Supporting Information for

NMR analysis of ¹⁵N-labeled naphthyridine carbamate dimer (NCD) to contiguous CGG/CGG units in DNA

Takeshi Yamada,^{a, b} Shuhei Sakurabayashi,^a Noriaki Sugiura,^a Hitoshi Haneoka,^b and Kazuhiko Nakatani^{a*}

^a Department of Regulatory Bioorganic Chemistry, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047. JAPAN.

^b Current address: Nucleotide and Peptide Drug Discovery Center, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, Tokyo 113-8519, Japan.

^c Comprehensive Analysis Center, SANKEN, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047. Japan.

Supporting Figures	3
Experimental section	5
	2

Supporting Figures

 Table S1. The synthetic studies of the amination reaction on 2-chloro-7-methyl-1,8-naphthyridine. Entry 4 is used for the preparation of 2-[¹⁵N]amino-7-methyl-1, 8-naphthyridine.

$$\begin{array}{c} & & & \\ & & & \\ & & & \\ & &$$

Entry	Amine source	Х	Eq of X	additive	Time	Yield
					(h)	(%)
1	22% NH₃aq	NH ₂	100	-	12	ND
2	22% NH₃aq	NH ₂	100	-	24	8
3	22% NH₃aq	NH ₂	100	Cu (1 eq)	24	55
4	22% ¹⁵ NH₃aq	¹⁵ NH ₂	15	Cu (1 eq)	24	40

Scheme. S1 Synthesis of ¹⁵N-NCD

Fig. S1 The enlarged view of ¹H-NMR spectrum of (A) Boc-protected ¹⁵N-NCD, and (B) Boc-protected NCD

Experimental section

General. Reagents and solvents were purchased from standard suppliers and used without further purification. Reactions were monitored with TLC plate silica gel 60 F_{254} . Spots on TLC were monitored with UV, phosphomolybdic acid, ninhydrin, or anisaldehyde. A C-200 Silica gel was used for silica gel flash chromatography. NMR spectra were measured with 600 MHz (JEOL) or 700 MHz (Bruker). NMR spectra were analyzed by Delta for Mac (JEOL, version 6.0) or Topspin for Mac (Bruker, version 4.1.4). The multiplicity was expressed as follows; s = singlet, d = doublet, t = triplet, m = multiplet, br = broad. The chemical shifts are expressed in ppm relative to residual solvent as an internal standard, and coupling constants (*J* values) were represented in hertz.

Preparation of 2-amino(¹⁵N)-1,8-naphthyridine. To prepare ¹⁵N-NCD, the synthesis method for 2amino(¹⁵N)-1,8-naphthyridine (1) was investigated. (Table S1) 2-Chloro-1,8-naphthyridine was selected as the precursor to compound 1. Preliminary synthetic investigations were performed using unlabeled aqueous ammonia. When 2-chloro-1,8-naphthridine was treated with aqueous ammonia at 100 °C in a sealed tube for 12 h, 2-amino-1,8-naphthyridine was not detected. Even reaction time was extended to 24 h, the yield of 2-amino-1,8-naphthyridine was only an 8% yield. (Entry 2) Next, referring to the synthesis study demonstrating the copper (0) catalyzing nucleophilic substitution reaction of 2,6-dichloro-isoniconitic acid using ammonia,¹ 1.0 equivalent copper powder was incorporated into the reaction conditions. The yield was drastically improved to 55%. (Entry 3)

Chemical Formula: C₉H₉N₃ Exact Mass: 159.07965 Molecular Weight: 159.19200

2-amino-7-methyl-1,8-naphthyridine. 2-Chloro-7-methyl-1,8-naphthyridine (100 mg, 0.560 mmol) and copper powder (35 mg, 0.550 mmol) were added to 6 M NH₃aq (22wt%, 60 mmol, 10 mL) in a sealed tube. Then the mixture was stirred for 24 h at 100 °C. The reaction mixture was filtered with celite. The celite was washed with 1 M NaOHaq. Then, all filtrate was recovered, and extracted with

CHCl₃. The organic layer was collected, dried with anhydrous MgSO₄, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel eluted with CHCl₃/MeOH = 20/1 to give 2-amino-7-methyl-1,8-naphthyridine (49 mg, 0.307 mmol, 55%) as a white solid. ¹H-NMR (600 MHz, CDCl₃) δ 7.83 (d, J = 3.0 Hz, 1H), 7.82 (d, J = 3.0 Hz, 1H), 7.08 (d, J = 8.5 Hz, 1H), 6.72 (d, J = 8.5 Hz, 1H), 5.10-4.90 (br, 2H), 2.69 (s, 3H).

Chemical Formula: C₉H₉N₂¹⁵N Exact Mass: 160.07668 Molecular Weight: 160.18511

2-[^{*15*}N]**amino-7-methyl-1, 8-naphthyridine.** 2-Chloro-7-methyl-1,8-naphthyridine (101 mg, 0.565 mmol) and copper powder (38 mg, 0.598 mmol) were added to 6 M ¹⁵NH₃aq (22wt%, 9.0 mmol, 1.5 mL) in a sealed tube. Then, the mixture was stirred for 24 h at 100 °C. After cooling the mixture to room temperature, the reaction mixture was filtered with celite. The celite was washed with 1 M NaOHaq. All filtrate was recovered, and extracted with CHCl₃. The obtained organic layer was dried with anhydrous MgSO₄, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel, eluted with CHCl₃/MeOH = 20/1 to give 2-[¹⁵N]amino-7-methyl-1, 8-naphthyridine (37 mg, 0.230 mmol, 40%) as white solid; ¹H-NMR (700 MHz, CDCl₃) δ 7.83 (d, J = 3.8 Hz, 1H), 7.82 (d, J = 3.8 Hz, 1H), 7.11 (d, J = 8.0 Hz, 1H), 6.74 (d, J = 8.0 Hz, 1H), 5.01 (d, J = 86.9 Hz, 2H), 2.69 (s, 3H); ¹³C-NMR (175 MHz, CDCl₃) δ 162.2, 159.3, 159.2, 156.2, 138.0, 136.1, 118.9, 115.3, 111.3, 111.2, 25.4; ¹⁵N-NMR (175 MHz, CDCl₃) δ 84.0; HR-ESI-MS *m/z* calcd for C₉H₁₀N₂¹⁵N [M+H]⁺ 161.0840, found 161.0837.

Chemical Formula: $C_{31}H_{37}N_5^{15}N_2O_6$ Exact Mass: 605.27460 Molecular Weight: 605.66622

¹⁵N-NCD-Boc. To the solution of tert-butyl bis(3-(succinimidyloxycarbonyloxy)-propyl)carbamate (96 mg, 0.18 mmol) in CH₂Cl₂ (10 mL) was added 2-[¹⁵N]amino-7-methyl-1,8-naphthyridine (76 mg, 0.47 mmol) and triethylamine (1.6 mL, 11.5 mmol) at room temperature. The solution was stirred for 30 min at room temperature and then refluxed overnight. Then the solution was cooled to room temperature, diluted with CHCl₃, and washed with saturated NaHCO₃aq. The organic layer was collected, dried with anhydrous MgSO₄, filtered, and evaporated under reduced pressure. The crude product was purified by column chromatography on silica gel, eluted with AcOEt/MeOH = 100/0, 100/2, 100/4, 100/6, and then CHCl₃/MeOH = 100/2 to give ¹⁵N-NCD-Boc (26 mg, 0.0430 mmol, 23%) as a white solid; ¹H-NMR (700 MHz, CDCl₃) δ 8.28 (d, J = 9.1 Hz, 2H), 8.13 (d, J = 9.1 Hz, 2H), 7.99 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 88.6 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 4.27 (t, J = 6.2 Hz, 4H), 3.45-3.30 (br, 4H), 2.75 (s, 6H), 2.00-1.90 (br, 4H), 1.47 (s, 9H); ¹⁵N-NMR (175 MHz, CDCl₃) δ 127.2; ¹³C-NMR (175 MHz, CDCl₃) δ 163.2, 155.4, 154.7, 154.6, 153.3, 153.1, 153.0, 139.0, 136.4, 121.3, 118.0, 112.6, 79.9, 63.7, 63.5, 44.4, 44.2, 28.4, 28.2, 27.7, 25.6; HR-ESI-MS m/z calcd for C₃₁H₃₇N₅¹⁵N₂O₆[M+H]⁺ 606.2819, found 606.2818.

Chemical Formula: C₂₆H₂₉N₅¹⁵N₂O₄ Exact Mass: 505.22217 Molecular Weight: 505.54922

¹⁵N-NCD. To the solution of ¹⁵N-NCD-Boc (24.8 mg, 0.0411 mmol) in CHCl₃ (2 mL) was added 4 M HCl/AcOEt (10 mL) at 0 °C. The solution was stirred for 1 hour at room temperature. Then the reaction mixture of ¹⁵N-NCD was further purified using RP-HPLC using 0.1% AcOH in H₂O and acetonitrile. To the solution of ¹⁵N-NCD in H₂O (3 mL) was added 1 M HClaq dropwise. This process was three times for salt exchange, and freeze-dried to give ¹⁵N-NCD +HCl (13.1 mg, 59%) ¹H-NMR (600 MHz, D₂O) δ 8.54 (d, J = 8.2 Hz, 2H), 8.25 (d, J = 8.9 Hz, 2H), 8.01 (d, J = 8.9 Hz, 2H), 7.53 (d, J = 8.2 Hz, 2H), 4.25 (t, J = 5.5 Hz, 4H), 3.15 (t, J = 7.2 Hz, 4H), 2.74 (s, 6H), 2.07-2.03 (m, 4H); ¹⁵N-NMR (175 MHz, D₂O) δ 123.1; ¹³C-NMR (175 MHz, D₂O) δ 159.5, 156.7, 156.6, 154.0, 153.8, 147.1, 147.1, 145.6, 140.0, 122.1, 119.1, 116.0, 116.0, 63.6, 45.3, 24.9, 20.2; HR-ESI-MS *m/z*: calcd for C₃₁H₃₇N₅¹⁵N₂O₆ [M+H]⁺ 506.2295, found 506.2331.

¹³C-NMR of **2-**[¹⁵N]amino-7-methyl-1, 8-naphthyridine in CDCl₃

COSY of 2-[¹⁵N]amino-7-methyl-1, 8-naphthyridine in CDCl₃

¹⁵N-NMR of **2-**[¹⁵N]amino-7-methyl-1, 8-naphthyridine in CDCl₃

¹H-¹⁵N HSQC of **2-**[¹⁵N]amino-7-methyl-1, 8-naphthyridine in CDCl₃

¹H-NMR spectrum of ¹⁵N-NCD-Boc in CDCl₃

¹³C-NMR spectrum of ¹⁵N-NCD-Boc in CDCl₃

COSY spectrum of 15 **N-NCD-Boc** in CDCl₃

¹⁵N-NMR spectrum of ¹⁵N-NCD-Boc in CDCl₃

С

¹H-NMR spectrum of ¹⁵N-NCD in D_2O

17

 $^{13}\text{C-NMR}$ spectrum of $^{15}\text{N-NCD}$ in $D_2\text{O}$

 $^{15}\text{N-NMR}$ spectrum of $^{15}\text{N-NCD}$ in D_2O

COSY spectrum of 15 N-NCD in D₂O (The aromatic region)

 B. Brodbeck, B. Püllmann, S. E. Schmitt and M. Nettekoven, *Tetrahedron Lett.*, 2003, 44, 1675–1678, 'Parallel iterative solution-phase synthesis of 5-amino-1-aryl-[1,2,4]triazolo[1,5a]pyridine-7-carboxylic acid amide derivatives'.