Electronic Supplementary Information

Radical 1,4-aryl remote migration enables nickel-catalyzed cross-electrophile coupling of β-bromo-α-benzylamino acid esters with vinyl triflates

Yin-Ling Liu,[‡] Jian Liu,[‡] Xin-Yu Li, Peng He, Yu-Xuan Liu, Mei Xiang, Shi Tang*

College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000 (China)

Email: stang@jsu.edu.cn

Contents

General Information	S2
General procedure	S3
Optimization of the reaction conditions	S5
Characterization of new compounds	S7
Control experiments	S20
References	S23
NMR Spectra	S24

General Information

All manipulations of oxygen- and moisture-sensitive materials were conducted with a Schlenk technique under a nitrogen atmosphere. Solvents were purified and dried in a standard manner, and DMA was continuously refluxed and freshly distilled from dried over CaH₂ before we use it. All commercially available reagents were purchased from Shanghai Aladdin Biochemical Technology Co., Ltd and Anhui Senrise Technology Co., Ltd. Flash column chromatography was performed using EM Silica gel 60 (CCIS, 200-400 mesh). Visualization was accomplished with UV light (254 nm) and/or an aqueous alkaline KMnO₄ solution followed by heating. Conversion was monitored by thin layer chromatography (TLC) using TLC silica gel 60 F254 from Hailang. Zinc powder (Aladdin) was activated with hydrochloric acid before used. Amino acid esters bromides were prepared according to literature procedures.¹⁻³

¹H NMR, ¹³C NMR spectra were recorded at 25 °C on Bruker 400 or 500 MHz NMR spectrometer with trimethylsilane resonance as the internal standard. Chemical shifts are given in ppm. The spectra are calibrated to the residual 1H and 13C signals of the solvents. Multiplicities are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), doublet-doublet (dd), quintet (quint), septet (sept), multiplet (m), and broad (br). Infrared spectra were recorded on a MAGNA-IR550 spectrometer. HRMS was measured on an electrospray ionization (ESI) apparatus using time-of-flight (TOF) mass spectrometer.

General procedure

Synthesis of vinyl triflates (2a - 2p).⁴

All glassware and reagents are dry. Transfering DCM (30mL) to Schlenk tube with scratch cap (200 mL), and weighing 1.696g of sodium carbonate (1.6 equiv) floating in it, cyclohexanone (10mmol 1 equiv) is transferred to the Schlenk tube. Note: After the above operation is completed, sealing it tightly and injecting nitrogen gas. Adding the trifluoromethanesulfonic anhydride dropwise into the reaction tube under vigorous stirring for ten minutes at 0 °C, subsequently, placeing the reaction tube in an ice water bath, the reaction mixture was slowly warmed to rt and stirred for 18 hours, followed by dilution with DCM (10 mL), quenching with water (10 mL) and extraction with DCM (3 × 10 mL). The combined organic phases were washed with saturated aqueous solution of NaHCO3 (2 × 10 mL) and brine (2 × 10 mL). The organic phase was dried over anhydrous MgSO4, concentrated in vacuo. Purified by column chromatography (SiO2, n-hexane) afforded 2a (67% yield, 1.55g) as a pale - chartreuse oil. (2c-2q are shown in the following figure).

General procedure for sequential rearrangement and cross-electrophile coupling by using vinyl triflates.

To a Schlenk tube with screw-cap was added amino acid ester bromide 1 (0.3 mmol, if solid), vinyl triflates 2 (0.2 mmol, if solid), NiBr₂(dme) (10% mmol), 2,2':6',2"-Terpyridine (12mmol%), MgCl₂ (2 equiv), Zn power (2 equiv), DABCO (1 equiv), and melamine (0.5 equiv). The tube was evacuated and back-filled with nitrogen (this process was repeated three times), DMA (2.5mL) were added consecutively via syringe with amino acid ester bromides 1 (0.2 mmol, if liquid) and vinyl triflates 2 (0.3 mmol, if liquid). The resulting mixture was bubbled with nitrogen to degas for 1 min and stirred at 35 °C temperature for 24 h (heating by oil bath). Note: a stirring speed above 800 rpm is highly important for reproducibility. The resulted mixture was filtered through a short plug of silica gel to remove metal salts, and diluted with Et₂O (50 mL). The filtrate was poured into a separatory funnel and partitioned with brine (30 mL). The aqueous layer was then extracted with diethyl ether (3 × 20 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (eluent: n-Hex/ethyl acetate) to afford the corresponding compounds (**3aa-3az**).

Optimization of the reaction conditions

Table S1. Optimization of the reaction conditions^a

Entry	Change from the standard conditions	3aa yield (%) ^b	3aa' yield (%) ^b
1	None	72	trace
2	L2 instead of L1	18	trace
3	L3 instead of L1	55	trace
4	L4 instead of L1	53	trace
5	L5 instead of L1	57	trace
6	L6 instead of L1	48	trace
7	L7 instead of L1	60	trace
8	L8 instead of L1	21	trace
9	L9 instead of L1	28	trace
10	CH ₃ CN instead of DMA	36	trace
11	NMP instead of DMA	38	trace

12	1,4-Dioxane instead of DMA	11	trace
13	DMSO instead of DMA	32	trace
14	THF instead of DMA	18	trace
15	DIPA instead of DABCO	66	trace
16	K ₃ PO ₄ instead of DABCO	20	trace
17	K ₂ CO ₃ instead of DABCO	12	trace
18	Et ₃ N instead of DABCO	10	trace
19	NiCl ₂ (dme) instead of NiBr ₂ (dme)	54	trace
20	NiCl ₂ (PPh ₃) ₂ instead of NiBr ₂ (dme)	46	trace
21	Ni(dppf)Cl ₂ instead of NiBr ₂ (dme)	38	trace
22	PdCl ₂ (PPh ₃) ₂ instead of NiBr ₂ (dme)	23	trace
23	Pd(OAc) ₂ instead of NiBr ₂ (dme)	24	trace
24	25 °C instead of 35 °C	63	trace
25	55 °C instead of 35 °C	44	trace
26	without MgCl ₂	13	trace
27	without melamine	52	trace

^aStandard conditions : **1a** (0.3 mmol), **2a** (0.2 mmol), NiBr₂(dme) (10 mol %), **L1** (12 mol %), Zn (2 equiv), MgCl₂ (2 equiv), DACBO (1 equiv), melamine **4a** (0.5 equiv) and DMA (2.5 mL) at 35 °C under a N₂ atmosphere for 24 h. The yields were determined by GC analysis using an internal standard and isolated yield in parentheses. DMA= dimethyl acetamide, DIAP = diisopropylamine, NMP = N-methylpyrrolidone, DMF = dimethyllformamide. The diastereomeric ratio (dr) and regioselective ratio (rr) were determined using ¹H NMR analysis.

Characterization of new compounds

Generation of New compounds via cross-electrophile coupling of β -bromo amino acid esters with cyclohex-1-en-1-yl trifluoromethanesulfonate.

Methyl N-benzyl-N-(cyclohex-1-en-1-ylmethyl)phenylalaninate (3aa):

Yield = 72% (52.46 mg), yellow oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 60/1). R_f: 0.45

¹**H** NMR (500 MHz, CDCl₃): δ 7.29 (d, J = 7.1 Hz, 4H), 7.25 – 7.20 (m, 4H), 7.19 – 7.13 (m, 2H), 5.33 (t, 1H), 3.86 (d, J = 13.8 Hz, 2H), 3.67 (s, 3H), 3.47 – 3.39 (m, 3H), 2.40 – 2.23 (m, 2H), 2.02 – 1.83 (m, 1H), 1.60 – 1.14 (m, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 173.5, 139.8, 133.7, 129.0, 128.1, 126.9, 124.3, 58.9, 54.3, 51.0, 38.4, 27.3, 25.4, 22.8, 22.4.

HRMS: calcd for C₂₄H₂₉NO₂; [M+H]⁺ 364.2271, found: 364.2273

Methyl 2-((4-chlorobenzyl)(cyclohex-1-en-1-ylmethyl)amino)-3-(4chlorophenyl)propanoate (3ab):

Yield = 50% (43.11 mg), colorless oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 60/1). R_f: 0.42

¹**H** NMR (500 MHz, CDCl₃): δ 7.29 (d, J = 2.0 Hz, 1H), 7.24 – 7.20 (m, 4H), 7.15 (dd, J = 8.5, 2.1 Hz, 2H), 7.07 (td, J = 8.1, 2.1 Hz, 1H), 5.41 (s, 1H), 4.10 (d, J = 2.0 Hz, 2H), 3.93 (d, J = 14.7 Hz, 1H), 3.77 (s, 3H), 3.60 (td, J = 7.7, 2.1 Hz, 1H), 2.50 (ddd, J = 68.4, 14.2, 7.8 Hz, 2H), 1.97 (s, 2H), 1.77 (s, 2H), 1.63 – 1.53 (m, 5H).

¹³C NMR (126 MHz, CDCl₃): δ 173.4, 138.5, 137.2, 134.2, 133.7, 132.1, 129.9, 129.0, 128.4, 127.7, 124.2, 61.7, 53.2, 51.2, 51.1, 38.3, 27.6, 25.4, 22.9, 22.3.

HRMS: calcd for C₂₄H₂₇Cl₂NO₂; [M+H]⁺ 432.1492, found: 432.1490

Methyl 2-((cyclohex-1-en-1-ylmethyl)(4-fluorobenzyl)amino)-3-(4fluorophenyl)propanoate (3ac):

Yield = 85% (68 mg), yellow oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 65/1). R_f : 0.48

¹**H** NMR (500 MHz, CDCl₃): δ 7.20 (ddd, J = 9.3, 5.7, 2.9 Hz, 4H), 6.94 – 6.87 (m, 4H), 5.31 (d, J = 3.7 Hz, 1H), 3.77 (d, J = 13.8 Hz, 2H), 3.67 (s, 3H), 3.42 – 3.35 (m, 3H), 2.37 – 2.22 (m, 2H), 1.90 (dd, J = 6.9, 3.5 Hz, 2H), 1.53 – 1.45 (m, 6H).

¹³C NMR (126 MHz, CDCl₃): δ 173.3, 163.2, 160.8, 135.3, 135.2, 133.6, 130.4, 130.3, 124.4, 115.0, 114.8, 58.8, 53.4, 51.1, 38.3, 27.3, 27.3, 25.3, 22.8, 22.4.

HRMS: calcd for C₂₄H₂₇F₂NO₂; [M+H]⁺ 400.2083, found: 400.2083

Methyl 2-((cyclohex-1-en-1-ylmethyl)(4-methylbenzyl)amino)-3-(p-tolyl)propanoate (3ad):

Yield = 86% (67.3 mg), colorless oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 65/1). R_f: 0.41

¹**H** NMR (500 MHz, CDCl₃): δ 7.31 – 7.28 (m, 4H), 7.15 (d, J = 7.7 Hz, 4H), 5.44 (s, 1H), 3.93 (d, J = 13.8 Hz, 2H), 3.78 (s, 3H), 3.57 (dd, J = 8.9, 6.7 Hz, 1H), 3.48 (d, J = 13.8 Hz, 2H), 2.37 (s, 6H), 2.04 (t, J = 15.2 Hz, 2H), 1.68 – 1.64 (m, 2H), 1.61 (s, 1H), 1.39 (s, 1H), 1.32 (d, J = 14.6 Hz, 4H).

¹³C NMR (126 MHz, CDCl₃): δ 173.8, 136.4, 136.3, 133.7, 129.0, 128.8, 125.1, 57.8, 54.1, 52.1, 51.7, 26.4, 25.4, 22.8, 22.2, 21.2.

HRMS: calcd for C₂₆H₃₃NO₂; [M+H]⁺ 392.2584, found: 392.2583

Methyl 2-((4-(tert-butyl)benzyl)(cyclohex-1-en-1-ylmethyl)amino)-3-(4-(tert-butyl)phenyl)propanoate (3ae):

Yield = 56% (52.8 mg), yellow oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 65/1). R_f: 0.43

¹**H** NMR (400 MHz, CDCl₃): δ 7.38 (d, J = 1.7 Hz, 1H), 7.35 (d, J = 4.1 Hz, 6H), 7.31 (d, J = 11.5 Hz, 1H), 5.46 (t, J = 3.8 Hz, 1H), 3.96 (s, 1H), 3.93 (s, 1H), 3.79 (s, 3H), 3.62 - 3.53 (m, 1H), 3.52 (d, J = 1.3 Hz, 1H), 3.48 (s, 1H), 2.49 - 2.41 (m, 1H), 2.40 - 2.32 (m, 1H), 2.06 (d, 1H), 2.03 (d, 1H), 1.68 - 1.52 (m, 6H), 1.36 (s, 18H).

¹³C NMR (101 MHz, CDCl₃): δ 173.7, 149.7, 136.8, 133.9, 128.7, 125.0, 124.3, 58.8, 53.8, 51.0, 38.4, 34.5, 31.5, 27.3, 25.4, 22.9, 22.4.

HRMS: calcd for C₃₂H₄₅NO₂; [M+H]⁺ 476.3523, found: 476.3521

Methyl 2-((3-chlorobenzyl)(cyclohex-1-en-1-ylmethyl)amino)-3-(3chlorophenyl)propanoate (3af):

Yield = 67% (116 mg), yellow oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 63/1). R_f: 0.39

¹**H NMR (500 MHz, CDCl₃):** δ 7.45 (d, J = 2.3 Hz, 2H), 7.30 (d, J = 6.4 Hz, 4H), 7.29 – 7.26 (m, 2H), 5.49 (s, 1H), 3.97 (s, 1H), 3.95 (s, 1H), 3.83 (s, 3H), 3.59 (d, J = 1.9 Hz, 1H), 3.56 (d, J = 3.9 Hz, 2H), 2.54 – 2.49 (m, 1H), 2.43 (d, J = 6.0 Hz, 1H), 2.14 (s, 1H), 2.08 (s, 1H), 1.71 – 1.67 (m, 4H), 1.67 – 1.63 (m, 3H), 1.34 (s, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 173.3, 141.7, 134.2, 133.5, 129.4, 129.2, 127.3, 127.1, 125.0, 58.9, 53.9, 51.2, 38.4, 27.3, 25.4, 22.8, 22.4.

HRMS: calcd for C₂₄H₂₇Cl₂NO₂; [M+H]⁺ 432.1492, found: 432.1493

Methyl 2-((cyclohex-1-en-1-ylmethyl)(2,6-dimethylbenzyl)amino)-3-(2,6-dimethylphenyl)propanoate (3ag):

Yield = 45% (37.8 mg), colorless oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 60/1). R_f: 0.39

¹**H NMR (500 MHz, CDCl₃):** δ 7.30 (s, 1H), 7.08 (t, J = 7.5 Hz, 2H), 7.00 (d, J = 7.5 Hz, 4H), 5.25 (s, 1H), 3.91 (d, J = 12.5 Hz, 2H), 3.77 (s, 3H), 3.49 (t, J = 7.3 Hz, 1H), 2.58 (dd, J = 14.5, 8.1 Hz, 1H), 2.32 (s, 12H), 1.90 (s, 2H), 1.60 (d, J = 17.8 Hz, 2H), 1.50 – 1.41 (m, 4H), 1.30 (s, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 173.5, 138.8, 134.6, 134.0, 128.2, 127.1, 123.2, 59.4, 51.0, 47.8, 36.6, 27.8, 25.3, 22.9, 22.3, 20.1.

HRMS: calcd for C₂₈H₃₇NO₂; [M+H]⁺ 420.2897, found: 420.2895

Methyl 2-((cyclohex-1-en-1-ylmethyl)(2,6-dichlorobenzyl)amino)-3-(2,6-dichlorophenyl)propanoate (3ah):

Yield = 47% (47.12 mg), colorless oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 60/1). R_f: 0.45

¹**H** NMR (500 MHz, CDCl₃): δ 7.30 (d, J = 3.2 Hz, 4H), 7.16 (t, J = 8.0 Hz, 2H), 5.34 (s, 1H), 4.30 (d, J = 12.7 Hz, 2H), 4.03 (d, J = 12.7 Hz, 2H), 3.76 (s, 3H), 3.45 (dd, J = 8.3, 5.9 Hz, 1H), 2.64 – 2.50 (m, 2H), 1.90 (s, 2H), 1.47 (h, J = 5.4 Hz, 4H), 1.32 – 1.29 (m, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 173.3, 137.8, 134.1, 134.0, 129.0, 128.4, 123.2, 60.5, 51.2, 49.0, 36.6, 28.2, 25.4, 23.0, 22.3.

HRMS: calcd for C₂₄H₂₅Cl₄NO₂; [M+H]⁺ 502.0683, found: 502.0681

Methyl N-(4-cyanobenzyl)-N-(cyclohex-1-en-1-ylmethyl)phenylalaninate (3ai):

Yield = 72% (84 mg), colorless oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 58/1). R_f: 0.29

¹**H NMR (500 MHz, CDCl₃):** δ 7.74 (td, J = 7.3, 6.3, 1.8 Hz, 2H), 7.64 (d, J = 7.6 Hz, 2H), 7.48 – 7.43 (m, 4H), 7.42 – 7.36 (m, 1H), 5.54 (d, J = 4.3 Hz, 1H), 4.15 (d, J = 14.6 Hz, 1H), 4.01 (dd, J = 14.3, 4.6 Hz, 1H), 3.90 (s, 3H), 3.78 (dd, J = 15.7, 5.2 Hz, 1H), 3.70 – 3.60 (m, 2H), 2.52 (dt, J = 14.7, 8.8 Hz, 2H), 2.13 (s, 2H), 1.73 (d, J = 14.2 Hz, 5H), 1.41 (s, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 173.2, 145.9, 138.9, 133.5, 132.0, 129.4, 129.0, 128.3, 127.3, 124.7, 119.1, 110.8, 59.3, 54.9, 53.9, 51.2, 38.4, 27.4, 25.4, 22.8, 22.4.

HRMS: calcd for C₂₅H₂₈N₂O₂; [M+H]⁺ 389.2224, found: 389.2220

Methyl2-(benzyl(cyclohex-1-en-1-ylmethyl)amino)-3-(4-chlorophenyl)propanoate (3aj):

Yield = 76% (60.1 mg), white solid oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 65/1). R_f: 0.37

¹**H NMR (500 MHz, CDCl₃):** δ 7.36 – 7.32 (m, 6H), 7.32 – 7.28 (m, 3H), 5.43 (s, *J* = 3.7 Hz, 1H), 3.92 (dd, *J* = 13.9, 2.1 Hz, 2H), 3.78 (s, 3H), 3.55 – 3.49 (m, 3H), 2.47 – 2.34 (m, 2H), 2.07 – 1.97 (m, 2H), 1.68 – 1.63 (m, 2H), 1.62 – 1.59 (m, 2H), 1.30 (d, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 173.5, 139.5, 138.4, 133.7, 132.6, 130.3, 129.0, 128.3, 128.2, 127.1, 124.5, 58.9, 54.4, 53.5, 51.2, 38.4, 27.3, 25.4, 22.8, 22.4.

HRMS: calcd for C₂₄H₂₈ClNO₂; [M+H]⁺ 398.1881, found: 398.1881

Methyl 2-(benzyl(cyclohex-1-en-1-ylmethyl)amino)-3-(4-(tertbutyl)phenyl)propanoate (3ak):

Yield = 61% (101.4 mg), yellow oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 65/1). R_f: 0.38

¹**H** NMR (500 MHz, CDCl₃): δ 7.59 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 8.0 Hz, 2H), 7.37 – 7.35 (m, 2H), 7.30 – 7.27 (m, 2H), 5.44 (s, 1H), 4.03 (d, J = 14.5 Hz, 1H), 3.88 (d, J = 13.7 Hz, 1H), 3.79 (s, 3H), 3.63 (d, J = 14.4 Hz, 1H), 3.58 – 3.51 (m, 2H), 2.49 – 2.35 (m, 2H), 2.03 (s, 2H), 1.65 – 1.57 (m, 6H), 1.35 (s, 9H).

¹³C NMR (126 MHz, CDCl₃): δ 173.5, 150.1, 144.4, 136.1, 133.7, 129.1, 128.7, 125.1, 125.1, 125.0, 124.5, 59.1, 54.3, 53.8, 51.2, 38.4, 34.5, 31.5, 27.3, 25.4, 22.9, 22.4.

HRMS: calcd for C₂₈H₃₇NO₂; [M+H]⁺ 420.2897, found: 420.2894

Methyl 2-((cyclohex-1-en-1-ylmethyl)(4-fluorobenzyl)amino)-3-(p-tolyl)propanoate (3al):

Yield = 71% (56.2 mg), yellow oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 60/1). R_f: 0.42

¹**H NMR (500 MHz, CDCl₃):** δ 7.25 – 7.20 (m, 2H), 7.18 – 7.12 (m, 2H), 7.03 (d, J = 7.8 Hz, 2H), 6.93 – 6.87 (m, 2H), 5.32 (d, J = 3.6 Hz, 1H), 3.79 (dd, J = 13.8, 5.4 Hz, 2H), 3.66 (s, 3H), 3.41 (d, J = 9.2 Hz, 2H), 3.38 – 3.33 (m, 2H), 2.25 (s, 3H), 1.94 – 1.85 (m, 2H), 1.51 – 1.45 (m, 5H), 1.27 – 1.16 (m, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 173.4, 163.1, 136.5, 135.5, 135.5, 133.7, 130.3, 128.9, 128.8, 124.3, 114.7, 58.8, 53.9, 53.4, 51.0, 38.3, 27.3, 25.4, 22.8, 22.4, 21.1.

HRMS: calcd for C₂₅H₃₀FNO₂; [M+H]⁺ 396.5259, found: 396.5253

Methyl 3-(4-(tert-butyl)phenyl)-2-((4-chlorobenzyl)(cyclohex-1-en-1ylmethyl)amino)propanoate (3am):

Yield = 76% (69 mg), yellow oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 60/1). R_f: 0.42

¹**H NMR (500 MHz, CDCl₃):** δ 7.36 – 7.30 (m, 3H), 7.30 (s, 1H), 7.28 (d, J = 7.7 Hz, 4H), 5.42 (t, J = 4.5 Hz, 1H), 3.90 (td, J = 13.1, 4.5 Hz, 2H), 3.77 (s, 3H), 3.70 – 3.66 (m, 1H), 3.54 – 3.46 (m, 3H), 2.48 – 2.32 (m, 2H), 2.01 (s, 2H), 1.58 (s, 2H), 1.39 (d, J = 4.7 Hz, 2H), 1.34 (s, 9H).

¹³C NMR (126 MHz, CDCl₃): δ 173.5, 149.9, 138.5, 136.4, 133.7, 132.5, 130.3, 128.7, 128.2, 125.1, 124.4, 58.9, 54.0, 53.6, 51.1, 38.4, 34.5, 31.4, 29.8, 27.3, 25.4, 22.4.

HRMS: calcd for C₂₈H₃₆ClNO₂; [M+H]⁺ 454.2507, found: 454.2505

Methyl 2-(benzyl(cyclohex-1-en-1-ylmethyl)amino)-3-(2,6dimethylphenyl)propanoate (3an):

Yield = 80 % (63 mg), yellow oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 65/1). R_f : 0.46

¹**H** NMR (500 MHz, Chloroform-d) δ 7.31 – 7.26 (m, 5H), 7.08 – 7.02 (m, 1H), 6.98 (d, J = 7.4 Hz, 2H), 5.43 (s, 1H), 3.92 (dd, J = 12.6, 2.5 Hz, 1H), 3.84 (d, J = 2.3 Hz, 1H), 3.77 (s, 3H), 3.62 – 3.55 (m, 2H), 3.52 (d, J = 7.5 Hz, 1H), 2.33 (d, J = 2.4 Hz, 6H), 1.98 (s, 2H), 1.54 – 1.49 (m, 5H), 1.32 – 1.29 (m, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 173.6, 139.8, 138.7, 134.8, 134.1, 129.6, 128.3, 127.9, 127.1, 126.8, 123.9, 59.5, 53.9, 51.0, 48.3, 38.0, 27.3, 25.4, 22.8, 22.3, 20.3.

HRMS: calcd for C₂₆H₃₃NO₂; [M+H]⁺ 392.2584, found: 392.2586

Methyl 2-((4-chlorobenzyl)(cyclopent-1-en-1-ylmethyl)amino)-3-(4chlorophenyl)propanoate (3ao):

Yield = 74% (122.9 mg), colorless oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 63/1). R_f: 0.33

¹**H NMR (500 MHz, CDCl₃):** δ 7.29 (t, J = 8.7 Hz, 8H), 5.35 (s, 1H), 3.86 (d, J = 14.0 Hz, 2H), 3.78 (s, 3H), 3.52 (d, J = 7.2 Hz, 2H), 3.49 (d, J = 5.7 Hz, 1H), 2.62 – 2.51 (m, 2H), 2.34 – 2.30 (m, 2H), 2.06 – 1.94 (m, 2H), 1.88 – 1.82 (m, 2H).

¹³C NMR (126 MHz, CDCl₃): δ 173.0, 140.3, 138.0, 132.8, 130.2, 128.4, 126.7, 59.4, 53.7, 51.2, 34.4, 32.5, 31.6, 23.4.

HRMS: calcd for C₂₃H₂₅Cl₂NO₂; [M+H]⁺ 417.1262, found: 417.1258

Methyl 2-((4-chlorobenzyl)(cyclohept-1-en-1-ylmethyl)amino)-3-(4chlorophenyl)propanoate (3ap):

Yield = 55% (98 mg), colorless oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 63/1). R_f: 0.38

¹**H NMR (500 MHz, CDCl₃):** δ 7.31 – 7.28 (m, 8H), 5.55 (t, *J* = 6.4 Hz, 1H), 3.86 (dt, *J* = 14.1, 3.0 Hz, 2H), 3.76 (dd, *J* = 5.4, 2.1 Hz, 3H), 3.68 – 3.58 (m, 1H), 3.50 – 3.45 (m, 2H), 2.50 – 2.34 (m, 2H), 2.05 (q, *J* = 5.7 Hz, 2H), 1.92 – 1.79 (m, 2H), 1.63 (s, 6H).

¹³C NMR (126 MHz, CDCl₃): δ 173.2, 140.0, 138.0, 132.7, 130.2, 129.5, 128.4, 59.5, 53.8, 51.1, 40.6, 32.3, 32.2, 28.4, 27.1, 26.5.

HRMS: calcd for C₂₅H₂₉Cl₂NO₂; [M+H]⁺446.1648, found: 446.1647

Methyl (E)-2-((4-chlorobenzyl)(cyclooct-1-en-1-ylmethyl)amino)-3-(4chlorophenyl)propanoate (3aq):

Yield = 50% (91.6 mg), colorless oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 63/1). R_f: 0.36

¹**H NMR (400 MHz, CDCl₃):** δ 7.30 (s, 8H), 5.56 (t, J = 6.4 Hz, 1H), 3.89 (s, 1H), 3.85 (s, 1H), 3.76 (s, 3H), 3.52 (s, 1H), 3.49 – 3.44 (m, 2H), 2.50 – 2.46 (m, 1H), 2.44 – 2.37 (m, 2H), 2.07 (dq, J = 6.6, 3.6, 2.6 Hz, 2H), 1.92 – 1.82 (m, 2H), 1.80 – 1.71 (m, 1H), 1.67 (dd, J = 9.1, 4.2 Hz, 1H), 1.62 (s, 1H), 1.45 (dd, J = 8.0, 4.9 Hz, 1H), 1.41 (dd, J = 8.4, 4.0 Hz, 1H), 1.29 (d, J = 4.7 Hz, 1H).

¹³C NMR (126 MHz, CDCl₃): δ 173.0, 138.0, 136.9, 136.3, 132.7, 130.7, 130.1, 130.0, 128.4, 128.3, 127.4, 59.4, 56.3, 53.8, 51.1, 37.3, 29.9, 28.4, 28.2, 26.5, 26.4, 26.1.

HRMS: calcd for C₂₆H₃₁Cl₂NO₂; [M+H]⁺ 460.1805, found: 460.1807

Methyl 2-((4-chlorobenzyl)((4-methylcyclohex-1-en-1-yl)methyl)amino)-3-(4-chlorophenyl)propanoate (3ar):

Yield = 62% (55.3 mg), light green oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 65/1). R_f: 0.42

¹**H NMR (500 MHz, CDCl₃):** δ 7.31 (s, 8H), 5.40 (s, 1H), 3.90 (s, 1H), 3.87 (s, 1H), 3.78 (s, 3H), 3.55 – 3.50 (m, 1H), 3.50 (d, J = 1.9 Hz, 2H), 2.47 – 2.41 (m, 1H), 2.44 – 2.39 (m, 1H), 2.09 (t, J = 11.7 Hz, 1H), 1.71 – 1.67 (m, 2H), 1.65 (s, 2H), 1.32 – 1.29 (m, 1H), 1.20 (td, J = 11.3, 4.1 Hz, 1H), 1.01 (t, J = 5.8 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 173.3, 138.1, 133.2, 132.8, 130.3, 128.4, 124.1, 59.0, 53.6, 51.2, 37.8, 34.1, 31.2, 28.4, 27.4, 21.8.

HRMS: calcd for C₂₅H₂₉Cl₂NO₂; [M+H]⁺ 446.1648, found: 446.1652

Methyl 2-((4-chlorobenzyl)((4-ethylcyclohex-1-en-1-yl)methyl)amino)-3-(4-chlorophenyl)propanoate (3as):

Yield = 68% (62.61mg), chartreuse oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 65/1). R_f: 0.38

¹**H NMR (500 MHz, CDCl₃):** δ 7.30 (t, J = 1.1 Hz, 8H), 5.40 (s, 1H), 3.90 (d, J = 2.0 Hz, 1H), 3.87 (d, J = 2.0 Hz, 1H), 3.78 (s, 3H), 3.52 (s, 1H), 3.49 (s, 1H), 2.48 – 2.43 (m, 1H), 2.42 – 2.38 (m, 1H), 2.16 – 2.09 (m, 1H), 1.77 – 1.73 (m, 1H), 1.67 (s, 1H), 1.65 (s, 2H), 1.38 – 1.35 (m, 2H), 1.33 (d, J = 3.9 Hz, 1H), 1.32 – 1.29 (m, 1H), 1.21 – 1.16 (m, 1H), 0.98 – 0.95 (m, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 173.2, 138.1, 133.5, 133.4, 132.7, 130.8, 130.3, 130.3, 128.4, 124.3, 124.1, 59.0, 53.7, 51.2, 38.2, 35.2, 31.9, 29.2, 28.8, 28.7, 27.6, 11.6.

HRMS: calcd for C₂₅H₂₉Cl₂NO₂; [M+H]⁺ 460.1805, found: 460.1805

Methyl 2-(((4-(tert-butyl)cyclohex-1-en-1-yl)methyl)(4-chlorobenzyl)amino)-3-(4-chlorophenyl)propanoate (3at):

Yield = 53% (102.9 mg), colorless oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 63/1). R_f: 0.3

¹**H NMR (500 MHz, CDCl₃):** δ 7.30 (d, J = 2.3 Hz, 8H), 5.42 (d, J = 5.2 Hz, 1H), 3.89 (d, J = 4.2 Hz, 1H), 3.86 (d, J = 4.2 Hz, 1H), 3.78 (s, 3H), 3.52 (d, J = 3.2 Hz, 1H), 3.49 (d, J = 2.7 Hz, 1H), 2.47 – 2.41 (m, 1H), 2.07 – 1.98 (m, 1H), 1.82 – 1.73 (m, 3H), 1.69 (d, J = 4.0 Hz, 1H), 1.63 (s, 1H), 1.29 (s, 1H), 1.28 – 1.20 (m, 1H), 1.13 (dq, J = 18.7, 6.7, 5.8 Hz, 1H), 0.93 (d, J = 4.6 Hz, 9H).

¹³C NMR (126 MHz, CDCl₃): δ 173.2, 138.1, 138.1, 133.5, 133.2, 132.8, 132.7, 130.4, 130.2, 128.3, 124.7, 59.0, 53.6, 51.2, 44.4, 44.0, 38.0, 37.6, 32.2, 29.0, 27.3, 24.1.

HRMS: calcd for C₂₈H₃₅Cl₂NO₂; [M+H]⁺488.2118, found: 488.2121

Methyl 2-((4-chlorobenzyl)((4,4-dimethylcyclohex-1-en-1-yl)methyl)amino)-3-(4-chlorophenyl)propanoate (3au):

Yield = 56% (102.7 mg), yellow oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 65/1). R_f: 0.33

¹**H** NMR (500 MHz, CDCl₃): δ 7.30 (d, J = 1.4 Hz, 8H), 5.34 (s, 1H), 3.89 (d, J = 14.0 Hz, 2H), 3.77 (s, 3H), 3.55 – 3.52 (m, 1H), 3.49 (s, 2H), 2.50 – 2.39 (m, 2H), 1.85 – 1.77 (m, 2H), 1.35 – 1.29 (m, 4H), 0.97 (s, 3H), 0.90 (s, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 173.2, 138.0, 132.8, 132.0, 130.3, 128.4, 123.6, 59.2, 53.7, 51.2, 39.4, 38.0, 35.6, 28.9, 28.5, 27.8, 25.3.

HRMS: calcd for C₂₆H₃₁Cl₂NO₂; [M+H]⁺460.1805, found:460.1803

Methyl 2-((4-chlorobenzyl)((3,3,5,5-tetramethylcyclohex-1-en-1yl)methyl)amino)-3-(4-chlorophenyl)propanoate (3av):

Yield = 55% (108 mg), yellow oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 65/1). R_f: 0.38

¹**H NMR (500 MHz, CDCl₃):** δ 7.31 (s, 8H), 5.18 (s, 1H), 3.89 (s, 1H), 3.86 (s, 1H), 3.78 (s, 3H), 3.53 (s, 1H), 3.50 (s, 1H), 3.47 (d, J = 7.4 Hz, 1H), 2.39 (d, J = 7.4 Hz, 2H), 1.63 (s, 2H), 1.32 (d, J = 4.0 Hz, 2H), 1.05 (s, 3H), 0.99 (s, 3H), 0.87 (s, 6H).

¹³C NMR (126 MHz, CDCl₃): δ 173.2, 138.1, 133.5, 132.8, 130.4, 129.5, 128.4, 59.1, 53.9, 51.1, 49.6, 41.5, 39.0, 32.4, 31.1, 30.7, 28.9.

HRMS: calcd for C₂₈H₃₅Cl₂NO₂; [M+H]⁺488.2118, found: 488.2115

Methyl 2-((4-chlorobenzyl)((3,5,5-trimethylcyclohex-1-en-1-yl)methyl)amino)-3-(4-chlorophenyl)propanoate (3aw):

Yield = 88% (74.1 mg), colorless oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 65/1). R_f: 0.5

¹**H NMR (500 MHz, CDCl₃):** δ 7.31 – 7.29 (m, 4H), 7.27 (d, J = 8.6 Hz, 4H), 5.17 (t, J = 6.8 Hz, 1H), 3.88 (s, 1H), 3.86 (s, 1H), 3.76 (s, 3H), 3.51 (s, 1H), 3.48 (d, J = 3.5 Hz, 1H), 3.45 (d, J = 7.7 Hz, 1H), 2.56 – 2.51 (m, 1H), 2.37 (d, J = 6.2 Hz, 1H), 1.97 (d, J = 6.7 Hz, 1H), 1.71 – 1.66 (m, 1H), 1.29 (s, 3H), 0.86 (t, J = 7.6 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 173.1, 138.0, 137.4, 132.7, 130.2, 128.4, 121.5, 59.5, 53.8, 51.2, 36.6, 22.0, 13.1, 12.6.

HRMS: calcd for C₂₃H₂₇Cl₂NO₂; [M+H]⁺ 420.1492, found: 420.1495

Methyl (E)-2-((4-chlorobenzyl)(2-propylpent-2-en-1-yl)amino)-3-(4chlorophenyl)propanoate (3ax):

Yield = 80% (68.8 mg), yellowish oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 65/1). R_f: 0.47

¹**H NMR (500 MHz, CDCl₃):** δ 7.30 (d, J = 1.4 Hz, 8H), 5.16 (t, J = 7.2 Hz, 1H), 3.89 (s, 1H), 3.86 (s, 1H), 3.77 (s, 3H), 3.52 (s, 1H), 3.49 (s, 1H), 3.48 – 3.46 (m, 1H), 2.55 – 2.48 (m, 1H), 2.37 (dd, J = 14.2, 8.1 Hz, 1H), 2.05 – 2.01 (m, 1H), 1.92 -1.86 (m, 1H), 1.66 – 1.60 (m, 1H), 1.26 (ddd, J = 9.1, 7.3, 4.0 Hz, 2H), 0.96 (t, J = 7.5 Hz, 3H), 0.82 (d, J = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃): δ 173.2, 138.0, 134.2, 132.7, 130.4, 130.3, 128.4, 59.3, 53.8, 51.2, 37.0, 31.1, 21.3, 21.2, 14.6, 14.1.

HRMS: calcd for C₂₅H₃₁Cl₂NO₂; [M+H]⁺ 448.1805, found: 448.1801

Methyl 2-((4-chlorobenzyl)(2,3-dimethylbut-2-en-1-yl)amino)-3-(4chlorophenyl)propanoate (3ay):

Yield = 83% (69.9 mg), yellowish oil. Purified by flash silica gel column chromatography through silica gel (n-Hex /ethyl acetate, 65/1). R_f: 0.5

¹**H NMR (500 MHz, CDCl₃):** δ 7.33 – 7.32 (m, 1H), 7.31 (s, 3H), 7.31 (s, 3H), 7.29 (d, J = 2.7 Hz, 1H), 3.90 (s, 1H), 3.87 (s, 1H), 3.79 (s, 3H), 3.55 (d, J = 7.6 Hz, 1H), 3.53 (d, J = 3.2 Hz, 2H), 3.50 (s, 1H), 2.01 – 1.95 (m, 1H), 1.01 (d, J = 6.8 Hz, 4H), 0.96 (d, J = 6.8 Hz, 5H).

¹³C NMR (126 MHz, CDCl₃): δ 172.8, 151.3, 137.9, 132.8, 130.2, 128.4, 109.5, 59.6, 53.9, 51.3, 35.0, 32.6, 21.8, 21.4.

HRMS: calcd for C₂₃H₂₇Cl₂NO₂; [M+H]⁺ 420.1492, found: 420.1495

Control experiments

Following the general procedure 2.2 : Using ethyl methyl 2-(bis(4-chlorobenzyl)amino)-3-bromopropanoate (128.7 mg, 0.3 mmol), cyclohex-1-en-1-yl trifluoromethanesulfonate (69 mg, 0.2mmol) and TEMPO reagents (62.5 mg, 0.4mmol), the compound 4 was obtained after purification by flash chromatography. (n-Hex/ethyl acetate = 63:1, 40.58 mg, Yield = 40%, white solid, R_f:)

2af (not observed)

HIGH RESLUTION MASS SPECTROMETRY REPORT

Sample No.	Formula (M)	Ion Formula	Measured m/z	Calc m/z	Diff (ppm)
102601	C27H37Cl2N2O3	$[\mathbf{M}]^+$	507.2177	507.2176	0.19
		[M-H]-			

¹**H** NMR (500 MHz, CDCl₃): δ 7.31 (s, 2H), 7.30 (s, 2H), 7.23 (d, J = 2.1 Hz, 2H), 7.22 (d, J = 2.0 Hz, 2H), 4.44 (dd, J = 10.3, 4.9 Hz, 1H), 3.68 (s, 3H), 3.65 (s, 1H), 3.40 (s, 1H), 3.37 (s, 1H), 2.96 (dd, J = 12.5, 10.3 Hz, 1H), 2.84 (dd, J = 12.5, 4.9 Hz, 1H), 2.84 (dd, J = 12.5, 4.9 Hz, 1H), 3.40 (s, 1H), 3.37 (s, 1H), 2.96 (dd, J = 12.5, 10.3 Hz, 1H), 2.84 (dd, J = 12.5, 4.9 Hz, 1H), 3.40 (s, 1H), 3.40 (

1H), 1.68 (s, 1H), 1.48 – 1.42 (m, 4H), 1.32 (s, 1H), 1.30 (d, *J* = 3.8 Hz, 1H), 1.15 (s, 3H), 1.10 (s, 3H), 1.08 (s, 3H), 1.02 (s, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 172.9, 137.3, 132.8, 130.4, 128.4, 59.5, 58.1, 54.6, 51.3, 40.2, 33.3, 20.0, 17.1.

References

1. R. Appel, Angew. Chem., Int. Ed., 1975, 14, 801-811.

2. H. Xu, C. Zhao, Q. Qian, W. Deng and H. Gong, Chem. Sci., 2013, 4, 4022-4029.

3. S. Tang, Z.-H. Xu, T. Liu, S.-W. Wang, J. Yu, J. Liu, Y. Hong, S.-L. Chen, J. Heand J.-H. Li, Angew. Chem., Int. Ed., 2021, 60, 21360-21367.

4. R. M. Oechsner, I. H. Lindenmaier and I. Fleischer, Org.Lett., 2023, 25, 1655-1660.

NMR Spectra

¹H NMR spectra of the product **3aa**:

¹³C NMR spectra of the product **3aa**:

¹H NMR spectra of the product **3ab**:

¹³C NMR spectra of the product **3ab**:

¹³C NMR spectra of the product **3ac**:

¹H NMR spectra of the product **3ad**:

¹³C NMR spectra of the product **3ad**:

¹H NMR spectra of the product **3ae**:

¹³C NMR spectra of the product **3ae**:

¹H NMR spectra of the product **3af**:

¹³C NMR spectra of the product **3af**:

¹H NMR spectra of the product **3ag**:

¹³C NMR spectra of the product **3ag**:

¹³C NMR spectra of the product **3ah**:

¹H NMR spectra of the product **3ai**:

¹³C NMR spectra of the product **3ai**:

¹H NMR spectra of the product **3aj**:

¹³C NMR spectra of the product **3aj**:

¹H NMR spectra of the product **3ak**:

¹³C NMR spectra of the product **3ak**:

¹³C NMR spectra of the product **3al**:

¹H NMR spectra of the product **3am**:

¹³C NMR spectra of the product **3am**:

¹H NMR spectra of the product **3an:**

¹³C NMR spectra of the product **3an**:

¹H NMR spectra of the product **3ao**:

¹³C NMR spectra of the product **3ao**:

¹H NMR spectra of the product **3ap**:

¹³C NMR spectra of the product **3ap**:

¹H NMR spectra of the product **3aq**:

¹³C NMR spectra of the product **3aq**:

¹³C NMR spectra of the product **3a**r:

¹H NMR spectra of the product **3as**:

¹³C NMR spectra of the product **3a**s:

¹H NMR spectra of the product **3at**:

¹³C NMR spectra of the product **3at**:

¹H NMR spectra of the product **3au**:

¹³C NMR spectra of the product **3au**:

¹H NMR spectra of the product **3av**:

¹H NMR spectra of the product **3aw**:

¹³C NMR spectra of the product **3aw**:

¹H NMR spectra of the product **3ax**:

¹³C NMR spectra of the product **3aw**:

¹H NMR spectra of the product **3ay**:

¹³C NMR spectra of the product **3ay**:

H-H COSY spectra of 3an:

