Phenylglycine Amphiphile-Metal Ion Chiral Supramolecular Nanozymes for Enantioselective Catalysis

Dongying Li,^{a†} Cong Gao, ^{a†} Cici Zhao, Qingqing Sun,^{a*} Zheng Xi,^{a*} Jie Han^{a*} and Rong Guo^a

^aYangzhou University, School of Chemistry and Chemical Engineering, Yangzhou, 225002 Jiangsu, China.

[†]These authors contributed equally.

Supporting Information

T	able	of Contents			
1	Experimental Section				
2		Synthesis of L- and D-PhgC ₁₆ S4			
3. Characterizations of (<i>P</i>)-D-PhgC ₁₆ -NR-Co(II) and (<i>M</i>)-L-PhgC ₁₆ -NR-Co(II)					
	3.1	Critical aggregation concentration of amphiphileSe			
	3.2	SEM images of (<i>P</i>)-D-PhgC ₁₆ -NR-Co(II) and (<i>M</i>)-L-PhgC ₁₆ -NR-Co(II)Se			
	3.3	CD characterizations of (<i>P</i>)-D-PhgC ₁₆ -NR-Co(II)Se			
	3.4	XRD patterns of (<i>P</i>)-D-PhgC ₁₆ -NR-Co(II)S7			
	3.5	FTIR spectra of (<i>P</i>)-D-PhgC ₁₆ -NR-Co(II)Si			
	3.6	Characterizations of (<i>P</i>)-D-PhgC ₁₆ -NR-M(II)St			
	3.7	Metal atomic analysisS			
	3.8	UV titration experiments for all the combinations of (<i>P/M</i>)-D/L-PhgC ₁₆ -NR and the metal saltsS10			
4. Kinetic experiments					
	4.1	Catalytic performance of (<i>P</i>)-D-PhgC ₁₆ -NR-Co(II) in different methanol/water solvent mixturesS12			
	4.2	Catalytic performance of (P)-D-PhgC ₁₆ -NR-M(II) in the presence of different amounts of M(II)S12			
	4.3	Time-dependent absorbance			
	4.4	Catalytic cycles			
	4.5	pH effectS17			
5	. (Chirality transfer from (<i>P/M</i>)-D/L-PhgC ₁₆ -NR-M(II) to D/L-DOPAS19			
6	E	EPR analysis			
7	. Binding affinity between (<i>P</i>)-D-PhgC ₁₆ -NR-Co(II) and DOPA enantiomers				
8	References				

1. Experimental Section

Materials

L- and D- phenylglycine (L-/D-Phg) palmitoyl chloride sodium bicarbonate (NaHCO₃), sodium hydroxide (NaOH), hydrochloric acid (HCl), tetrahydrofuran (THF), 3, 4-dihydroxy-L-phenylalanine (L-DOPA) and 3,4-dihydroxy-D-phenylalanine (D-DOPA) were purchased from Sigma-Aldrich. Copper nitrate trihydrate (Cu(NO₃)₂·3H₂O), cobalt chloride hexahydrate (CoCl₂·6H₂O), manganese chloride tetrahydrate (MnCl₂·4H₂O), zinc Chloride (ZnCl₂) were obtained from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China). Hydrogen peroxide (H₂O₂) were obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All the above reagents were of analytical grade and used without further purification. The water used in this study was deionized by Milli-Q Plus system (Millipore, France), having 18.2 MΩ electrical resistivity.

Synthesis of L- and D-PhgC₁₆

L-PhgC₁₆ was prepared according to a similar procedure previously reported in the literature.¹ L-phenylglycine (0.15 g, 1 mmol) was dissolved in the mixture of aqueous 1 M NaOH (1.3 mL), 10% NaHCO₃ (1.1 mL) and THF (1 mL). A solution of palmitoyl chloride in THF was added dropwise to the above solution, and the mixture was stirred for 3 h at 0 °C. After that, THF was evaporated and the remaining solution was acidified with 2 M HCl, and extracted with CH_2Cl_2 (x 3). The crude product was recrystallized with hexane to afford the product as a white solid (223 mg, 60% yield). **D-PhgC₁₆** was also synthesized according to the above method.

Preparation of (P)-D-PhgC₁₆-NR-M(II) and (M)-L-PhgC₁₆-NR-M(II)

D-PhgC₁₆ or L-PhgC₁₆ (4.67 mg, 0.012 mmol) was dissolved in methanol (1.5 mL) in a 10 mL flask. Then, water (2.5 mL) was added to the solution and the reaction mixture was allowed to stirring for 10 min at r.t. to afford the supramolecular assemblies, (*P*)-D-PhgC₁₆-NR or (*M*)-L-PhgC₁₆-NR. Separate solutions of CoCl₂ (1 M), CuCl₂ (0.1 M), MnCl₂ (0.05 M), and ZnCl₂ (0.025 M) were prepared in water, and then added to the aqueous solution of the as prepared (*P*)-D-PhgC₁₆-NR, respectively. The solution mixtures were stirred for 10 min to give the metal coordinated chiral assembly, (*P*)-D-PhgC₁₆-NR-M(II). The (*M*)-L-PhgC₁₆-NR-M(II) counterpart was also synthesized according to the above method.

Measurements and characterizations

The ¹H-NMR and ¹³C NMR analysis were performed on the NMR spectrometer (Quantum-I plus 600 MHz, Q. One Instruments Ltd., China). The AFM experiments were carried out on a Multimode 8 Scanning Force Microscope (Bruker). Bruker AFM cantilevers for the tapping mode in soft tapping conditions were used at a vibrating frequency of 150 kHz. Images were simply flattened using the Nanoscope 8.1 software, and no further image processing was carried out. The critical aggregation concentration analysis was conducted on a DDSJ-308A Conductivity Meters.

The FTIR spectra were recorded using a JASCO model FT/IR-6100Plus FT-IR spectrometer. For the monomer, D-PhgC₁₆, the IR experiment was done in solid state (KBr as the reference). Supramolecular assemblies of (*P*)-**D-PhgC₁₆-NR-M(II)** were first prepared in a solvent mixture of 4/6 methanol/water. Centrifuge the solution and mix the residue with solid KBr to form a disc for analyzing.

X-ray diffraction (XRD) was conducted on a D8 ADVANCE X-ray diffractometer. Supramolecular assemblies of (*P*)-D-PhgC₁₆-NR and (*P*)-D-PhgC₁₆-NR-M(II) were first prepared in a solvent mixture of 4/6 methanol/water. Centrifuge the solution and transfer the residue to a quartz glass piece. Prior to analysis, the components were

dried in ambient and freeze-drying conditions.

Circular dichroism (CD) analysis was performed on a JascoJ-810 CD spectropolarimeter (JASCO International Co., Ltd., Japan) with a resolution of 1 nm in the wavelength range of 205–300 nm. All the measured samples of CD spectra were performed in the 1 cm quartz cuvette. The measured samples of CD spectra for assembly and nanozymes were prepared in a methanol/water solvent mixture at a concentration of 0.15 mM. The L/D-DOPA concentration for the CD measurements is 50 μ M, prepared in a 4/6 methanol/water mixture.

The UV-Vis absorption spectra were recorded using UV-2550 UV-Visible spectrophotometer (JASCO International Co., Ltd., Tokyo, Japan). Spectral measurements and kinetic measurements were performed in the 1 cm (4.5 mL) quartz cuvette.

The ICP-AES analysis were determined by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES, Optima 7300 DV, PerkinElmer, US). Supramolecular assemblies of (*P*)-D-PhgC₁₆-NR-M(II) were first prepared in a solvent mixture of 4/6 methanol/water. The solution was centrifuged, and the supernatant was diluted and placed in a centrifuge tube for testing.

UV-vis titration experiments: A solution of (*P*)-D-PhgC₁₆-NR or (*M*)-L-PhgC₁₆-NR (133 µM) was prepared in a 4/6 methanol/water solvent mixture. Subsequently, 2.5 mL of the solution was placed in a quartz cuvette and the absorption spectrum was recorded. Separate solutions of CoCl₂, CuCl₂, MnCl₂, and ZnCl₂ with a concentration of 400 µM was prepared in water. The solution of (*P*)-D-PhgC₁₆-NR or (*M*)-L-PhgC₁₆-NR was titrated by adding incremental amounts of the metal ion solution and recording a UV-vis spectrum after each addition. The association constants were calculated by monitoring the absorbance changes at 218 nm after each addition.

Kinetic measurements

Kinetic measurements were conducted in a time-course mode by monitoring the absorbance changes at 475 nm. Experiments were performed using the as obtained (*P*)-D-PhgC₁₆-NR-M(II) or (*M*)-L-PhgC₁₆-NR-M(II) in a reaction volume of 3 mL (methanol/water, 4/6) with DOPA as substrate at 25 °C, and the concentration of H₂O₂ was kept constant at 50 mM. The concentration of DOPA in the catalytic oxidation process is in the range of 200-2000 μ M. Initial rates were obtained from the slopes of the concentration vs time profiles in the kinetic runs following at least 30% of the reaction. Each measurement was repeated three times. Michaelis-Menten fitting of the V vs DOPA enantiomers plots were performed by the Origin software using the equation: $v = V_{max} C/(K_M+C)$, which afford the Michaelis constant K_M and the maximum reaction velocity V_{max} . In this equation, v is the initial velocity, which can be calculated according to Lambert Beer's law: $v = A \cdot \varepsilon^{-1} L^{-1} t^{-1}$, where A is the absorbance changes at $\lambda_{max} = 475$ nm ($\varepsilon = 4770 \text{ M}^{-1} \cdot \text{cm}^{-1}$) of dopachrome products for D-DOPA and L-DOPA, *L* is the optical length of the used cuvette, and *t* is the time corresponding to the absorbance changes. V_{max} is the maximal reaction velocity, and C is the concentration of DOPA as substrate. Using K_{cat} to express the catalytic activity of enzymes, and $K_{cat} = V_{max}/S$, where *S* is the mass of the chiral nanozyme used in 1 mL reaction system. Select factor of various (*P/M*)-D/L-PhgC₁₆-NR-M(II) nanocatalysts for D-DOPA or L-DOPA was defined as [K_{cat}/K_{M}]_{D-DOPA}/[K_{cat}/K_{M}]_{L-DOPA}/[K_{cat}/K_{M}]_{L-DOPA}/(K_{cat}/K_{M}]_{L-}

2. Synthesis of L- and D-PhgC₁₆

Fig. S1. Line-drawing structure of L-PhgC_{16.}

¹H NMR (CDCl₃, 600 MHz): δ (ppm) = 7.41-7.31 (m, 5H), 6.52 (d, *J* = 6.8 Hz, 1H), 5.61 (d, *J* = 6.8 Hz, 1H), 2.29-2.24 (m, 2H), 1.60 (t, *J* = 7.2 Hz, 2H), 1.25 (s, 24H), 0.90 (t, *J* = 6.4 Hz, 3H).

Fig. S2. ¹H NMR (600 MHz, CDCl₃, 298 K) spectrum of L-PhgC₁₆.

¹³C NMR (CDCl₃, 150 MHz): δ (ppm) = 173.43, 173.35, 136.04, 129.22, 128.93, 127.54, 36.52, 32.09, 29.86-29.33, 25.63, 22.85, 14.28.

Fig. S4. Line-drawing structure of D-PhgC_{16.}

¹H NMR (CDCl₃, 600 MHz): δ (ppm) = 7.42-7.36 (m, 5H), 6.44 (d, J = 6.8 Hz, 1H), 5.62 (d, J = 6.8 Hz, 1H), 2.28-2.22 (m, 2H), 1.63 (t, J = 7.2 Hz, 2H), 1.30 (s, 24H), 0.90 (t, J = 6.4 Hz, 3H).

Fig. S5. ¹H NMR (600 MHz, CDCl₃, 298 K) spectrum of D-PhgC₁₆.

¹³C NMR (CDCl₃, 600 MHz): δ (ppm) = 173.93, 173.56, 136.12, 129.17-128.86, 127.52, 36.50, 32.08, 29.86-29.32, 25.65, 22.85, 14.27.

Fig. S6. ¹³C NMR (150 MHz, CDCl₃, 298 K) spectrum of D-PhgC₁₆.

- 3. Characterizations of (P)-D-PhgC₁₆-NR-Co(II) and (M)-L-PhgC₁₆-NR-Co(II)
- 3.1 Critical aggregation concentration of amphiphile

Fig. S7. Conductivity vs concentration of **D-PhgC₁₆** in a 4/6 methanol/water solvent mixture. The critical aggregation concentration (CAC) of **D-PhgC₁₆** was calculated to be 0.01 mM in this solvent mixture.

3.2 SEM images of (P)-D-PhgC₁₆-NR-Co(II) and (M)-L-PhgC₁₆-NR-Co(II)

Fig. S8. SEM images of a) (P)-D-PhgC₁₆-NR-Co(II) and b) (M)-L-PhgC₁₆-NR-Co(II).

3.3 CD characterizations of (*P*)-D-PhgC₁₆-NR-Co(II)

Fig. S9. CD spectra of (P)-D-PhgC16-NR-Co(II), (M)-L-PhgC16-NR-Co(II) and their equal molar mixtures.

3.4 XRD patterns of (P)-D-PhgC₁₆-NR-Co(II)

Fig S10. XRD patterns of (P)-D-PhgC₁₆-NR-Co(II), which was prepared using freeze-drying method.

3.5 FTIR spectra of (P)-D-PhgC₁₆-NR-Co(II)

Fig. S11. FTIR spectra of D-PhgC₁₆ (black line), (P)-D-PhgC₁₆-NR (blue line) and (P)-D-PhgC₁₆-NR-Co(II) (red line).

Fig. S12. FTIR spectra of L-DOPA (black line), (P)-D-PhgC₁₆-NR-Co(II) (blue line) and L-DOPA+(P)-D-PhgC₁₆-NR-Co(II) (red line).

3.6 Characterizations of (P)-D-PhgC₁₆-NR-M(II)

Fig. S13. a) CD spectra of supramolecular assemblies of (*P/M*)-D/L-PhgC₁₆-NR and (*P/M*)-D/L-PhgC₁₆-NR-M(II) (M = Cu, Mn and Zn) in 4/6 methanol/water solvent mixture. b) FTIR spectra of D-PhgC₁₆, (*P*)-D-PhgC₁₆-NR and (*P*)-D-PhgC₁₆-NR-M(II) (M = Cu, Mn and Zn). c) XRD patterns of (*P*)-D-PhgC₁₆-NR and (*P*)-D-PhgC₁₆-NR-M(II) (M = Cu, Mn and Zn). Inset: selected magnified XRD pattern.

3.7 Metal atomic analysis

Table S1. The M(II) concentration analysis before and after (*P*)-D-PhgC₁₆-NR and (*M*)-L-PhgC₁₆-NR adsorption through ICP-AES analysis.

Sample	M(II) concentration before absorption (mg·L ⁻¹)	M(II) concentration after absorption (mg·L ⁻ ¹)	M(II) concentration of absorption(mg·L ⁻ ¹)	Percentage of loaded ions added (%, mass percentage)	Percentage of loaded ions added (%, molar percentage)
(<i>P</i>)-D-PhgC ₁₆ -NR- Co(II)	59.00	25.96	33.04	2.08	14.0
(<i>M</i>)-L-PhgC ₁₆ -NR- Co(II)	59.00	26.08	32.92	2.07	14.0
(<i>P</i>)-D-PhgC ₁₆ -NR- Cu(II)	6.40	3.34	3.06	0.20	1.2
(<i>M</i>)-L-PhgC ₁₆ -NR- Cu(II)	6.40	3.53	2.87	0.18	1.1
(<i>P</i>)-D-PhgC ₁₆ -NR- Mn(II)	2.75	0.13	2.62	0.17	1.2
(<i>M</i>)-L-PhgC ₁₆ -NR- Mn(II)	2.75	0.47	2.28	0.15	1.0
(<i>P</i>)-D-PhgC ₁₆ -NR- Zn(II)	1.64	0.97	0.67	0.04	0.25
(<i>M</i>)-L-PhgC ₁₆ -NR- Zn(II)	1.64	0.97	0.67	0.04	0.25
(<i>M</i>)-L-PhgC ₁₆ -NR- Zn(II)	2.46	2.61	0.67	0.04	0.25
(<i>M</i>)-L-PhgC ₁₆ -NR- Zn(II)	3.28	2.61	0.68	0.04	0.25

3.8 UV titration experiments for all the combinations of (*P/M*)-D/L-PhgC₁₆-NR and the metal salts

Fig. S14. a, c, e, g) UV-vis titration spectra of (*P*)-D-PhgC₁₆-NR with the incremental addition of various metal ions; b, d, f, h) UV-vis titration spectra of (*M*)-L-PhgC₁₆-NR with the incremental addition of various metal ions. (a, b) Co(II); (c, d) Cu(II), (e, f) Mn(II) and (g, h) Zn(II). The concentration of (*P*)-D-PhgC₁₆-NR or (*M*)-L-PhgC₁₆-NR was 133 µM.

Fig. S15. a, c, e ,g) Fit of UV titration experiments for all the combinations of (*P*)-D-PhgC₁₆-NR and the metal ions; b, d, f, h) Fit of UV titration experiments for all the combinations of (*M*)-L-PhgC₁₆-NR and the metal ions. (a, b) Co(II); (c, d) Cu(II), (e, f) Mn(II) and (g, h) Zn(II). The concentration of (*P*)-D-PhgC₁₆-NR or (*M*)-L-PhgC₁₆-NR was 133 μ M. Table S2. Association constants between the combinations of (*P*/*M*)-D/L-PhgC₁₆-NR and the metal salts.

Comple	Association constant (Ka, ×10 ³ M ⁻¹)					
Sample	Co(II)	Cu(II)	Mn(II)	Zn(II)		
(<i>P</i>)-D-PhgC ₁₆ -NR	5.63±2.0	3.16±0.4	2.70±0.4	1.18±0.1		
(<i>M</i>)-L-PhgC ₁₆ -NR	5.68±2.0	2.74±0.2	2.98±0.2	1.74±0.3		

4. Kinetic experiments

Fig. S16. Catalytic performance of (P)-D-PhgC₁₆-NR-Co(II) in different methanol/water solvent mixtures.

4.3 Time-dependent absorbance

 Fig. S18. The time-dependent absorbance at 475 nm using DOPA enantiomers as substrates and a) (*P*)-D-PhgC₁₆-NR-Co(II); c) (*P*)

 D-PhgC₁₆-NR-Cu(II); e) (*P*)-D-PhgC₁₆-NR-Mn (II); g) (*P*)-D-PhgC₁₆-NR-Zn(II); b) (*M*)-L-PhgC₁₆-NR-Co(II); d) (*M*)-L-PhgC₁₆-NR-Cu(II);

 f) (*M*)-L-PhgC₁₆-NR-Mn(II); and h) (*M*)-L-PhgC₁₆-NR-Zn(II) as nanozymes. The concentration of L/D-DOPA is 2000 µM.

Fig. S19. Illustration by Lanewell-Burke showing the catalytic reactions towards D/L-DOPA for a) (*P*)-D-PhgC₁₆-NR-Co(II); c) (*P*)-D-PhgC₁₆-NR-Cu(II); e) (*P*)-D-PhgC₁₆-NR-Cu(II); e) (*P*)-D-PhgC₁₆-NR-Cu(II); b) (*M*)-L-PhgC₁₆-NR-Co(II); d) (*M*)-L-PhgC₁₆-NR-Cu(II); f) (*M*)-L-PhgC₁₆-NR-Mn(II); and h) (*M*)-L-PhgC₁₆-NR-Zn(II).

Fig. S20. Oxidation of D/L-DOPA enantiomers by equal molar amount of (P)-D-PhgC₁₆-NR-Co(II) and (M)-L-PhgC₁₆-NR-Co(II).

Fig. S21. The time-dependent absorbance changes at 475 nm for the L/D-DOPA oxidation catalyzed by the Co(II)-complexes of (a) L-PhgC₈ and (b) L-PhgC₁₂ in a 4/6 methanol/water solvent mixture. The concentration of L/D-DOPA was 2000 μ M.

Sample	Substrate	К _м (μМ)	K _{cat} (μM·s⁻¹·g⁻¹)	<i>K</i> _{eff} (10 ⁻² s ⁻¹ ⋅g ⁻¹)	Select factor
	L-DOPA	195.2	13.25	6.79	2.80
(<i>P</i>)-D-PhgC ₁₆ -NR-Co(II)	D-DOPA	345.1	9.20	2.67	
	L-DOPA	530.0	23.56	4.44	1.91
(₽)-D-PngC₁6-NR-Cu(II)	D-DOPA	637.3	14.73	2.35	
	L-DOPA	342.1	10.90	3.19	1.86
<i>(P)-</i> D-PhgC₁₀-NR-Mn(II)	D-DOPA	715.0	12.25	1.71	
	L-DOPA	236.2	55.37	23.46	1.39
(₽)-D-₽ngC ₁₆ -NR-Zn(II)	D-DOPA	317.1	53.44	16.88	

Table S3. Kinetic parameters for the catalytic oxidation of DOPA enantiomers by (P)-D-PhgC₁₆-NR-M(II).

Table S4. Kinetic parameters for the catalytic oxidation of DOPA enantiomers by (M)-L-PhgC₁₆-NR-M(II).

Sample	Substrate	<i>К</i> м (µМ)	<i>K</i> _{cat} (µМ·s ⁻¹ ·g ⁻¹)	<i>K</i> _{eff} (10 ⁻² s ⁻¹ ⋅g ⁻¹)	Select factor
	L-DOPA	481.2	15.26	3.17	
(<i>M</i>)-L-PngC ₁₆ -NR-CO(II)	D-DOPA	228.1	17.02	7.47	2.35
	L-DOPA	752.0	20.30	2.70	
(<i>M</i>)-L-PhgC ₁₆ -NR-Cu(II)	D-DOPA	494.3	23.92	4.84	1.79
	L-DOPA	706.0	12.63	1.79	
(<i>M)-</i> L-PfigC ₁₆ -NR-Mfi(ii)	D-DOPA	449.1	14.00	3.12	1.74
	L-DOPA	331.1	56.59	1.71	
(<i>W</i>)-L-PngC ₁₆ -NR-Zh(II)	D-DOPA	252.2	56.78	2.25	1.31

4.4 Catalytic cycles

Fig. S22. The UV-vis absorbance performance of (P)-D-PhgC₁₆-NR-Co(II) catalyzing L/D-DOPA with three cycles.

Fig. S23. a) SEM and (b) XRD patterns of (P)-D-PhgC₁₆-NR-Co(II) after three catalytic cycles.

4.5 pH effect

Fig. S24. a) The UV-vis absorbance performance of (*P*)-D-PhgC₁₆-NR-Co(II) catalyzing L/D-DOPA at different pH. (b) FTIR spectra of (*P*)-D-PhgC₁₆-NR (black line) and (*P*)-D-PhgC₁₆-NR-Co(II) (blue line) at pH 5.

Catalyst	Preferred substrate	Select factor	Reference
L-Cys@AuNPs-EMSN	D-DOPA	1.69	Angew. Chem. Int. Ed. 2018,
D-Cys@AuNPs-EMSN	L-DOPA	1.47	57, 16791
L-Cys@N-CuO/CoO NFs	D-DOPA	1.71	Anal. Chem. 2021 , 93,
D-Cys@N-CuO/CoO NFs	L-DOPA	1.36	11470
D-His100@Fe-COF	D-DOPA	1.51	
L-His100@Fe-COF	L-DOPA	1.86	Mater. Horiz. 2020 , 7, 3291
AuNP@LIPIA 1	D-DOPA	1.90	
AuNP@LIPIA 2	L-DOPA	1.1	Nanoscale 2020 , 12, 2422
M-PANI-TA-Co ²⁺	D-DOPA	1.70	<i>Small 2023, DOI:</i>
P-PANI-TA-Co ²⁺	L-DOPA	2.07	10.1002/smll.202303739
(M)-L-PhgC ₁₆ -NR-Co(II)	D-DOPA	2.35	
(P)-D-PhgC ₁₆ -NR-Co(II)	L-DOPA	2.80	This work

5. Chirality transfer from (*P/M*)-D/L-PhgC₁₆-NR-M(II) to D/L-DOPA

Fig. S25. CD spectra of (*P*)-**D**-PhgC₁₆-NR and (*P*)-**D**-PhgC₁₆-NR-Cu(II) ([Cu(II)/D-PhgC₁₆ = 2.5%]) in the presence of a) D-DOPA and b) L-DOPA, as well as the CD spectra of (*M*)-L-PhgC₁₆-NR and (*M*)-L-PhgC₁₆-NR-Cu(II) ([Cu(II)/L-PhgC₁₆ = 2.5%]) in the presence of c) D-DOPA and d) L-DOPA.

Fig. S26. CD spectra of (*P*)-**D**-**PhgC**₁₆-**NR** and (*P*)-**D**-**PhgC**₁₆-**NR**-**Mn(II)** ([Mn(II)/**D**-**PhgC**₁₆ = 1.25%]) in the presence of a) D-DOPA and b) L-DOPA, as well as the CD spectra of (*M*)-**L**-**PhgC**₁₆-**NR** and (*M*)-**L**-**PhgC**₁₆-**NR**-**Mn(II)** ([Mn(II)/**L**-**PhgC**₁₆ = 1.25%]) in the presence of c) D-DOPA and d) L-DOPA.

 Fig. S27. CD spectra of (P)-D-PhgC₁₆-NR and (P)-D-PhgC₁₆-NR-Zn(II) ([Zn(II)/D-PhgC₁₆ = 0.625%]) in the presence of a) D-DOPA and

 b) L-DOPA, as well as the CD spectra of (M)-L-PhgC₁₆-NR and (M)-L-PhgC₁₆-NR-Zn(II) ([Zn(II)/L-PhgC₁₆ = 0.625%]) in the presence

 of
 c)
 D-DOPA
 and
 d)
 L-DOPA.

6. EPR analysis

Fig. S28. EPR spectra for (a) Co(II), (b) Cu(II), (c) Mn(II), (d) Zn(II) in aqueous solution containing H₂O₂.

7. Binding affinity between (P)-D-PhgC₁₆-NR-Co(II) and DOPA enantiomers

Fig. S29. Fit of UV titration experiments for (*P*)-D-PhgC₁₆-NR-Co(II) and a) L-DOPA and b) D-DOPA. The concentration of (*P*)-D-PhgC₁₆-NR-Co(II) was 50 μM. Error bars indicate standard deviations of two independent measurements.

8. References

¹ Chen, H.; Li, Y.; Tang, X.; Li, B.; Zhang, C.; Yang, Y., Preparation of single-handed helical carbonaceous nanotubes using 3-aminophenol-formaldehyde resin. *RSC Adv.* **2015**, *5* (50), 39946-39951.