111.1,79.9,67.5,65.1,56.1,56.0$, 43.3, 38.4, 37.0, 23.9, 23.6, 15.6; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 359.1853; found: 359.1847; $[\alpha]^{20}{ }_{\mathrm{D}}=-40.66^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$; 90:10er; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5 μ column; hexane $/ 2$-propanol $=92: 08$, detected at 254 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 17.19 min (major), 18.35 min (minor).

<Peak Table>

PDACh1254nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	17.198	1820446	64945	89.769	88.146
2	18.358	207480	8734	10.231	11.854
Total		2027926	73679	100.000	100.000

<Peak Table>

PDACh1254nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	17.311	10926119	407111	50.410	52.180
2	18.468	10748341	373093	49.590	47.820
Total		21674460	780203	100.000	100.000

(2S,7aR)-7a-(2,3-Dichlorobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2v):

Prepared according to the general procedure as described above in 85% yield $(93 \mathrm{mg} ; d r=>20: 1$, with inseparableimpurities). It was purified by flash chromatography ($50 \% \mathrm{EtOAc} / \mathrm{hexane} ; \mathrm{R}_{f}=0.4$) to afford colourless liquid; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{td}, J=6.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.44(\mathrm{~m}$, $3 \mathrm{H}), 3.31(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{ddd}, J=15.4,13.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68$ $-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{dd}, J=14.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J$ $=14.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{ddt}, J=26.1,13.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.8,187.9,167.9,137.5,137.1,133.7,133.2,130.8,129.6,127.1,78.9,67.8,65.7$, 42.2, 39.3, 35.4, 24.1, 23.9, 15.6; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{Cl}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 367.0862$; found: $367.0859 ;[\alpha]^{20} \mathrm{D}=-81.65^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ; 98: 2 \mathrm{er}$; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5μ column; hexane/2-propanol $=90: 10$, detected at 254 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 8.42 min (major), 10.29 min (minor).

<Peak Table>					
PDACh1254nm					
Peak\#	et. Time	Area	Height	Area\%	Height\%
1	8.421	12417949	765351	97.983	97.955
2	10.297	255603	15982	2.017	2.045
Total		12673552	781333	100.000	100.000

<Peak Table>

PDACh1254nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	8.580	4070035	257172	50.095	53.274
2	10.561	4054650	225563	49.905	46.726
Total		8124685	482735	100.000	100.000

(2S,7aR)-2-Ethoxy-7a-(naphthalen-1-ylmethyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2w):

Prepared according to the general procedure as described above in 72% yield ($75 \mathrm{mg} ; d r=>20: 1$). It was purified by flash chromatography ($50 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.3$) to afford yellow liquid; ${ }^{1} \mathrm{H}$ NMR
$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.02(\mathrm{~s}, 1 \mathrm{H}), 8.21-8.17(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=8.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=7.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=5.0$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{dt}, J=$ $14.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{ddd}, J=14.6,12.9,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.03-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $211.2,187.9,169.1,137.8,134.1,133.4,132.9,128.9,128.2,128.0,126.2,125.9,125.3,124.5,78.8$, 69.1, 65.9, 42.0, 40.0, 37.0, 24.2, 23.7, 15.7; HRMS:(ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 349.1798$; found: $349.1791 ;[\alpha]^{20}{ }_{\mathrm{D}}=+45.50^{\circ}\left(c\right.$ 1.0, $\left.\mathrm{CHCl}_{3}\right) ; 83: 17$ er; Chiral HPLC analysis of the product: Daicel Chiralpak AD-H 250X4.6 mm 5μ column; hexane/2-propanol $=90: 10$, detected at 290 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 9.00 min (major), 9.93 min (minor).

<Peak Table>

PDACh1290nm					
Peak\#	Time	Area	Height	Area\%	Height\%
1	9.005	16937764	1042415	82.889	80.948
2	9.930	3496579	245351	17.111	19.052
Total		20434342	1287766	100.000	100.000

<Peak Table>

PDACh1290nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	9.006	11495496	696312	50.457	51.615
2	9.933	11287181	652744	49.543	48.385
Total		22782677	1349055	100.000	100.000

(2S,7aR)-2-Ethoxy-7-oxo-7a-(thiophen-2-ylmethyl)-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2x):

Prepared according to the general procedure as described above in 84% yield ($76 \mathrm{mg} ; d r=>20: 1$). It was purified by flash chromatography ($40 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.3$) to afford red liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.85(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=5.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=5.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ (d, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 4.14 (ddd, $J=7.4,5.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.43(\mathrm{~m}, 3 \mathrm{H}), 3.25(\mathrm{~d}, J=14.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.15(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.76$ (ddd, $J=15.5,13.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.54$ (dt, J $=15.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=14.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=14.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.22(\mathrm{~m}$, $1 \mathrm{H}), 1.90-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.4,188.5,162.6$, 138.2, 136.4, 127.7, 127.0, 125.4, 80.0, 67.8, 65.3, 38.2, 37.8, 36.8, 24.0, 23.3, 15.6; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 305.1205$; found: 305.1216; $[\alpha]^{20} \mathrm{D}=-18.09^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ; 91: 9 e r$; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5μ column; hexane/2propanol $=80: 20$, detected at 254 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 13.40 min (minor), 19.69 min (major).

<Peak Table>

PDACh1 254 nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	13.403	511536	20684	8.972	15.647
2	19.691	5190222	111508	91.028	84.353
Total		5701758	132192	100.000	100.000

<Peak Table>

PDACh1254nm	Height			
Peak\# Ret. Time	Area	Heig	Height\%	
1	13.260	5652903	219248	50.419
2	19.657	5558929	134676	49.581
Total		11211832	353924	100.000

(2S,7aR)-2-Ethoxy-7a-(furan-2-ylmethyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde(2y):

Prepared according to the general procedure as described above in 82% yield $(70 \mathrm{mg} ; d r=>20: 1)$. It was purified by flash chromatography ($40 \% \mathrm{EtOAc} / \mathrm{hexane} ; \mathrm{R}_{f}=0.3$) to red liquid; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.85(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J$ $=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{ddd}, J=7.4,5.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{dt}, J=6.2,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.02(\mathrm{~s}, 2 \mathrm{H}), 2.76(\mathrm{ddd}, J=15.5,13.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{dt}, J=15.5,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.39(\mathrm{dd}, J=14.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{dd}, J=14.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{ddt}, J$ $=26.2,13.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.2,188.5,163.4$, $149.8,142.5,137.4,110.7,108.9,79.8,66.8,65.2,38.1,36.9,36.5,24.0,23.2,15.6 ;$ HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 289.1434; found: 289.1425; $[\alpha]^{20}{ }_{\mathrm{D}}=+12.62^{\circ}\left(c 0.5, \mathrm{CHCl}_{3}\right)$; 94:6 er; Chiral HPLC analysis of the product: Daicel Chiralpak OD-H 250X4.6 mm 5μ column; hexane/2propanol $=80: 20$, detected at 254 nm , Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, Retention times: 8.87 min (minor), 10.12 min (major).

<Peak Table>					
PDACh1254nm					
Peak\#	et. Time	Area	Height	Area\%	Height\%
1	8.871	926721	74391	5.883	8.599
2	10.124	14826207	790681	94.117	91.401
Total		15752928	865072	100.000	100.000

<Peak Table>					
PDACh1254nm					
Peak\#	Ret. Time	Area	Height	Area\%	Height\%
1	8.823	7305066	453432	49.613	53.318
2	10.154	7418895	396992	50.387	46.682
Total		14723961	850424	100.000	100.000

IIb. One mmol-Scale reaction and Synthetic utility

IIba. One-mmol Scale reaction:

To a stirred solution of enal-tethered Cyclohexane 1,3-dione $\mathbf{1 g}(270 \mathrm{mg}, 1.0 \mathrm{mmol})$ in $\mathrm{EtOH}(5 \mathrm{~mL}$, 0.2 M) at $-20^{\circ} \mathrm{C}$ was added Jørgensen-Hayashi catalyst C-I ($16 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%$) under nitrogen atmosphere. The reaction was allowed to stir at the same temperature until complete
consumption of starting material (monitored by TLC). Afterward, the solvent was evaporated under reduced pressure and the crude residue was directly purified by column chromatography on silica gel (EtOAc in Hexane) to give the desired product2g in 82% yield (244 mg); $[\alpha]_{20}{ }^{\mathrm{D}}=-85.91^{\circ}$ (c 1.0 , CHCl_{3}); 96:4 er.

IIbb. Synthetic utility:

(2S,3aR)-3a-Benzyl-1-((Z)-3-(4-bromophenyl)-3-oxoprop-1-en-1-yl)-2-ethoxy-2,3,3a,5,6,7-hexahydro-4H-inden-4-one (5):

2g

12 h, 75%

5

The solution of aldehyde $\mathbf{2 g}$ ($60 \mathrm{mg}, 0.2 \mathrm{mmol}$, 1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL}, 0.05 \mathrm{M})$ was added 4-bromo phenyl phosphorene $\mathbf{3}$ ($138 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) in one portion at room temperature under a nitrogen atmosphere. The reaction mixture was stirred at $65^{\circ} \mathrm{C}$ using preheated oil bath for 12 h and then concentrated in vacuo. The crude reaction mixture was purified by flash column chromatography ($20 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$) to give dienone 5 in 75% yields ($72 \mathrm{mg}, d r=>20: 1$) as a yellow oil; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77$ (d, $\left.J=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.60(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H})$), $7.60(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2H), $7.24-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.13$ (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ (dd, $J=6.5,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.73$ (td, $J=6.8$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dq}, J=9.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dq}, J=9.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.85-$ $2.74(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{dt}, J=15.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{dd}, J=13.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.30$ - 2.23 (m, 1H), 2.19 (dd, $J=13.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{dt}, J=26.2,13.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.0,189.9,155.0,137.2,135.8,135.7,135.3,132.0,130.1$, 130.0, 128.3, 127.9, 127.3, 123.0, 80.9, 66.8, 63.1, 43.3, 38.5, 35.8, 24.7, 23.8, 15.7; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{BrNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 501.1035; found: 501.1048; $[\alpha]^{20} \mathrm{D}=-101.99^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

Ethyl (E)-3-((2S,7aR)-7a-benzyl-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1H-inden-3yl)acrylate(6):

The solution of aldehyde $\mathbf{2 g}$ (60 mg , 0.2 mmol , 1 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL}, 0.1 \mathrm{M}$) was added desired phosphorene ($105 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv) in one portion at room temperature under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 2 h and then concentrated in vacuo. The crude reaction mixture was purified by flash column chromatography ($20 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.5$) to give bicyclic ester $\mathbf{6}$ in 72% yield ($53 \mathrm{mg}, d r=>20: 1$) as an yellow oil; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 3 \mathrm{H}), 6.99-6.95(\mathrm{~m}, 2 \mathrm{H}), 5.97(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.27-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{td}, J=6.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dq}, J=9.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dq}, J=$ $9.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dt}, J=14.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.76 (ddd, $J=19.5,11.3,3.9 \mathrm{~Hz}, 1 \mathrm{H})$), $2.60-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{dt}, J=15.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}$, $J=13.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{dd}, J=13.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{dt}, J=26.4,13.2,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.3,167.8$, $152.3,135.7,135.5,134.9,130.1,128.3,127.3,120.0,80.8,66.5,63.4,60.5,43.2,38.6,35.9,24.7$, 23.6, 15.5, 14.5; HRMS (ESI) calcdfor $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 391.1885$; found: 391.1889; [$\left.\alpha\right]^{20}{ }_{\mathrm{D}}=-$ $17.00^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
(2S,3aR)-3a-Benzyl-2-ethoxy-1-(hydroxymethyl)-2,3,3a,5,6,7-hexahydro-4H-inden-4-one (7):

To a solution of $2 \mathbf{g}\left(60 \mathrm{mg}, 0.2 \mathrm{mmol}, 1\right.$ equiv) andCeCl ${ }_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ ($112 \mathrm{mg}, 1.5$ equiv) in 3 mL of MeOH was addedNaBH 4 ($11 \mathrm{mg}, 1.5$ equiv) over a period of 5 min . The reactionmixture was stirred for 30 min at room temperature, quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under vacuo, and then purified byflashchromatography ($30 \% \mathrm{EtOAc}$ in hexanes; $\mathrm{R}_{f}=0.3$) to afford a colour less oil ($49 \mathrm{mg}, 82 \%$ yield $d r=>20: 1$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.26-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.50$ $-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.19(\mathrm{dq}, J=9.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.70(\mathrm{~m}, 3 \mathrm{H}), 2.47(\mathrm{dt}$, $J=15.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{dd}, J=13.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.02$ (dd, $J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{dt}, J=26.4,13.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.4,142.2,136.7,136.1,130.2,128.1,127.2,84.2,65.9,64.6,58.4,42.5,38.6$, 36.9, 25.2, 22.8, 15.5; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 323.1623; found: 323.1631; $[\alpha]^{20}{ }_{D}=+15.83{ }^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
(2S,7aR)-7a-Benzyl-2-ethoxy-7-oxo-N-(pyridin-2-yl)-2,4,5,6,7,7a-hexahydro-1H-indene-3carboxamide(8):

A sealable reaction tube equipped with a magnetic stirrer bar was charged with aldehyde $\mathbf{2 g}$ (60 mg , 0.2 mmol), amines ($22 \mathrm{mg}, 1.2$ equiv, 0.2 mmol), CuI ($5 \mathrm{mg}, 0.05$ equiv, 0.03 mmol), tert-butyl hydroperoxide (TBHP, 36 mg , 2 equiv, 0.4 mmol), water (1 mL). The reaction vessel was carried out at room temperature. After stirring the mixture for 6 h , it was diluted with ethyl acetate, washed with water and brine, dried with $\mathrm{Mg}_{2} \mathrm{SO}_{4}$. After the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel using petroleum ether/ethyl acetate as eluent to afford the corresponding product in 78% yield ($61 \mathrm{mg} ; d r=>20: 1$). It was purified by flash chromatography ($10 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$) to afford a yellow liquid; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 10.17(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{dd}, J=58.4,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.11-$ $7.02(\mathrm{~m}, 3 \mathrm{H}), 3.89(\mathrm{dt}, J=15.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.43$ $(\mathrm{m}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=18.6,11.1,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.74-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{dt}, J=15.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{dd}, J=13.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.20(\mathrm{~m}$, $1 \mathrm{H}), 2.17(\mathrm{dd}, J=13.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{ddt}, J=26.0,13.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.3,163.5,160.2,151.1,135.3,130.6,130.3,130.0,128.6,128.4$, $127.5,119.6,115.1,80.8,66.2,64.5,43.4,38.5,36.7,24.6,24.2,15.4$; HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 391.2016$; found: 391.2029; $[\alpha]^{20}{ }_{\mathrm{D}}=+11.00^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

(2S,3aR)-3a-Benzyl-2-ethoxy-1-ethynyl-2,3,3a,5,6,7-hexahydro-4H-inden-4-one (9):

To a solution of $\mathbf{2 g}$ ($60 \mathrm{mg}, 0.2 \mathrm{mmol}$) and dimethyldiazomethylphosphonate (Ohira-Bestmann reagent) ($46 \mathrm{mg}, 1.25$ equiv, 0.25 mmol) in dry methanol (2 mL), was added potassium carbonate (41 $\mathrm{mg}, 1.5$ equiv, 0.3 mmol) at $0^{\circ} \mathrm{C}$ under argon atmosphere. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and room temperature for 12 h . After addition of EtOAc (5 mL) and aqueous saturated ammonium chloride (2 mL), the organic layer was separated, and the aqueous layer was extracted with EtOAc (5
$\mathrm{mL} \times 2$). The combined organic layers were dried, concentrated. Flash column chromatography of crude reaction mixture on silica gel ($20 \% \mathrm{EtOAc} / \mathrm{hexane}$; $\mathrm{R}_{f}=0.6$) to afford desired alkyne 9 in 80% yield ($47 \mathrm{mg}, d r=>20: 1$) as a brown solid; $\mathrm{mp}=80-82{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.24$ $(\mathrm{m}, 3 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.33(\mathrm{~m}, 3 \mathrm{H}), 3.12(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 3.03(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dt}$, $J=14.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddd}, J=19.4,11.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.41$ (m, 2H), $2.28(\mathrm{dd}, J=13.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{dd}, J=13.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.76$ (tdd, $J=17.8,8.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.5,154.4,135.8$, $130.2,128.3,127.3,121.9,82.5,82.1,78.4,65.7,64.6,42.8,38.5,37.2,24.7,24.5,15.5$; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 317.1512$; found: $317.1517 ;[\alpha]^{20} \mathrm{D}=-40.57^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$.

IIbc. Standard reaction with 1 g in BnOH solvent:

To a stirred solution of enal-tethered cyclohexane 1,3-dione $\mathbf{1 g}(0.3 \mathrm{mmol})$ in $\mathrm{BnOH}(1.5 \mathrm{~mL}, 0.2 \mathrm{M})$ at room temperature was added piperidine ($10.2 \mathrm{mg}, 0.03 \mathrm{mmol}, 10 \mathrm{~mol} \%$) under nitrogen atmosphere. The reaction was allowed to stir at the same temperature until complete consumption of starting material (monitored by TLC). Afterward, the solvent was evaporated under reduced pressure at 40$45^{\circ} \mathrm{C}$ (rotary evaporator water bath) and the crude residue was directly purified by column chromatography on silica gel (EtOAc in Hexane) to give the desired product $\mathbf{2 g}$ ' in $>10 \%$ yield with 1:1.4 ratio of diastereoselectivity $(d r)$. However, asymmetric reaction with Jørgensen-Hayashi catalyst C-I at various temperatures failed to give the desired product and most of the starting material was recovered.

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

IIc. Labeling Experiments.

Major peak at $m / z=321.1424$ for product
$2 g$ was detected in HRMS analysis
To a stirred solution of enal-tethered cyclohexane 1,3-dione $\mathbf{1 g}(30 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{EtOH}(1.0 \mathrm{~mL}$, $0.1 \mathrm{M})$ and $\mathrm{H}_{2}{ }^{18} \mathrm{O}(0.1 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ was added Jørgensen-Hayashi catalyst C-I ($3.6 \mathrm{mg}, 0.01 \mathrm{mmol}$, $10 \mathrm{~mol} \%$) under nitrogen atmosphere. The reaction was allowed to stir at the same temperature until complete consumption of starting material (monitored by TLC). Afterward, the solvent was concentrated under reduced pressure and residue was directly subjected to flash column chromatography on silica gel (hexanes/ethyl acetate) to afford the desired product $\mathbf{2 g}$ in 32% yield (10 mg). No ${ }^{18} \mathrm{O}$ incorporation was detected in HRMS analysis.

Elemental Composition Report

Single Mass Analysis

Tolerance $=15.0$ PPM / DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT = 3
Monoisotopic Mass, Even Electron Ions
291 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llllllll}\mathrm{C}: 0-20 & \mathrm{H}: 0-23 & \mathrm{~N}: 0-1 & \mathrm{O}: 0-4 & \mathrm{Na}: 0-1 & \mathrm{~S}: 0-1 & \mathrm{Br}: 0-1 & \mathrm{I}: 0-2\end{array}$
17-Oct-2023
170CT2023_CRB_A_298_1 18 (0.341) AM2 (Ar,12000.0,0.00,0.00); Cm (15:21-(24:30+6:11))

		141.0647		165.0649		$225.1229{ }^{236.1389} 253.1184$					$321.1424 \quad 354.1851$										
60	80100	120	140	160	180	200	220	240	260	280	300	- 320	340	360	380	400	420	440	460	480	500
Minimum:							-1.5														
Maximum:			5.		15.0		50.0														
Mass	Calc.	Mass	mD		PPM		DBE	i-FIT		Norm		Conf (\%)	For	mula							
321.1424	321.1	67	-4		-13.4		8. 5	511.7	7	n / a		h/a	C19	H22	03						

17-Oct-2023
17OCT2023_CRB_A_298_1 18 (0.341) AM2 (Ar,12000.0,0.00,0.00); Cm (15:21-(24:30+6:11)) 1: TOF MS ES+

IId. General procedure for the synthesis of enal-tethered cyclohexane 1,3-diones $1 \&$ analytical data:

IIda. Synthesis and analytical data of substrate 1:

2-substituted 1,3-cyclohexadienonesS 4were prepared using to Ramachary reductive coupling protocol. ${ }^{1}$

To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ solution of (Z)-2-buten-1,4-diol (S5) (44.0 g, $\left.41.2 \mathrm{~mL}, 0.5 \mathrm{~mol}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added hydrobromic acid ($\mathrm{HBr}, 8.8 \mathrm{M}, 142 \mathrm{~mL}, 1.25 \mathrm{~mol}$) over 20 min . The resulting mixture was then allowed to react at room temperature for 12 h and the reaction mixture slowly becoming into dark grey colour. The reaction was quenched by adding brine solution (300 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($6 \times$ 300 mL). The combined organic extracts were dried over MgSO_{4}, filtrated, and the solvent was removed with a rotary evaporator ($30{ }^{\circ} \mathrm{C}, 300 \mathrm{mbar}$). The residue was purified by flash column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford the bromo allyl alcoholS6 $(42.8 \mathrm{~g}, 57 \%, E / Z=9: 1)$ as a grey liquid. ${ }^{2}$

General procedure:

To a solution of 2-methylcyclohexane-1,3-dione $(\mathbf{S 4}),(630 \mathrm{mg}, 5.0 \mathrm{mmol}, 1.0$ equiv) and aqueous Bu4NOH (40% in $\mathrm{H}_{2} \mathrm{O}, 3.3 \mathrm{~mL}, 1$ equiv) was added a solution of substituent (E)-4-bromobut-2-en-1-ol ($6.0 \mathrm{mmol}, 1.2$ equiv) in dioxane (5 mL). The solution was stirred for 36 h . The solution was neutralized with 10% aqueous HCl . The two liquid layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}$, and the solvent was evaporated. The residue was purified by column chromatography on silica gel to give the correspondingdesired enol-tethered cyclohexane 1,3-dione $\mathbf{S} 7$ product. ${ }^{3}$

To a stirred solution of allyl alcohol $\mathbf{S 7}(5.0 \mathrm{mmol})$ in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added Dess Martin Periodinane ($3.18 \mathrm{~g} ; 7.5 \mathrm{mmol}, 1.5$ equiv) in portion wise at $0{ }^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred at room temperature for 1 h . Then the reaction mixture was diluted with water (15 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL} \times 3)$. The combined organic solvent was washed with $\mathrm{NaHCO}_{3}(25$ mL), dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude reaction mixture was purified by column chromatography (EtOAc/hexane) to give the desired enal-tethered cyclohexane 1,3-diones $\mathbf{1}$ in good yields and the Z / E ratio of all substrates varies from 1:1 to $>20: 1$. ${ }^{4}$

4-(1-Methyl-2,6-dioxocyclohexyl)but-2-enal (1a):

Prepared according to the general procedure as described above in 68% yield ($660 \mathrm{mg}, E / Z=10: 1$). It was purified by flash chromatography ($40 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.3$) to afford a colourless liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.38(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{dt}, J=15.4,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.05$ (ddd, $J=$ $15.6,7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.70(\mathrm{~m}, 4 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{tt}, \mathrm{J}=12.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.81$ (dtd, J = 19.8, 10.0, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.9$, 193.7, 152.9, 135.8, 65.0, 37.8, 36.7, 23.3, 17.5; HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 195.1015$; found: 195.1019.

4-(2,6-Dioxo-1-propylcyclohexyl)but-2-enal (1d):

Prepared according to the general procedure as described above in 64% yield ($710 \mathrm{mg}, E / Z=9: 1$). It was purified by flash chromatography ($40 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.3$) to afford a yellow liquid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.42(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dt}, J=15.5,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.09$ (ddt, $J=$ $15.6,7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=7.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{dt}, J=10.3,5.4 \mathrm{~Hz}$, $2 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.23-1.15(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 208.9,193.8,153.5,135.9,69.6,40.1,38.7,34.8,17.9,17.4,14.3 ;$ HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 223.1328$; found: 223.1330.

4-(1-(Cyclohexylmethyl)-2,6-dioxocyclohexyl)but-2-enal (1e):

Prepared according to the general procedure as described above in 71% yield ($979 \mathrm{mg}, E / Z=12: 1$). It was purified by flash chromatography ($40 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.5$) to afford a colourless liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.39(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{dt}, J=15.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{ddd}, J=$ $15.6,7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.74(\mathrm{~m}, 4 \mathrm{H}), 2.54(\mathrm{dt}, J=16.2,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-2.04$ (m, 1H), 1.83 $-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.36-$ $1.25(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.03(\mathrm{~m}, 4 \mathrm{H}), 0.93-0.82(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 209.1, 193.8, $153.5,135.8,69.2,45.5,38.7,35.7,34.7,34.1,26.2,25.9,17.5$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 277.1798$; found: 277.1791.

4-(1-Allyl-2,6-dioxocyclohexyl)but-2-enal (1f):

Prepared according to the general procedure as described above in 62% yield ($682 \mathrm{mg}, \mathrm{E} / \mathrm{Z}=10: 1$). It was purified by flash chromatography ($40 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$) to afford a colourless liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{dt}, J=15.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.03$ (ddt, $J=$ $15.6,7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.50 (ddt, $J=17.5,10.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.02(\mathrm{~m}, 2 \mathrm{H}), 2.73$ (dd, $J=7.3$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.66 (ddd, $J=16.4,10.7,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{dt}, J=10.8,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.50(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, 2H), $2.10-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.69(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.5,193.6,152.9$, 135.9, 130.8, 120.5, 68.7, 41.9, 38.8, 35.3, 17.0; HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 221.1172$; found: 221.1175 .

4-(1-Benzyl-2,6-dioxocyclohexyl)but-2-enal (1g):

Prepared according to the general procedure as described above in 80% yield ($1.08 \mathrm{~g}, E / Z=>20: 1$). It was purified by flash chromatography ($30 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.5$) to afford colourless liquid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{dd}, J=7.4,2.0 \mathrm{~Hz}$,
$2 \mathrm{H}), 6.51(\mathrm{dt}, J=15.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{ddt}, J=15.5,7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 2 \mathrm{H}), 2.84(\mathrm{dd}, J=$ $7.6,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{ddd}, J=17.1,7.1,4.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.21(\mathrm{ddd}, J=17.1,9.7,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.58$ (ddq, $J=19.1,9.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{dtt}, J=14.1,7.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.5$, 193.4, 151.6, 136.1, 135.2, 129.9, 128.8, 127.7, 69.0, 45.4, 40.5, 38.6, 15.9; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 271.1328$; found: 271.1324.

4-(1-(4-Methylbenzyl)-2,6-dioxocyclohexyl)but-2-enal (1h):

Prepared according to the general procedure as described above in 72% yield ($1.02 \mathrm{~g}, \mathrm{E} / \mathrm{Z}=2: 1$). It was purified by flash chromatography ($40 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$) to afford a yellow liquid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) for mixture of isomers: $\delta 9.96(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 0.3 \mathrm{H}), 9.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $0.7 \mathrm{H}), 7.02(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{dt}, J=15.4,7.6 \mathrm{~Hz}, 0.7 \mathrm{H}), 6.21(\mathrm{dt}, J$ $=10.7,8.6 \mathrm{~Hz}, 0.3 \mathrm{H}), 6.02(\mathrm{ddd}, J=15.5,7.8,0.7 \mathrm{~Hz}, 0.7 \mathrm{H}), 5.89-5.84(\mathrm{~m}, 0.3 \mathrm{H}), 3.09(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 0.6 \mathrm{H}), 3.05(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1.4 \mathrm{H}), 2.45-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.25$ $-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.9,210.5$, 193.5, 191.2, 151.9, 145.3, 137.4, 136.0, 132.3, 131.9, 129.7, 129.7, 129.5, 129.5, 69.2, 69.1, 45.6, 45.2, 40.6, 40.4, 38.3, 34.1, 21.1, 16.0, 15.8; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 285.1485$; found: 285.1481.

4-(1-(4-Fluorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1i):

Prepared according to the general procedure as described above in 70% yield ($1.0 \mathrm{~g}, E / Z \Rightarrow 20: 1$). It was purified by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$) to afford a colourless liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.39$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), $6.97-6.90(\mathrm{~m}, 4 \mathrm{H}), 6.50(\mathrm{dt}, J=15.4,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.05$ (ddt, $J=15.6,7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~s}, 2 \mathrm{H}), 2.81(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.43$ (ddd, $J=$ $17.1,7.4,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.23$ (ddd, $J=17.2,9.3,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.63(\mathrm{ddq}, J=18.9,9.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.43$ $(\mathrm{dtt}, J=10.4,7.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13}{ }^{3} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.4,193.3,162.3\left(\mathrm{~d}, J_{C F}=250.82\right.$ $\mathrm{Hz}), 151.1,136.2,131.6\left(\mathrm{~d}, J_{C F}=7.87 \mathrm{~Hz}\right), 131.1\left(\mathrm{~d}, J_{C F}=3.54 \mathrm{~Hz}\right), 115.7\left(\mathrm{~d}, J_{C F}=21.40 \mathrm{~Hz}\right), 68.9$,
43.9, 40.4, 38.9, 15.9; ${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.10$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~F}$ $[\mathrm{M}+\mathrm{H}]^{+}$: 289.1234; found: 289.1229.

4-(1-(4-Chlorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1j):

Prepared according to the general procedure as described above in 73% yield ($1.1 \mathrm{~g}, \mathrm{E} / \mathrm{Z}=>20: 1$). It was purified by flash chromatography ($30 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$) to afford a colourless liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.42(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.52(\mathrm{dt}, J=15.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{ddd}, J=15.6,7.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 2 \mathrm{H}), 2.82(\mathrm{dd}, J=7.6$, $1.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.45 (ddd, $J=17.1,7.4,4.8 \mathrm{~Hz}, 2 \mathrm{H}$), 2.24 (ddd, $J=17.2,9.3,5.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.65 (ddq, J $=18.9,9.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{dtt}, J=10.5,7.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.3$, 193.2, 150.9, 136.3, 133.9, 133.7, 131.4, 129.0, 68.8, 44.0, 40.5, 39.0, 16.0; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}: 305.0939$; found: 305.0951 .

4-(1-(4-Bromobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1k):

Prepared according to the general procedure as described above in 76% yield ($1.1 \mathrm{~g}, E / Z=4: 1$). It was purified by flash chromatography ($30 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.5$) to afford a colourless liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.95(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.2 \mathrm{H}), 9.39(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 0.8 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{dt}, J=15.2,7.6 \mathrm{~Hz}, 0.8 \mathrm{H}), 6.22(\mathrm{dt}, J=11.2,8.1 \mathrm{~Hz}, 0.2 \mathrm{H}), 6.04$ (ddd, $J=16.6,8.2,1.7 \mathrm{~Hz}, 0.8 \mathrm{H}$), 5.91 (ddd, $J=11.2,7.8,1.3 \mathrm{~Hz}, 0.2 \mathrm{H}), 3.12-3.00(\mathrm{~m}, 2.2 \mathrm{H}), 2.79(\mathrm{~d}, \mathrm{~J}$ $=7.6 \mathrm{~Hz}, 1.8 \mathrm{H}), 2.43(\mathrm{ddt}, J=14.7,12.2,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{ddq}, J=18.7,9.3$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.5,210.1,193.2,190.9,150.9$, $144.5,136.2,134.3,132.5,131.9,131.8,131.6,131.6,121.7,68.6,68.6,44.3,43.7,40.6,40.3,38.9$, 34.6, 15.9, 15.8; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 349.0433$; found: 349.0438.

4-(1-([1,1'-Biphenyl]-4-ylmethyl)-2,6-dioxocyclohexyl)but-2-enal (11):

Prepared according to the general procedure as described above in 65% yield $(1.1 \mathrm{~g}, E / Z=>20: 1)$. It was purified by flash chromatography ($40 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$ to afford a colourless liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.40(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{dt}, J=15.4,7.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.07 (ddt, $J=15.6,7.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 2 \mathrm{H}), 2.87(\mathrm{dd}, J=7.6,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.45$ (ddd, $J=17.0,7.0,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{ddd}, J=17.0,9.6,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{ddq}, J=19.1,9.6,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 1.49 (dtt, $J=14.1,7.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.4,193.3,151.6,140.3,140.2$, 136.1, 134.2, 130.3, 128.9, 127.5, 127.3, 126.9, 69.0, 44.8, 40.4, 38.5, 16.0; HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 347.1641$; found: 347.1645.

4-(1-(4-Nitrobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1m):

Prepared according to the general procedure as described above in 56% yield ($882 \mathrm{mg}, E / Z=>20: 1$). It was purified by flash chromatography ($50 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$) to afford a yellow liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.43(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=8.7,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.52$ (dt, $J=15.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ (dddd, $J=15.6,7.7,2.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ (s, 2H), 2.80 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.50 (ddd, $J=17.1,8.0,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.29$ (ddd, $J=17.2,8.6,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-$ $1.68(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{dtt}, J=13.3,8.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.5,193.0,149.9$, 147.3, 143.3, 136.5, 131.1, 123.8, 68.6, 42.5, 40.1, 39.5, 16.0; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~N}$ [M$\mathrm{H}]^{+}: 314.1023$; found: 314.1038.

4-(1-(3-Methoxybenzyl)-2,6-dioxocyclohexyl)but-2-enal (1n):

Prepared according to the general procedure as described above in 48% yield ($806 \mathrm{mg}, E / Z=8: 1$). It was purified by flash chromatography ($40 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$) to afford a colourless liquid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.96(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$), 6.74 (ddd, $J=8.3,2.5$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dt}, J=11.2,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.88$ (ddt, $J=10.6,8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.11$ (dd, $J=8.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.07$ (s, 2H), 2.38 (ddd, J $=17.2,7.1,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.18(\mathrm{ddd}, J=17.1,9.7,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.57(\mathrm{dtt}, J=14.3,9.5,4.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$1.40(\mathrm{qdd}, J=11.6,6.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.9,191.1,159.8,145.0,136.7$, $132.4,129.9,122.1,115.5,113.1,68.8,55.3,45.9,40.74,3.48,15.7$; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+}: 301.1434$; found: 301.1428 .

4-(1-(3-Fluorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (10):

Prepared according to the general procedure as described above in 59% yield ($993 \mathrm{mg}, E / Z=20: 1$). It was purified by flash chromatography ($40 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$) to afford a yellow liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.43$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.26 - $7.20(\mathrm{~m}, 1 \mathrm{H}), 6.94(\mathrm{tdd}, J=8.5,2.6,0.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.70(\mathrm{dt}, J=9.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dt}, J=15.4,7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.08 (ddt, $J=15.6,7.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 2 \mathrm{H}), 2.84(\mathrm{dd}, J=7.6,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.45$ (ddd, $J=17.2$, $7.5,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{ddd}, J=17.2,9.2,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{dtt}, J=14.1,9.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{dtt}$, $J=14.2,7.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.2,193.3,162.8\left(\mathrm{~d}, J_{\mathrm{CF}}=246.19\right.$ $\mathrm{Hz}), 150.9,137.7\left(\mathrm{~d}, J_{\mathrm{CF}}=6.96 \mathrm{~Hz}\right), 136.4,130.4\left(\mathrm{~d}, J_{\mathrm{CF}}=8.27 \mathrm{~Hz}\right), 125.76\left(\mathrm{~d}, J_{\mathrm{CF}}=2.4 \mathrm{~Hz}\right), 117.0(\mathrm{~d}$, $\left.J_{\mathrm{CF}}=21.35 \mathrm{~Hz}\right), 114.7\left(\mathrm{~d}, J_{\mathrm{CF}}=20.65 \mathrm{~Hz}\right), 68.7,44.3,40.5,39.2,16.0 .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -112.1; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 289.1234$; found: 289.1229 .

4-(1-(3-Chlorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1p):

Prepared according to the general procedure as described above in 68% yield $(1.0 \mathrm{~g}, E / Z=>20: 1)$. It was purified by flash chromatography ($40 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$) to afford a colourless liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.33(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{dd}, J=$ $5.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{dt}, J=15.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{ddd}, J=15.6,7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 2 \mathrm{H})$, $2.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{ddd}, J=16.9,7.2,5.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.23(\mathrm{ddd}, J=17.1,9.2,5.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.60(\mathrm{ddt}, J=18.8,9.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{tdd}, J=12.7,7.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.8,193.1,150.9,137.3,136.1,134.3,129.9,129.8,128.1,127.7,68.5,43.6,40.1,38.7,15.9$; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$: 305.0939; found: 305.0932.

4-(1-(3-Bromobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1q):

Prepared according to the general procedure as described above in 74% yield ($1.2 \mathrm{~g}, E / Z=>20: 1$). It was purified by flash chromatography ($40 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.5$) to afford a colourless liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.42(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{ddd}, J=8.0,1.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.14$ $(\mathrm{m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dt}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dt}, J=15.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.07$ (ddt, $J=15.6,7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 2 \mathrm{H}), 2.83(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{ddd}, J=17.2,7.5$, $4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{ddd}, J=17.2,9.3,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{dtt}, J=14.1,9.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{dtt}, J=$ $14.2,7.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.1,193.3,150.9,137.7,136.4,132.9,130.9$, 130.4, 128.7, 122.9, 68.7, 44.1, 40.5, 39.1, 16.0;HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 349.0433$; found: 349.0428 .

4-(1-(3-Nitrobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1r):

Prepared according to the general procedure as described above in 52% yield ($819 \mathrm{mg}, \mathrm{E} / \mathrm{Z}=20: 1$). It was purified by flash chromatography ($50 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.3$) to afford a yellow liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.42(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.06$ (ddd, $\left.J=8.2,2.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.85(\mathrm{t}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.34(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{dt}, J=15.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.06$ (dd, $J=15.6,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 2 \mathrm{H}), 2.80(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.53$ (ddd, $J=17.1,8.1,5.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.36 (ddd, $J=17.1,8.6,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{tdd}, J=13.6,8.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{dtt}, J=18.6,8.1,5.1$ $\mathrm{Hz}, 1 \mathrm{H})$) ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.3$, 193.1, 150.0, 148.4, 137.7, 136.6, 136.4, 129.7, 124.9, 122.7, 68.7, 42.2, 40.0, 39.1, 16.2; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{~N}[\mathrm{M}-\mathrm{H}]:$: 314.1023; found: 314.1030 .

4-(1-(2-Chlorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1s):

Prepared according to the general procedure as described above in 66% yield ($1.0 \mathrm{mg}, E / Z=>20: 1$). It was purified by flash chromatography ($30 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.4$) to afford a colourless liquid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=7.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}$, $2 \mathrm{H}), 7.06(\mathrm{dd}, J=7.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dt}, J=15.5,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{ddt}, J=15.6,7.8,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.27(\mathrm{~s}, 2 \mathrm{H}), 2.90(\mathrm{dd}, J=7.4,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.61-2.49(\mathrm{~m}, 4 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.63$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 209.1,193.6,152.4,136.4,135.0,132.8,132.5,130.2,129.4$, 127.1, 68.9, 41.6, 40.0, 36.5, 16.7;HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Cl}[\mathrm{M}+\mathrm{H}]^{+}$: 305.0952; found: 305.0939 .

4-(1-(2-bromobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1t):

Prepared according to the general procedure as described above in 69% yield ($1.2 \mathrm{~g}, \mathrm{E} / \mathrm{Z}=>20: 1$). It was purified by flash chromatography ($30 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.5$) to afford a colourless liquid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.32(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{td}, J=7.5$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dt}, J=15.5,7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.00(\mathrm{dd}, J=15.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 2 \mathrm{H}), 2.86(\mathrm{dd}, J=7.4,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.47(\mathrm{~m}, 4 \mathrm{H})$, $1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{tdd}, J=15.0,10.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.9$, 193.5, 152.4, 136.2, 134.5, 133.5, 132.1, 129.4, 127.6, 125.6, 68.9, 43.4, 39.9, 36.3, 16.6; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}: 349.0438$; found: 349.0438 .

4-(1-(3,4-Dimethoxybenzyl)-2,6-dioxocyclohexyl)but-2-enal (1u):

Prepared according to the general procedure as described above in 58% yield ($957 \mathrm{mg}, \mathrm{E} / \mathrm{Z}=>20: 1$). It was purified by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.3$) to afford a colourless liquid; ${ }^{1} \mathrm{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.96(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51(\mathrm{dd}, J=8.2,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{dt}, J=11.2,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{ddt}, J=11.1,8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{dd}, J=8.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{ddd}, J=17.2,7.2,4.6 \mathrm{~Hz}$, 2 H), 2.14 (ddd, $J=17.2,9.6,5.1 \mathrm{~Hz}, 2 \mathrm{H}$), 1.56 (ddq, $J=18.9,9.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{dtt}, J=10.3$, 7.2, 5.1 Hz, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.4,191.1,148.9,148.4,144.9,132.4,127.6,122.0$, $112.8,111.2,68.9,56.0,55.9,45.8,40.9,34.7,15.7$; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$: 331.1540; found: 331.1531.

4-(1-(2,3-Dichlorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1v):

Prepared according to the general procedure as described above in 54% yield ($912 \mathrm{mg}, \mathrm{E} / \mathrm{Z}=20: 1$). It was purified by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.3$) to afford a colourless liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.16(\mathrm{dt}, J=11.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=11.2,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.32(\mathrm{~s}, 2 \mathrm{H}), 3.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.56-2.52(\mathrm{~m}, 4 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{td}, J=14.7,7.9$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.8,193.5,151.9,136.4,135.2,134.0,133.4,130.4,130.1$, 127.3, 68.6, 41.8, 39.9, 36.6, 16.6; HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{Cl}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 339.0549$; found: 339.0557.

4-(1-(Naphthalen-1-ylmethyl)-2,6-dioxocyclohexyl)but-2-enal (1w):

Prepared according to the general procedure as described above in 60% yield ($960 \mathrm{mg}, \mathrm{E} / \mathrm{Z}=20: 1$). It was purified by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.2$) to afford a colourless liquid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.37(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82$ (dd, $J=8.2,0.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.49(\mathrm{dt}, J=15.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=15.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 3.03(\mathrm{dd}, J=$ $7.6,0.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.30 (ddd, $J=17.0,6.4,4.5 \mathrm{~Hz}, 2 \mathrm{H}$), 1.83 (ddd, $J=21.8,10.4,5.2 \mathrm{~Hz}, 2 \mathrm{H}$), $1.45-$ $1.35(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.18(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.0,193.5,151.9,136.3,133.9$, 131.9, 131.7, 128.9, 128.8, 128.7, 126.7, 126.1, 125.3, 123.8, 69.1, 42.3, 40.7, 38.8, 15.7; HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~N}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 338.1750 ; found: 338.1754.

4-(2,6-dioxo-1-(Thiophen-2-ylmethyl)cyclohexyl)but-2-enal (1x):

Prepared according to the general procedure as described above in 63% yield ($869 \mathrm{mg}, \mathrm{E} / \mathrm{Z}=20: 1$). It was purified by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.3$) to afford a orange liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.39(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.67 (d, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.53$ (dt, $J=15.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.04$ (ddd, $J=15.6,7.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.31$ (s, $2 \mathrm{H}), 2.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.50-2.33(\mathrm{~m}, 4 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.9,193.2,150.8,136.8,136.1,127.9,127.1,125.2,68.8,40.1,38.9,37.5$, 16.0; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 277.0892$; found: 277.0906 .

4-(1-(Furan-2-ylmethyl)-2,6-dioxocyclohexyl)but-2-enal (1y):

Prepared according to the general procedure as described above in 55% yield ($791 \mathrm{mg}, \mathrm{E} / \mathrm{Z}=17: 1$). It was purified by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.3$) to afford a orange liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{dd}, J=1.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{dt}, J=15.4$, $7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{dd}, J=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.08-5.99(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H}), 2.79(\mathrm{dd}, J=7.5,1.2$ $\mathrm{Hz}, 2 \mathrm{H}), 2.55-2.44(\mathrm{~m}, 4 \mathrm{H}), 1.71(\mathrm{qd}, J=6.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.2$, 193.4, 151.6, 149.4, 142.2, 136.1, 110.8, 108.9, 67.4, 39.4, 37.6, 36.5, 16.5; HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}: 261.1121$; found: 261.1125 .

4-(1-methyl-2,5-dioxocyclopentyl)but-2-enal (1z):

Prepared according to the general procedure as described above in 50% yield ($450 \mathrm{mg}, \mathrm{E} / \mathrm{Z}=17: 1$). It was purified by flash chromatography ($60 \% \mathrm{EtOAc} /$ hexane; $\mathrm{R}_{f}=0.3$) to afford a orange liquid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.38(\mathrm{~d}, J=7.8,1 \mathrm{H}), 6.62(\mathrm{dd}, J=15.4,7.7,1 \mathrm{H}), 6.01$ (ddt, $J=15.6,7.8$, $1.3,1 \mathrm{H}), 2.88-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.72-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.53(\mathrm{dd}, J=7.6,1.3,2 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.7,193.3,150.5,136.2,56.0,36.3,35.0$, 19.9.HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 181.0865$; found: 181.0870 .

III. References:

1. (a) D. B. Ramachary, M. Kishor, Org. Biomol. Chem., 2008, 6, 4176.
2. X.-W. Li, A. Ear, L. Roger, Dr. N. Riache, A. Deville, B. Nay. Chem. Eur. J. 2013,19, 16389-16393.
3. C. Zhu, D. Wang, Y. Zhao, W. Sun, and Z. Shi, J. Am. Chem. Soc. 2017, 139, 16486.
4. S. B. Thopate, L. R. Magham, S. Dinda, R. Chegondi, Org. Lett. 2023, 25, 1072.

IV. X-Ray crystallographic data

X-ray crystallographic data for compound 9:

The purified compound 9 was dissolved in a mixed solvent of dichloromethane/n-hexane (1:3), and placed in a dark cabinet for slowly evaporation. Colorless crystals were collected after few days for X-ray analysis.

Figure caption: ORTEP diagram of compound 9 (KB690) compound with the atom-numbering. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius.

Crystal data for compound 9: $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{2}, M=294.37$, Monoclinic, space group $P 2_{1}(\mathrm{No} .4)$, a $=8.546(4) \AA, b=6.518(3) \AA, c=15.600(8) \AA, \alpha=90^{\circ}, \beta=105.428(9)^{\circ}, \gamma=90^{\circ}, V=837.6(7) \AA^{3}, Z=$ 2, $D_{\mathrm{c}}=1.167 \mathrm{~g} / \mathrm{cm}^{3}, F_{000}=316$, Bruker D8 QUEST PHOTON-III C7 HPAD detector, Mo-K α radiation, $\lambda=0.71073 \AA, T=100(2) \mathrm{K}, 2 \theta_{\max }=60^{\circ}, \mu=0.074 \mathrm{~mm}^{-1}, 17575$ reflections collected, 5101 unique $\left(\mathrm{R}_{\mathrm{int}}=0.0555\right)$, 200 parameters, $R 1=0.0440, w R 2=0.0899, R$ indices based on 3824 reflections with $\mathrm{I}>2 \sigma(\mathrm{I})\left(\right.$ refinement on $\left.F^{2}\right)$, Flack parameter $=0.3(5)$, Final $G o o F=1.051$, largest difference hole and peak $=-0.183$ and 0.236 e. \AA^{-3}. CCDC deposition number 2296090 contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

Data collection and Structure solution details: Single crystal X-ray data were collected at room temperature on a Bruker D8 QUEST equipped with a four-circle kappa diffractometer and PHOTONIII C7 HPAD detector. An I μ s microfocus Mo source ($\lambda=0.71073 \AA$) supplied the multi-mirror monochromated incident beam. A combination of Phi and Omega scans were used to collect the necessary data. Integration and scaling of intensity data were accomplished using SAINT program. ${ }^{1}$ The structures were solved by Direct Methods using SHELXS97 and refinement was carried out by full-matrix least-squares technique using SHELXL-2019/2. ${ }^{1-4}$ Anisotropic displacement parameters were included for all non-hydrogen atoms. All H atoms were positioned geometrically and treated as riding on their parent C atoms, with C-H distances of $0.93--0.97 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ for methyl atoms.CCDC deposition number 2296090 contains the supplementary crystallographic data for this paper which can be obtained free of charge at https://www.ccdc.cam.ac.uk/structures/

1. Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
2. G. M. Sheldrick, ActaCrystallogr., 2015, C71, 3-8.
3. C. B. Hübschle, G. M. Sheldrick and B. Dittrich, ShelXle: a Qt graphical user interface for SHELXL, J. Appl. Cryst., 2011, 44, 1281-1284.
4. Muller, P, Herbst-Imer, R, Spek, A. L, Schneider, T. R, and Sawaya, M. R. Crystal Structure Refinement: A Crystallographer's Guide to SHELXL. Muller, P. Ed. 2006 Oxford University Press: Oxford, New York, pp. 57-91.

V. ${ }^{1} \mathbf{H} \boldsymbol{\&}^{13} \mathbf{C}$ NMR Spectra

(2S,7aR)-2-Methoxy-7a-methyl-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2a):

H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-210.3
-188.5
-166.8
-154.8
-135.5

${ }^{3} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \begin{array}{c}110 \\ f 1(\mathrm{ppm})\end{array} & 100\end{array}$ 50 20 T $\xrightarrow[-10]{ }$
(2S,7aR)-2-Isopropoxy-7a-methyl-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2c):
${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
($00 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 carbaldehyde (2e):

$\stackrel{M}{i}$	$\begin{aligned} & \text { n } \\ & \stackrel{\infty}{\infty} \\ & \stackrel{1}{1} \end{aligned}$	$\begin{gathered} \text { N } \\ \underset{\sim}{1} \end{gathered}$	$\stackrel{\infty}{\infty}$

on on	

${ }^{13 \mathrm{C} \operatorname{CNR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)}$

il

${ }^{19} \mathrm{~F} \operatorname{NMR}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0](2S,7aR)-7a-(4-Chlorobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2j):

[^1](2S,7aR)-7a-([1,1'-Biphenyl]-4-ylmethyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3carbaldehyde (21):

${ }^{1} \operatorname{HMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(2S,7aR)-2-Methoxy-7a-(4-nitrobenzyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2m):

(

ハ

${ }^{{ }^{13} \mathrm{C} \text { NMR }\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)}$

(2S,7aR)-2-Ethoxy-7a-(3-methoxybenzyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2n):

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{lllllllllllllllllllllllllll}10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 \\ f 1(\mathrm{ppm})\end{array}$

Nì	$\begin{aligned} & \text { n } \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{gathered} \underset{\sim}{\dot{O}} \\ \end{gathered}$	

(2S,7aR)-7a-(3-Bromobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2q):

			1	17	1	1		1				1	1	10	1	1	1	1	1	1	1	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1

(2S,7aR)-2-Ethoxy-7a-(3-nitrobenzyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2r):

운

$\begin{array}{lllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ & & & & & & & & & & 10 \\ \text { f1 (ppm) }\end{array}$
(2S,7aR)-7a-(2-Chlorobenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2s):

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N

${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(2S,7aR)-7a-(3,4-Dimethoxybenzyl)-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2u):

1H NMR (400 MHz,CDCl)

${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(2S,7aR)-2-Ethoxy-7a-(naphthalen-1-ylmethyl)-7-oxo-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2w):

(2S,7aR)-2-Ethoxy-7-oxo-7a-(thiophen-2-ylmethyl)-2,4,5,6,7,7a-hexahydro-1H-indene-3-carbaldehyde (2x):

ハ

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

(2S,3aR)-3a-Benzyl-1-((Z)-3-(4-bromophenyl)-3-oxoprop-1-en-1-yl)-2-ethoxy-2,3,3a,5,6,7-hexahydro$4 H$-inden-4-one (5):

${ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Ethyl (E)-3-((2S,7aR)-7a-benzyl-2-ethoxy-7-oxo-2,4,5,6,7,7a-hexahydro-1H-inden-3yl)acrylate(6):

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\stackrel{\infty}{m}$

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{l}100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\end{array}$

~

(2S,7aR)-7a-Benzyl-2-ethoxy-7-oxo-N-(pyridin-2-yl)-2,4,5,6,7,7a-hexahydro-1H-indene-3carboxamide(8):

\square

${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4-(1-Methyl-2,6-dioxocyclohexyl)but-2-enal (1):

লু

$\stackrel{\text { ก }}{\stackrel{\text { n }}{\sim}} \stackrel{\infty}{\text { in }}$
i
 ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4-(2,6-Dioxo-1-propylcyclohexyl)but-2-enal (1d):

($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4-(1-(Cyclohexylmethyl)-2,6-dioxocyclohexyl)but-2-enal (1e):

4-(1-Allyl-2,6-dioxocyclohexyl)but-2-enal (1f):

¢	-
1	111

1	1	1	1	1	1	1		1	1		1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

4-(1-Benzyl-2,6-dioxocyclohexyl)but-2-enal(1g):

$126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

[^2]
4-(1-(4-Methylbenzyl)-2,6-dioxocyclohexyl)but-2-enal (1h):

$\underbrace{\text { Go }}$

$\begin{array}{lllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ \mathrm{f} 1\end{array}(\mathrm{ppm})$

4-(1-(4-Fluorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1i):

${ }^{1} \mathrm{H}$ NMR $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{\text { ¢ }}{\text { - }}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \text { no } \\ & \dot{0} \\ & \hline 1 \end{aligned}$	N		荘弟	¢	
1	1					1	¢1

${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{lllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ \text { f1 (ppm) }\end{array}$
$--112.1$

4-(1-(4-Chlorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1j):

$\stackrel{\infty}{\infty}$

$\stackrel{0}{0}$

4-(1-(4-Bromobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1k):

4-(1-([1,1'-Biphenyl]-4-ylmethyl)-2,6-dioxocyclohexyl)but-2-enal (11):

4-(1-(4-Nitrobenzyl)-2,6-dioxocyclohexyl)but-2-enal(1m):

セֻ̀	-	
1	\|	+

io
$\stackrel{\circ}{0}$

4-(1-(3-Methoxybenzyl)-2,6-dioxocyclohexyl)but-2-enal (1n):

[^3]
4-(1-(3-Fluorobenzyl)-2,6-dioxocyclohexyl)but-2-enal(10):

$\hat{\phi}$	
\|	

${ }^{13} \mathrm{C}$ NMR
($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

4-(1-(3-Chlorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1p):

 $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$

4-(1-(3-Bromobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1q):

4-(1-(3-Nitrobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1j):

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$\stackrel{\text { N }}{\stackrel{1}{1}}$

4-(1-(2-Chlorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1s):

($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4-(1-(2-bromobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1t):

il
$\stackrel{\circ}{\infty}$

($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4-(1-(3,4-Dimethoxybenzyl)-2,6-dioxocyclohexyl)but-2-enal (1u):

ó
$\stackrel{\hat{i}}{\stackrel{\rightharpoonup}{1}}$

[^4]4-(1-(2,3-Dichlorobenzyl)-2,6-dioxocyclohexyl)but-2-enal (1v):
Nö
 N.

N
$\stackrel{\infty}{\infty}$
$\stackrel{\oplus}{\stackrel{\circ}{i}}$
${ }^{13} \mathrm{CNMR}^{2}$
$\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

4-(1-(Naphthalen-1-ylmethyl)-2,6-dioxocyclohexyl)but-2-enal (1w):

$\stackrel{\circ}{\dot{H}}$	$\begin{aligned} & \stackrel{\varrho}{\ddot{\omega}} \\ & \stackrel{\sim}{1} \end{aligned}$	の लْ 피 M M M	ت'	
			।	

4-(2,6-dioxo-1-(Thiophen-2-ylmethyl)cyclohexyl)but-2-enal (1x):

4-(1-(Furan-2-ylmethyl)-2,6-dioxocyclohexyl)but-2-enal (1y):

लু

${ }^{1} \mathrm{H}$ NMR
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4-(1-methyl-2,5-dioxocyclopentyl)but-2-enal (1z):

守
$\underbrace{\circ}$

$\stackrel{\text { ́․ }}{i}$
$\stackrel{\text { m }}{\stackrel{\circ}{i}}$
俞

$\begin{array}{llllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^0]:

[^1]:

[^2]: $\begin{array}{lllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ f 1 & 100\end{array}$

[^3]:

[^4]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \begin{array}{l}100 \\ f 1(\mathrm{ppm})\end{array}\end{array}$

