A MOF Nanoparticle@Carbon Aerogel Integrated Photothermal Catalytic Microreactor for CO₂ Utilization

Junyi Chen^a*, Lei Shao^b, Bing Zhang^b, Weiliang Tian^a, Yu Fu^b, Liying Zhang^b*

^a Engineering Laboratory of Chemical Resources Utilization in South Xinjiang,

College of Chemistry and Chemical Engineering, Tarim University, Xinjiang Uygur

Autonomous Region, Alaer, 843300, P. R. China

E-mail: sln5xn@163.com

^b Department of Chemistry, College of Sciences, Northeastern University, Shenyang

110819, China

Experimental section

Chemicals. Copper sulfate (CuSO₄·5H₂O), copper nitrate (Cu(NO₃)₂·3H₂O), potassium hydroxide (KOH) and 1,3,5-Benzenetricarboxylic acid (H₃BTC) were purchased from Energy Chemical (Shanghai). Carboxyl methyl cellulose (CMC) were purchased from Macklin Biochemical (Shanghai). Tetrabutylammonium bromide (TBAB) and styrene oxide were purchased from Sigma-Aldrich. 1, 4-dioxane and ethanol (C₂H₅OH) were purchased from Sinopharm Chemical Reagent Co., Ltd. The water used in this work was deionized water. All chemicals used in this work were analytical grade and without further purification.

Fabrication of Cu(OH)₂@CMC aerogel. 56.1 mg KOH 330 mg was dissolved in 25 mL H₂O, and 124 mg CuSO₄·5H₂O was dissolved in 5 mL H₂O. The Cu(OH)₂ colloidal solution can be obtained by adding the CuSO₄ solution to the stirred KOH solution drop by drop. Then 495 mg CMC was dissolved in above Cu(OH)₂ colloidal solution with stirring for 8 h to obtain the homogeneous mixed colloidal solution. And the Cu(OH)₂@CMC aerogel was formed after freeze-drying.

Fabrication of carbon aerogel (CuO@CA). The Cu(OH)₂@CMC aerogels were subsequently annealed at 400 $^{\circ}$ C for 2 h under Ar atmosphere to obtain the carbon aerogel (CuO@CA).

Fabrication of n-MOF@CA carbon aerogel. 14.5 mg (Cu(NO₃)₂·3H₂O) and 8.4 mg H₃BTC was dissolved in 1 mL mixed solvent of DMF and CH₃OH (V:V = 1:1). Then, the mixture is dripped and wetted onto the obtained CuO@CA (~1 cm³). And the carbon

aerogel with mixture subsequently was moved to the heating table at 120 °C, with the evaporation of the solvent, the carbon aerogel was dried to obtain n-MOF@CA carbon aerogel.

Catalytic ability of n-MOF@CA for CO₂ cycloaddition reaction. The n-MOF@CA was wetted by the mixture of 1.31 mmol styrene oxide and 0.1 mmol TBAB. And the n-MOF@CA was placed into a quartz vessel equipped with CO₂ atmosphere (1 atm). Then, the cycloaddition reaction system was irradiated with a Xe lamp for 12 h. After the reaction, the reactant was washed by 1,4-dioxane and analyzed by gas chromatography method.

Characterizations. Morphologies of samples were characterized by field-emission scanning electron microscopy (FESEM, Hitachi SU8010). The crystallographic information was analyzed by X-ray diffraction (XRD, PANalytical Empyrean) equipped with a Cu K α radiation source ($\lambda = 1.5406$ Å). The specific surface area was calculated by using the Brunauer-Emmett-Teller (BET, Micromeritics ASAP2020). The organic groups in the nanoporous metallic networks were characterized by Fourier transform infrared spectroscopy (FT-IR, Bruker VERTEX 70). Thermogravimetric analysis (TGA) was carried out with a thermobalance (TGA-2050, TA Instruments) under N₂ from room temperature to 600 °C with a temperature ramp of 10 °C min⁻¹.

Fig. S1 FT-IR spectra of CuO@CA and n-MOF@CA.

Fig. S2 The pore-size distribution curves of CuO@CA and n-MOF@CA.

Figure S3. The XPS analysis of n-MOF@CA.

Fig. S4 The high resolution XPS spectra of n-MOF@CA at (a) C region and (b) Cu region.

Fig. S5 The TGA curves of HKUST-1, CuO@CA and n-MOF@CA.

Fig. S6 Reflection spectrum of n-MOF@CA.

Fig. S7 Possible catalytic mechanism for CO_2 cycloaddition reaction by n-MOF@CA.