Supporting Information for:

Tuning the redox profile of the 6,6'-biazulenic platform through functionalization along its molecular axis

Shaun R. Kelsey,^a Georgii Griaznov,^a Andrew D. Spaeth,^a Daron E. Janzen,^b Justin T. Douglas,^c Ward H. Thompson^a and Mikhail V. Barybin^{*, a}

^a Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States

^b Department of Chemistry and Biochemistry, St. Catherine University, St. Paul, MN 55105, USA

[°]NMR Laboratory, Molecular Structures Group, University of Kansas, Lawrence, KS 66045, USA

* To whom correspondence should be addressed. E-mail: mbarybin@ku.edu (M.V.B.)

Table of Contents

A. Synthetic procedures

A1. General Procedures, Starting Materials, and Equipment	S-4
A2. Synthesis of 1,1',3,3'-tetraethoxycarbonyl-6,6'-biazulene (1)	S-5
A3. Synthesis of 2,2'-dichloro-1,1',3,3'-tetraethoxycarbonyl-6,6'-biazulene (3a)	S-6
Scheme S1. Two alternative routes to 3a starting from 2-amino-6-bromo-1,3-	
diethoxycarbonylazulene	S-7
A4. Synthesis of 2-chloro-1,1',3,3'-tetraethoxycarbonyl-6,6'-biazulene (3b)	S-8

B. NMR spectra

Figure S1. ¹ H NMR (400 MHz, CDCl ₃) spectrum of 1	S-9
Figure S2. ¹ H NMR (500 MHz, CDCl ₃) spectrum of 3a	S-10
Figure S3. ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl ₃) spectrum of 3a	S-11
Figure S4. HSQC NMR (600 MHz, CDCl ₃) spectrum of 3a	S-12
Figure S5. HMBC NMR (500 MHz, CDCl ₃) spectrum of 3a	S-13
Figure S6. 1,1-ADEQUATE NMR (600 MHz, CDCl ₃) spectrum of 3a	S-14
Figure S7. ¹ H NMR (500 MHz, CDCl ₃) spectrum of 3b	S-15
Figure S8. ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl ₃) spectrum of 3b	S-16

C. Electronic absorption spectra

Figure S9. Electronic absorption spectrum of 1	S-17
Figure S10. Electronic absorption spectrum of 3a	S-17
Figure S11. Electronic absorption spectrum of 3b	S-18
Table S1. Summary of the UV vis data for compounds 1, 3a, and 3b	S-18

D. Computational work

D1. Calculation Details	S-19
Table S2. Coordinates of 6,6'-biazulene used in generating the HOMO/LUMO plots in Fig. 1.	S-20
Table S3. Coordinates of 3a used to simulate the UV-vis spectrum in Figure S12.	S-21
Table S4. Transition wavelengths, oscillator strengths, and transition orbital amplitudes	
obtained from the TD-DFT/B3LYP/cc-pVDZ calculations.	S-23
Figure S12. Experimental vs. TD-DFT simulated electronic spectra of 3a	S-24

E. Electrochemistry

Figure S13. Cyclic voltammogram and scan rate dependance data for 1	S-25
Figure S14. Cyclic voltammogram and scan rate dependance data for 2b	S-25
Figure S15. Cyclic voltammogram and scan rate dependance data for 3a	S-26
Figure S16. Cyclic voltammogram and scan rate dependance data for 3b	S-26
Figure S17. Cyclic voltammogram for 1,3-diethoxycarbonylazulene	S-27
Figure S18. Cyclic voltammogram for 2-amino-1,3-diethoxycarbonylazulene	S-27
Figure S19. Cyclic voltammogram for 2-chloro-1,3-diethoxycarbonylazulene	S-28
Figure S20. Cyclic voltammogram for 2-isocyano-1,3-diethoxycarbonylazulene	S-28
Table S5. $E_{1/2}$ potentials and σ_p parameters for Fig. 4	S-29
Table S6. $E_{1/2}$ potentials and σ_p parameters for Fig. 5	S-29

F. X-ray crystallographic studies

F1. Experimental and Refinement Model Description	S-30
Figure S21. Crystals of 3a	S-30
Table S7. Crystal data and structure refinement for 3a.	S-31
Table S8. Fractional Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Displacement	
Parameters ($Å^2 \times 10^3$) for 3a .	S-32
Table S9. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 3a.	S-33
Table S10.Bond Lengths for 3a.	S-34
Table S11. Bond Angles for 3a.	S-35
Table S12. Torsion Angles for 3a.S	S-36
Table S13. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters	
$(Å^2 \times 10^3)$ for 3a .	S-37
Figure S22. Distribution of the C-Cl bond distances for chloroazulenes featuring Cl-substitution	1 at
the five-membered ring of their azulenic scaffold.	S-38
Table S14. X-ray crystallographically characterized chloroazulenes represented in Fig. 7.	S-38
Figure S23. The chlorodiphenylmethylium cation X-ray crystallographically characterized by	
Laube <i>et al</i> .	S-40

References

S-41

A. Synthetic procedures

A1. General Procedures, Starting Materials, and Equipment

All synthetic operations were performed without protection from air. 2,2'-Diamino-1,1',3,3'tetraethoxycarbonyl-6,6'-biazulene (2a),¹ 2-amino-1,1',3,3'-tetraethoxycarbonyl-6,6'-biazulene (2b),² 2,2'-diisocyano-1,1',3,3'-tetraethoxycarbonyl-6,6'-biazulene (4a),¹ 2-isocyano-1,1',3,3'- $(4b)^{2}$ 1,3-diethoxycarbonylazulene,³ tetraethoxycarbonyl-6,6'-biazulene 2-amino-1.3diethoxycarbonylazulene,⁴ 2-chloro-1,3-diethoxycarbonylazulene,⁵ and 2-isocyano-1,3diethoxycarbonylazulene⁶ were synthesized according to literature procedures. Other reagents and all solvents, including CDCl₃, were obtained from commercial sources and used as received. Infrared spectra were recorded on a PerkinElmer Spectrum 100 FTIR spectrometer with liquid samples sealed in 0.1 mm NaCl cells. NMR samples were analyzed on Bruker Avance III HD 400 MHz, Avance III 500 MHz, or Bruker AVIII 600 MHz spectrometers. ¹H and ¹³C NMR chemical shifts are given with reference to residual solvent resonances relative to SiMe₄. Electronic spectra were recorded at 22±3 °C using a Shimadzu UV-3600 UV-Vis-NIR spectrophotometer or a Varian Cary 50 Bio spectrophotometer. Cyclic voltammetry experiments were conducted at room temperature using an EPSILON (Bioanalytical Systems Inc., West Lafayette, IN) electrochemical workstation inside a Vacuum Atmospheres dry box filled with argon. A solution of 0.1 M [ⁿBu₄N][PF₆] in CH₂Cl₂ was used as the supporting electrolyte. A three-component system consisting of a glassy carbon working electrode, a platinum-wire auxiliary electrode, and a glass encased non-aqueous Ag/AgCl reference electrode was employed. The reported potentials were determined at a scan rate of 100 mV/s. Melting points are uncorrected and were determined for samples in sealed capillary tubes. Elemental analyses were carried out by Micro-Analysis, Inc., Wilmington, Delaware.

A2. Synthesis of 1,1',3,3'-tetraethoxycarbonyl-6,6'-biazulene (1)

A solution composed of concentrated H₂SO₄ (98%, 0.173 g), 10 mL of THF and 50 mL of 1,4dioxane was added to a mixture of 2a (0.200 g, 0.349 mmol) and para-hydroxyquinone (0.077 g, 0.699 mmol) with stirring. To the resulting reaction mixture, a solution of isoamyl nitrite (1.88 mL, 14.0 mmol) in 35 mL of 1,4-dioxane and a solution of para-hydroxyquinone (1.54 g, 14.0 mmol) in 35 mL of 1,4-dioxane were added dropwise under vigorous stirring using separate addition funnels. Once the addition was completed, the mixture was stirred for 3 hours and then quenched with 200 mL of 1M aqueous Na₂SO₃. After extraction with CH₂Cl₂, the combined organic layers were washed with deionized H₂O (3×200 mL) and dried over anhydrous Na₂SO₄. The drying agent was filtered off and the filtrate was concentrated to dryness under vacuum to afford a residue that was redissolved in a minimum amount of CH₂Cl₂. The resulting solution was layered with pentane and kept at -40 °C until a red-brown precipitate formed. The solid was filtered off and dried at 10⁻² torr to give 1 (0.096 g, 0.177 mmol) in a 51% yield. Mp: 175 °C (dec.) [lit. 227.5-230 °C⁷]. The NMR and UV-vis spectroscopic signatures of this product were identical to those of bona fide 1 previously reported⁷ by Ito *et al.* ¹H NMR (CDCl₃, 400 MHz, 22 °C): δ 9.89 (d, 4H, $H^{4,4',8,8'}$, ${}^{3}J_{HH} = 11$ Hz), 8.92 (s, 2H, $H^{2,2'}$), 7.97 (d, 4H, $H^{5,5',7,7'}$, ${}^{3}J_{HH} = 11$ Hz), 4.48 (d, 8H, CH₂, ${}^{3}J_{\text{HH}} = 7$ Hz), 1.49 (t, 12H, CH₃, ${}^{3}J_{\text{HH}} = 7$ Hz), ppm. ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (CDCl₃, 126 MHz, 22°C): δ 165.0 (C=O), 156.0, 144.6, 143.1, 138.6, 131.4, 117.5 (aromatic C), 60.5 (CH₂), 14.7 (CH₃) ppm. UV-Vis [CH₂Cl₂, λ_{max} ($\epsilon x 10^{-3} M^{-1} cm^{-1}$)]: 342 (63.58), 373 (47.06), 518 (2.24) nm.

A3. Synthesis of 2,2'-dichloro-1,1',3,3'-tetraethoxycarbonyl-6,6'-biazulene (3a)

A red slurry consisting of 2a (0.121 g, 0.211 mmol) and 12 M aqueous HCl (7 mL) was stirred at 22 °C for 15 minutes, then diluted with 7 mL of CHCl₃. The biphasic red mixture was stirred for an additional 5 minutes before it was treated with isoamyl nitrite (0.14 mL, 1.0 mmol) in one portion. The reaction mixture was stirred for an additional 15 minutes, during which time it quickly darkened and turned into a dark slurry. Then, DMSO (15 mL) was added, and the reaction flask was equipped with a reflux condenser. The temperature was raised to 80 °C, and the opaque solution slowly turned dark red/purple as it was stirred for an hour and 45 minutes. After this time, deionized water (100 mL) was added, and the product was extracted with CHCl₃ (4×30 mL). The combined organic extracts were washed with deionized water (6×30 mL) and dried over anhydrous Na₂SO₄. The drying agent was filtered off and the filtrate was concentrated to dryness under reduced pressure to afford **3a** (0.110 g, 0.179 mmol) in an 85% yield. Further recrystallization of the product from CH₂Cl₂/pentane provided large metallic black crystals of 3a (Figure S21a). Mp: 220-222 °C, [lit. 222-224 °C⁸]. Anal. Calcd for C₃₂H₂₈Cl₂O₈: C, 62.86; H, 4.62; Found: C, 62.98; H, 4.84. ¹H NMR (400 MHz, CDCl₃): δ 9.60 (d, ³J_{HH} = 11.2 Hz, 4H, H^{4,4',8,8'}), 7.93 (d, ³J_{HH} = 11.2 Hz, 4H, $H^{5,5',7,7'}$), 4.52 (q, ${}^{3}J_{HH} = 7.1$ Hz, 8H, CH₂), 1.50 (t, ${}^{3}J_{HH} = 7.1$ Hz, 12H, CH₃) ppm. ${}^{13}C{}^{1}H{}s$ NMR (126 MHz, CDCl₃): δ 164.26 (C=O), 155.05 (C^{6,6}'), 144.78 (C^{2,2'}), 140.87 (C^{9,9',10,10'}), 137.27 (C^{4,4',8,8'}), 131.81 (C^{5,5',7,7'}), 116.56 (C^{1,1',3,3'}), 61.06 (CH₂), 14.57 (CH₃) ppm. UV-Vis $[CH_2Cl_2, \lambda_{max} (\epsilon \times 10^{-3} \text{ M}^{-1} \text{ cm}^{-1})]: 340 (48.81), 368 (32.22), 396 (18.08), ca. 440-640 (1.06)$ nm.

Scheme S1. Two alternative routes to 3a starting from 2-amino-6-bromo-1,3-diethoxycarbonyl-azulene. ^{1, 8-10}

A4. Synthesis of 2-chloro-1,1',3,3'-tetraethoxycarbonyl-6,6'-biazulene (3b)

A biphasic mixture consisting of 12 M aqueous HCl (8 mL), 2b (0.174 g, 0.312 mmol), and CHCl₃ (2 mL) was stirred for 10 minutes at 30 °C. Then isoamyl nitrite (0.17 mL, 1.27 mmol) was added in one portion followed by an additional 6 mL of CHCl₃. As the solution darkened, the reaction flask was equipped with a reflux condenser to prevent evaporation of CHCl₃. The heating was removed, and the color or the mixture gained a purple hue over a period of 4.5 hours. The temperature of the mixture was then raised to 60 °C for 19 hours. Deionized water (50 mL) was added, and the organic layer was separated and washed with deionized water (4 \times 20 mL). The resulting solution was treated with 7.3 g of NaHCO₃. Sodium bicarbonate was filtered off, and the filtrate was dried over anhydrous Na₂SO₄. The drying agent was filtered off and the filtrate was concentrated to dryness under reduced pressure to afford dark red 3b (0.158 g, 0.274 mmol) in an 88% yield. Mp: 180 °C (dec.). HRMS (m/z, ES+): Calcd for C₃₂H₂₉ClO₈⁺: 576.1551, found: 576.1578. ¹H NMR (500 MHz, CDCl₃): δ 9.88 (d, ³J_{HH} = 10.7 Hz, 2H, H^{4',8'}), 9.61 (d, ³J_{HH} = 10.7 Hz, 2H, H^{4,8}), 8.91 (s, 1H, $H^{2'}$), 7.94 (d, ${}^{3}J_{HH} = 10.7 \text{ Hz}$, 4H, $H^{5,5',7,7'}$), 4.52 (q, ${}^{3}J_{HH} = 7.1 \text{ Hz}$, 4H, CH₂), 4.47 (q, J = 7.1 \text{ Hz}) Hz, 4H, CH₂), 1.50 (t, J = 7.2 Hz, 6H, CH₃), 1.47 (t, J = 7.2 Hz, 6H, CH₃) ppm. ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃): δ 164.98 (C=O), 164.30 (C=O), 155.62, 155.45, 144.73, 144.65, 143.13, 140.88, 138.55, 137.31, 131.94, 131.29, 117.51, 116.54 (aromatic C), 61.06, 60.45 (CH₂), 14.72, 14.58 (CH₃) ppm. UV-Vis [CH₂Cl₂, λ_{max} (ε x 10⁻³ M⁻¹ cm⁻¹)]: 339 (77.11), 371 (53.68), 525 (2.39) nm.

B. NMR Spectra

Figure S1. ¹H NMR (400 MHz, CDCl₃) spectrum of **1**; (*) denotes NMR solvent residual resonance.

Figure S2. ¹H NMR (500 MHz, CDCl₃) spectrum of **3a**. (★) denotes NMR solvent residual resonance.

Figure S3. $^{13}C{^{1}H}$ NMR (126 MHz, CDCl₃) spectrum of **3a**.

Figure S4. HSQC NMR (600 MHz, CDCl₃) spectrum of 3a.

Figure S5. HMBC NMR (500 MHz, CDCl₃) spectrum of 3a.

Figure S6. 1,1-ADEQUATE NMR (600 MHz, CDCl₃) spectrum of **3a**.

Figure S7. ¹H NMR (500 MHz, CDCl₃) spectrum of **3b**. (★) denotes NMR solvent residual resonance.

Figure S8. $^{13}C{^{1}H}$ NMR (126 MHz, CDCl₃) spectrum of **3b**.

C. Electronic absorption spectra

Figure S9. Electronic absorption spectrum of 1 in CH₂Cl₂.

Figure S10. Electronic absorption spectrum of 3a in CH₂Cl₂.

Figure S11. Electronic absorption spectrum of 3b in CH_2Cl_2 .

Table S1. Summa	ry of the UV vis	data for compounds	1, 3a, and 3b.
-----------------	------------------	--------------------	----------------

Compound	λ _{max} (ε x 10 ⁻³ M ⁻¹ cm ⁻¹)
1	342 (63.58), 373 (47.06), 518 (2.24) nm
3a	340 (48.81), 368 (32.22), 396 (18.08), <i>ca</i> . 440-640 (1.06) nm
3b	339 (77.11), 371 (53.68), 525 (2.39) nm

D. Computational Work

D1. Calculation Details

All calculations were carried out using version 5.4 of the Q-Chem software package.¹¹ The highest-occupied and lowest-unoccupied molecular orbitals of the unfunctionalized biazulene shown in Fig. 1 were obtained from the geometry-optimized structure based on density functional theory (DFT) calculations using the B3LYP functional¹² and cc-pVDZ basis set.¹³ The time-dependent DFT (TD-DFT) calculations on **3a** also used the B3LYP functional and cc-pVDZ basis set along with the integral equation formalism polarizable continuum model¹⁴ (IEFPCM) with static dielectric constant $\varepsilon = 8.93$ to represent dichloromethane as the solvent. The geometry was the B3LYP/cc-pVDZ structure with all ester groups extended away from the molecule, in contrast to the crystal structure but expected for the molecule in solution. However, this change in the molecular structure has little effect on the electronic transition energies or oscillator strengths.

To probe the minor heptafulvalene-like zwitterionic resonance forms illustrated in Figure 7, we carried out constrained DFT calculations.¹⁵ In this approach, we constrained the charge on one Cl atom to be +1 and the total charge on the carbon atoms of the 5-membered ring most distant from this Cl to be -1. These constraints should not be regarded as more than approximate models of the resonance structures. The two possible constrained electronic structures of this type (in the dichloromethane dielectric continuum model at the geometry optimized in dichloromethane) give dipole moments of 16.7 and 16.8 D; the slight difference arises from slight asymmetry in the ester substituents. Not surprisingly, these higher energy, minor resonance forms have significantly redshifted absorption features in their hypothetical electronic spectra, e.g., the weak HOMO \rightarrow LUMO transition (shifted down by 0.15 eV) occurs at 1655 nm compared to 532.5 nm for the unconstrained molecule calculation and the strongest absorption is at 624 nm corresponding to the HOMO-1 \rightarrow LUMO transition that is at 526.8 nm and weak for the unconstrained molecule.

	X	Y	Z
С	5.2079964419	-1.0165006532	0.4981649608
С	3.8583619641	-0.6559040849	0.3218155463
С	3.8555447419	0.6863998447	-0.3408094919
С	5.2034315854	1.0495848952	-0.5236706134
С	6.0143197840	0.0171116858	-0.0149983706
С	2.7387889861	1.4353287302	-0.7085095298
С	1.3788672270	1.1459347156	-0.5585287697
С	0.7516307557	0.0123409923	-0.0020111625
С	1.3835420914	-1.1199755573	0.5512412723
С	2.7449071575	-1.4069065067	0.6945800963
Н	5.5569098662	-1.9418497251	0.9543656122
С	-0.7539502019	0.0112587731	0.0017254191
С	-1.3828240923	1.1428008164	0.5606324244
С	-2.7431308816	1.4300842995	0.7110028810
С	-3.8588248821	0.6803698745	0.3416438983
С	-3.8596815980	-0.6605305804	-0.3238466568
С	-5.2088175508	-1.0225885947	-0.5011577235
С	-6.0166049465	0.0090216510	0.0136814064
С	-5.2072077855	1.0413970783	0.5249452759
Н	-5.5564326027	-1.9475327821	-0.9591759560
С	-2.7452036587	-1.4092529153	-0.6980404763
С	-1.3842219952	-1.1207290934	-0.5539910012
Η	-5.5532367781	1.9661507182	0.9845393124
Η	-2.9689456248	-2.3660937761	-1.1830151653
Η	-2.9656159105	2.3866352405	1.1971180558
Η	-0.7083387440	-1.8782690950	-0.9577795816
Η	2.9598927647	2.3931760105	-1.1927016539
Η	0.7005231813	1.9038672351	-0.9574580129
Η	-0.7055439721	1.9007908173	0.9612466714
Н	2.9700271691	-2.3644465101	1.1775362276
Н	0.7087195757	-1.8793082316	0.9534328005
Н	5.5482571271	1.9758553708	-0.9813178149
Н	7.1051332028	0.0178557562	-0.0177298836
Η	-7.1074149248	0.0083850309	0.0159735138

Table S2. Cartesian coordinates of the atoms in 6,6'-biazulene used to generate its HOMO/LUMO plot in Fig. 1.

1			
	X	Y	Z
С	5.2109534425	-1.0389112183	0.5529452883
С	3.8566540911	-0.6422679540	0.3192306541
С	3.8812892924	0.6597695994	-0.3586666802
С	5.2501761064	1.0463207524	-0.5128348271
С	6.0312351996	0.0008431764	0.0442351205
С	2.7699320742	1.4043937225	-0.7788104224
С	1.4067624439	1.1315531926	-0.6631399815
С	0.7449854019	0.0234198972	-0.1021315573
С	1.3653334288	-1.0937661577	0.4874372876
С	2.7179518589	-1.3800603709	0.6730372425
С	5.6848284393	2.3127804728	-1.1386015105
0	4.9321028938	3.0995236740	-1.7006969545
Cl	7.7633144191	-0.0028398287	0.1040190699
С	5.5988745725	-2.3092918647	1.2012276386
0	4.8126920198	-3.0760054380	1.7447796313
0	7.0042267207	2.5452154091	-1.0338905766
С	7.4890827245	3.7714617997	-1.6413625192
С	8.9889012373	3.8169328148	-1.4371963358
С	-0.7568892431	0.0357464988	-0.1328877459
С	-1.3948171854	1.2038639444	0.3257502452
С	-2.7522313272	1.5067173213	0.4281910362
С	-3.8766750847	0.7414592180	0.0895007653
С	-3.8806709800	-0.6150266836	-0.4739920528
С	-5.2440888953	-1.0045884527	-0.6629298304
С	-6.0410340271	0.0814978129	-0.2174621791
С	-5.2362293689	1.1510880572	0.2475489590
С	-5.6624100314	-2.3092547441	-1.2162750798
0	-4.8986667823	-3.1218259787	-1.7236291632
С	-2.7573959131	-1.4003842621	-0.7674803898
С	-1.3989262442	-1.1206030158	-0.6140187370
С	-5.6460982726	2.4548165410	0.8103858891
0	-4.9041017098	3.4226212248	0.9228525443
Cl	-7.7712329798	0.1408109821	-0.3182349885
0	-6.9245679925	2.4799389795	1.2226182899
С	-7.3990979882	3.7360155483	1.7755147264
С	-8.8393524610	3.5309315975	2.1965420967
0	-6.9803080018	-2.5463064630	-1.1014394867

Table S3. Cartesian coordinates of the atoms in 3a used to generate Figure S12.

С	-7.4547596047	-3.8078868124	-1.6403684313
С	-8.9524357589	-3.8592526672	-1.4222653085
0	6.9153209430	-2.5703050607	1.1361334386
С	7.3579761541	-3.8010128172	1.7664504433
С	8.8612369102	-3.8798193328	1.6010633576
Н	-2.9895981075	-2.3780387849	-1.1893960528
Н	-2.9823961625	2.4952220513	0.8258348805
Н	-0.7369949862	-1.9242180796	-0.9453423388
Н	3.0198753244	2.3397161872	-1.2788098391
Н	0.7596914349	1.8958204263	-1.0997527223
Н	-0.7313086957	1.9950803629	0.6825605052
Н	2.9320682308	-2.3191149029	1.1828402112
Н	0.6891503753	-1.8520934994	0.8890348178
Н	6.8431070421	-4.6474218592	1.2854808344
Н	7.0568419763	-3.7827169328	2.8254416747
Н	-7.2988184985	4.5188892990	1.0073255216
Н	-6.7547928097	4.0126656814	2.6244053081
Н	6.9799083556	4.6245183966	-1.1660428015
Н	7.2148401278	3.7688681102	-2.7077944563
Н	-6.9321660800	-4.6293985445	-1.1258636671
Н	-7.1886673839	-3.8572162517	-2.7078656811
Н	-9.4676982585	3.2503702360	1.3368502552
Н	-9.2337519115	4.4664904804	2.6232773113
Н	-8.9184342694	2.7415980531	2.9605980620
Н	9.3572937560	-3.0226087111	2.0826634659
Н	9.1419887404	-3.8933966540	0.5361938825
Н	9.2345659744	-4.8042592957	2.0689389636
Н	9.4791734041	2.9539379884	-1.9143729943
Н	9.2431756416	3.8152731376	-0.3655698703
Н	9.3931025227	4.7374955101	-1.8867910883
Н	-9.1983535499	-3.8050880793	-0.3500118345
Н	-9.3495977451	-4.8061307213	-1.8205727307
Н	-9.4559132494	-3.0271359413	-1.9389027895

Table S4. Allowed transition wavelengths, oscillator strengths, and transition orbital amplitudes obtained from the TD-DFT/B3LYP/cc-pVDZ calculations. (Transition wavelengths correspond to the transition energies shifted down by 0.15 eV as shown in Figure S12).

Adjusted Transition Wavelength (nm)	Oscillator Strength	Transition Orbital Amplitudes	
532.5	0.0106	$0.9529 \text{ HOMO} \rightarrow \text{LUMO}$	
526.8	0.0033	$0.9530 \text{ HOMO-1} \rightarrow \text{LUMO}$	
404.0	0.8249	$0.9481 \text{ HOMO-2} \rightarrow \text{LUMO}$ $0.2334 \text{ HOMO} \rightarrow \text{LUMO+1}$	
379.8	0.00075	-0.2287 HOMO-1 \rightarrow LUMO 0.9409 HOMO \rightarrow LUMO+2	
377.0	0.0018	$0.9388 \text{ HOMO-1} \rightarrow \text{LUMO+2} \\ -0.2232 \text{ HOMO} \rightarrow \text{LUMO}$	
368.5	0.00014	$\begin{array}{c} 0.8040 \text{ HOMO-3} \rightarrow \text{LUMO} \\ 0.4965 \text{ HOMO-1} \rightarrow \text{LUMO+1} \\ \text{-}0.2740 \text{ HOMO} \rightarrow \text{LUMO+3} \end{array}$	
358.4	0.1393	-0.2264 HOMO-1 → LUMO+1 0.3879 HOMO-1 → LUMO+3 0.7795 HOMO → LUMO+1 -0.3958 HOMO → LUMO+3	
355.9	0.0570	$0.6254 \text{ HOMO-1} \rightarrow \text{LUMO+1}$ $0.4089 \text{ HOMO-1} \rightarrow \text{LUMO+3}$ $0.2810 \text{ HOMO} \rightarrow \text{LUMO+1}$ $0.5733 \text{ HOMO} \rightarrow \text{LUMO+3}$	
341.0	0.00006	$\begin{array}{c} 0.3434 \ \text{HOMO-4} \rightarrow \text{LUMO} \\ -0.2669 \ \text{HOMO-3} \rightarrow \text{LUMO} \\ 0.6959 \ \text{HOMO-2} \rightarrow \text{LUMO+2} \\ 0.3017 \ \text{HOMO-1} \rightarrow \text{LUMO+1} \\ -0.4369 \ \text{HOMO} \rightarrow \text{LUMO+3} \end{array}$	
337.2	1.4634	$\begin{array}{c} 0.2696 \text{ HOMO-5} \rightarrow \text{LUMO} \\ \text{-}0.3002 \text{ HOMO-3} \rightarrow \text{LUMO+2} \\ 0.7200 \text{ HOMO-1} \rightarrow \text{LUMO+3} \\ \text{-}0.4114 \text{ HOMO} \rightarrow \text{LUMO+1} \end{array}$	
336.7	0.0214	0.9061 HOMO-4 → LUMO -0.2749 HOMO-2 → LUMO+2	
335.7	0.1465	$0.9061 \text{ HOMO-5} \rightarrow \text{LUMO}$ $-0.2310 \text{ HOMO-1} \rightarrow \text{LUMO+3}$	
329.0	0.0066	$0.9666 \text{ HOMO-}6 \rightarrow \text{LUMO}$	
324.7	0.0055	$0.9622 \text{ HOMO-7} \rightarrow \text{LUMO}$	
322.2	0.0569	$0.2125 \text{ HOMO-14} \rightarrow \text{LUMO}$ $0.8810 \text{ HOMO-2} \rightarrow \text{LUMO+1}$	

Figure S12. Experimental vs. simulated electronic spectra of **3a**. The simulated transition wavelengths are shifted down by a 0.15 eV increment.

E. Electrochemistry

Figure S13. a) Cyclic voltammogram of 1.1 mM solution of 1 in 0.1 M [$^{n}Bu_{4}N$]⁺[PF₆]⁻/CH₂Cl₂ vs. external Cp₂Fe^{0/+} at 22 °C (scan rate = 100 mV/s). b) Scan rate dependence of 1 in 0.1 M [$^{n}Bu_{4}N$]⁺[PF₆]⁻/CH₂Cl₂.

Figure S14. a) Cyclic voltammogram of 2.2 mM solution of **2b** in 0.1 M [$^{n}Bu_{4}N$]⁺[PF₆]⁻/CH₂Cl₂ vs. external Cp₂Fe^{0/+} at 22 °C (scan rate = 100 mV/s). b) Scan rate dependence of **2b** in 0.1 M [$^{n}Bu_{4}N$]⁺[PF₆]⁻/CH₂Cl₂.

Figure S15. a) Cyclic voltammogram of 1.6 mM solution of **3a** in 0.1 M [$^{n}Bu_{4}N$]⁺[PF₆]⁻/CH₂Cl₂ vs. external Cp₂Fe^{0/+} at 22 °C (scan rate = 100 mV/s). b) Scan rate dependence of **3a** in 0.1 M [$^{n}Bu_{4}N$]⁺[PF₆]⁻/CH₂Cl₂.

Figure S16. a) Cyclic voltammogram of 2.0 mM solution of **3b** in 0.1 M [$^{n}Bu_{4}N$]⁺[PF₆]⁻/CH₂Cl₂ vs. external Cp₂Fe^{0/+} at 22 °C (scan rate = 100 mV/s). b) Scan rate dependence of **3b** in 0.1 M [$^{n}Bu_{4}N$]⁺[PF₆]⁻/CH₂Cl₂.

Figure S17. Cyclic voltammogram of 2.0 mM solution of 1,3-diethoxycarbonylazulene in 0.1 M $[^{n}Bu_{4}N]^{+}[PF_{6}]^{-}/CH_{2}Cl_{2}$ vs. external Cp₂Fe^{0/+} at 22 °C (scan rate = 100 mV/s).

Figure S18. Cyclic voltammogram of 2.0 mM solution of 2-amino-1,3-diethoxycarbonylazulene in 0.1 M [$^{n}Bu_{4}N$]⁺[PF₆]⁻/CH₂Cl₂ vs. external Cp₂Fe^{0/+} at 22 °C (scan rate = 100 mV/s).

Figure S19. Cyclic voltammogram of 2.0 mM solution of 2-chloro-1,3-diethoxycarbonylazulene in 0.1 M [$^{n}Bu_{4}N$]⁺[PF₆]⁻/CH₂Cl₂ vs. external Cp₂Fe^{0/+} at 22 °C (scan rate = 100 mV/s).

Figure 20. Cyclic voltammogram of 2.0 mM solution of 2-isocyano-1,3-diethoxycarbonylazulene in 0.1 M [$^{n}Bu_{4}N$]⁺[PF₆]⁻/CH₂Cl₂ vs. external Cp₂Fe^{0/+} at 22 °C (scan rate = 100 mV/s).

Table S5. $E_{1/2}$ potentials and σ_p parameters for Fig. 4.

	EtO ₂ C CO ₂ Et									
X X X										
			EtO ₂ C	CO ₂ Et						
Ref.	x	Х'	σ _p (X) + σ _p (X')	$\begin{array}{c} E_{1/2} \left(V\right) \\ Az^{0} \rightarrow Az^{2\text{-}} \end{array}$	∆E _{p,c-p,a} (mV)	i _{p,c} /i _{p,a}				
1	-NH ₂	-NH ₂	-0.66 + -0.66 = -1.32	-1.64	118	1.07				
This work	-NH ₂	-H	-0.66 + 0.00 = -0.66	-1.45	76	1.02				
This work	-H	-H	0.00 + 0.00 = 0.00	-1.27	159	1.08				
This work	-Cl	-H	0.23 + 0.00 = 0.23	-1.25	63	0.98				
This work	-Cl	-CI	0.23 + 0.23 = 0.46	-1.20	72	1.09				
2	-NC	-H	0.49 + 0.00 = 0.49	-1.16	170	0.98				
1	-NC	-NC	0.49 + 0.49 = 0.98	-1.02	60	1.0				

Table S6. $E_{p,c}$ potentials and σ_p parameters for Fig. 5.

F. X-Ray Crystallography

F1. Experimental and Refinement Model Description

Table S6 contains crystal data, collection parameters, and refinement criteria for the crystal structure of **3a**. A dark red crystal coated with STP oil was placed on the tip of a Mitigen micromount (MiTeGen, LLC, Ithaca, NY) and X-ray intensity data were measured at low temperature (173(2) K, Oxford Cryosystems desktop cooler, Oxford Cryosystems Ltd., Oxford) with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) on a Rigaku XtaLAB mini diffractometer.¹⁶ The intensity data were corrected for absorption and decay (ChrysAlis PRO). Final cell constants were calculated based on the xyz centroids of 5126 strong reflections from the actual data collection after integration (ChrysAlis PRO). Utilizing Olex2¹⁷, the structure was solved with SHELXT 2018/2¹⁸ and refined with SHELXL 2018/3¹⁹. A direct-methods solution identified most of the non-hydrogen atoms from the E-map. Full-matrix least-squares/difference Fourier cycles were performed that located the remaining nonhydrogen atoms. All non-hydrogen atoms were refined with anisotropic displacement parameters. All of the hydrogen atoms were placed in calculated positions and refined in the riding-model approximation with C-H distances = 0.99, 0.98, and 0.95 Å for the methylene C-H, methyl C-H, and aromatic C-H, respectively, along with $U_{iso}(H) = k U_{eq}(C)$, k = 1.2 for all C-H except methyl groups where k = 1.5. CCDC entry 2300779 contains the relevant crystallographic data associated with this article. These data can be accessed free of charge from the Cambridge Crystallographic Data Centre.

Figure S21. a) Bulk crystalline sample of 3a; b) crystals of 3a under microscopic amplification; c) crystal of 3a selected for X-ray diffraction study.

Empirical formula	$C_{32}H_{28}Cl_2O_8$
Formula weight	611.44
Temperature/K	173.15
Crystal system	triclinic
Space group	P-1 (no. 2)
a/Å	9.9510(8)
b/Å	10.5842(9)
c/Å	14.9945(12)
α/°	96.395(7)
β/°	99.389(7)
γ/°	117.914(8)
Volume/Å ³	1344.5(2)
Z	2
$\rho_{calc}g/cm^3$	1.51
μ/mm^{-1}	0.298
F(000)	636
Crystal size/mm ³	0.45 imes 0.18 imes 0.1
Radiation	Mo K α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.46 to 61.016
Index ranges	$-14 \le h \le 14, -15 \le k \le 15, -21 \le l \le$
	21
Reflections collected	18156
Independent reflections	$8070 [R_{int} = 0.0331, R_{sigma} = 0.0471]$
Data/restraints/parameters	8070/0/383
Goodness-of-fit on F^2	1.062
Final R indexes [I>2 σ (I)]	$R_1 = 0.0527, wR_2 = 0.1357$
Final R indexes [all data]	$R_1 = 0.0753, wR_2 = 0.1598$
Largest diff. peak/hole / e Å ⁻³	0.49/-0.59

 Table S7. Crystal data and structure refinement for 3a.

Atom	x	У	z	U(eq)
Cl1	14147.7(5)	5032.9(5)	10952.0(3)	31.69(13)
Cl2	-256.7(7)	1553.8(6)	3658.4(4)	45.64(16)
06	22.4(16)	-983.3(15)	3553.0(10)	34.8(3)
04	11632.4(16)	2324.2(16)	11060.8(10)	35.5(3)
02	14758.0(16)	7761.7(15)	10383.4(9)	35.2(3)
01	14189.8(17)	7421.7(17)	8855.8(10)	38.7(4)
08	2926.4(18)	5698.8(16)	5705.0(10)	36.4(3)
07	1193.4(18)	4655.7(17)	4362.5(10)	36.8(3)
03	9194.6(18)	1439(2)	10339.0(14)	60.2(6)
05	2094(2)	-1051(2)	4219.5(14)	63.0(6)
C3	11072(2)	3543.4(19)	10007.6(12)	23.3(3)
C10	10120(2)	3703.2(19)	9283.1(11)	22.2(3)
C9'	3655(2)	3383(2)	5532.5(12)	24.0(3)
C9	11093(2)	5016.3(19)	8995.6(11)	22.5(3)
C1'	2403(2)	3420(2)	4980.7(12)	25.5(4)
C10'	3414(2)	1928(2)	5272.5(12)	25.4(3)
C4	8553(2)	2774(2)	8914.9(12)	25.6(3)
C1	12592(2)	5637.4(19)	9570.4(12)	23.5(3)
C20	2096(2)	4623(2)	4967.1(12)	26.9(4)
C6	7833(2)	3816(2)	7631.1(12)	24.4(3)
C2	12565(2)	4734.1(19)	10170.7(11)	22.5(3)
C8	10653(2)	5578(2)	8295.3(12)	25.2(3)
C11	13916(2)	7010(2)	9541.7(13)	26.6(4)
C6'	6468(2)	3468(2)	6883.0(12)	25.8(4)
C14	10524(2)	2340(2)	10467.3(13)	28.8(4)
C5	7563(2)	2829(2)	8194.0(13)	27.8(4)
C8'	4906(2)	4528(2)	6182.0(12)	26.8(4)
C7'	6130(2)	4569(2)	6772.4(13)	27.9(4)
C7	9225(2)	5054(2)	7694.2(12)	26.8(4)
C2'	1436(2)	2036(2)	4415.0(12)	26.6(4)
C3'	2027(2)	1109(2)	4568.9(12)	27.3(4)
C4'	4332(2)	1393(2)	5656.1(13)	29.8(4)
C17	1410(2)	-393(2)	4117.4(13)	31.7(4)
C5'	5648(2)	2064(2)	6366.1(13)	30.8(4)
C18	-632(2)	-2462(2)	3073.5(14)	35.1(4)
C12	16192(2)	9076(2)	10476.7(15)	37.7(5)
C21	2634(3)	6901(2)	5737.9(16)	37.8(5)

Table S8. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **3a**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

C15	11162(3)	1115(2)	11500.7(16)	40.3(5)
C13	16648(3)	9880(2)	11443.8(16)	41.7(5)
C19	-2086(3)	-2842(3)	2394.4(16)	44.8(6)
C22	3811(3)	8054(3)	6531.4(16)	44.8(5)
C16	12575(3)	1258(3)	12088.9(18)	45.4(5)

Table S9. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for **3a**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U22	U33	U23	U13	U12
C11	22.0(2)	38.0(3)	29.4(2)	9.20(18)	-1.12(17)	12.33(19)
Cl2	38.0(3)	44.6(3)	46.9(3)	-9.9(2)	-16.0(2)	27.1(2)
O6	29.0(7)	30.9(7)	36.3(7)	-7.3(6)	-5.0(6)	15.5(6)
O4	26.9(7)	33.8(7)	41.9(8)	19.8(6)	1.8(6)	11.6(6)
O2	24.6(7)	30.8(7)	28.4(7)	3.0(5)	1.4(5)	-1.3(6)
01	30.2(7)	41.5(8)	31.8(7)	16.6(6)	4.1(6)	7.1(6)
08	39.2(8)	34.4(8)	35.5(7)	-2.8(6)	-8.3(6)	25.9(7)
07	39.6(8)	42.5(8)	30.4(7)	4.6(6)	-3.3(6)	26.4(7)
03	24.9(8)	58.1(11)	72.2(12)	43.5(10)	-6.3(8)	-0.1(7)
05	56.7(11)	48.6(10)	71.2(12)	-26.1(9)	-31.3(9)	39.2(9)
C3	19.7(8)	25.4(8)	22.0(8)	5.4(6)	2.7(6)	9.7(7)
C10	20.6(8)	23.5(8)	20.4(7)	3.1(6)	2.8(6)	10.1(7)
C9'	22.0(8)	28.6(9)	23.2(8)	6.1(6)	3.8(6)	14.4(7)
C9	19.5(8)	24.1(8)	20.6(7)	2.3(6)	2.3(6)	9.5(6)
C1'	23.9(8)	29.8(9)	22.5(8)	3.0(7)	1.1(6)	15.1(7)
C10'	23.7(8)	29.9(9)	21.5(8)	2.0(6)	1.5(6)	14.4(7)
C4	19.8(8)	26.6(9)	26.2(8)	6.5(7)	2.7(6)	9.1(7)
C1	21.2(8)	25.5(8)	21.5(8)	4.5(6)	2.9(6)	10.5(7)
C20	25.5(9)	30.8(9)	25.7(8)	5.3(7)	3.8(7)	16.1(7)
C6	21.4(8)	29.5(9)	21.4(8)	1.5(6)	-0.1(6)	14.3(7)
C2	18.6(7)	27.9(8)	19.2(7)	2.5(6)	0.9(6)	11.9(7)
C8	23.2(8)	24.3(8)	24.6(8)	4.4(6)	1.8(6)	10.6(7)
C11	20.4(8)	28.5(9)	27.2(8)	4.9(7)	1.8(7)	10.7(7)
C6'	20.9(8)	31.8(9)	23.1(8)	3.9(7)	0.5(6)	13.6(7)
C14	24.9(9)	30.9(9)	26.6(9)	9.9(7)	2.8(7)	10.8(8)
C5	19.2(8)	29.1(9)	29.2(9)	5.3(7)	0.8(7)	9.3(7)
C8'	25.5(9)	27.2(9)	27.1(8)	5.6(7)	3.1(7)	13.8(7)
C7'	25.3(9)	28.0(9)	26.8(9)	3.4(7)	0.6(7)	12.5(7)
C7	25.9(9)	30.2(9)	24.1(8)	7.2(7)	2.4(7)	14.7(7)
C2'	23.7(8)	34.5(10)	20.5(8)	-0.8(7)	-2.1(6)	17.3(8)
C3'	25.9(9)	31.0(9)	22.9(8)	-0.7(7)	-1.7(7)	16.3(7)

C4'	28.0(9)	30.3(9)	28.8(9)	-0.4(7)	-2.8(7)	17.0(8)
C17	30.1(10)	35.6(10)	27.6(9)	-1.2(7)	-2.6(7)	19.7(8)
C5'	28.9(9)	33.0(10)	30.4(9)	2.0(7)	-2.3(7)	19.5(8)
C18	31.8(10)	29.7(10)	33.4(10)	-6.1(8)	-0.3(8)	12.4(8)
C12	24.6(9)	26.7(10)	41.6(11)	4.7(8)	4.1(8)	-1.4(7)
C21	39.6(11)	33.7(10)	43.6(11)	1.3(9)	-0.3(9)	25.7(9)
C15	35.4(11)	37.4(11)	45.5(12)	25.8(9)	6.1(9)	13.6(9)
C13	35.2(11)	29.4(10)	43.3(12)	1.6(9)	0.0(9)	6.9(9)
C19	29.6(11)	47.5(13)	42.3(12)	-11.1(10)	-2.9(9)	15.4(10)
C22	52.2(14)	36.3(11)	43.5(12)	-0.8(9)	-3.0(10)	26.7(11)
C16	42.8(13)	50.7(14)	50.8(13)	27.7(11)	9.3(10)	26.5(11)

Table S10. Bond Lengths for 3a.

Atom	Atom	Length (Å)	Atom	Atom	Length (Å)
C11	C2	1.6738(17)	C9	C8	1.372(2)
C12	C2'	1.6817(18)	C1'	C20	1.443(3)
06	C17	1.306(2)	C1'	C2'	1.389(2)
06	C18	1.426(2)	C10'	C3'	1.403(2)
O4	C14	1.308(2)	C10'	C4'	1.368(2)
O4	C15	1.421(2)	C4	C5	1.365(2)
O2	C11	1.317(2)	C1	C2	1.379(2)
02	C12	1.423(2)	C1	C11	1.445(3)
01	C11	1.184(2)	C6	C6'	1.478(2)
08	C20	1.320(2)	C6	C5	1.372(3)
08	C21	1.429(2)	C6	C7	1.369(3)
07	C20	1.183(2)	C8	C7	1.368(2)
03	C14	1.180(2)	C6'	C7'	1.374(3)
05	C17	1.186(2)	C6'	C5'	1.370(3)
C3	C10	1.400(2)	C8'	C7'	1.364(2)
C3	C2	1.384(2)	C2'	C3'	1.381(2)
C3	C14	1.436(3)	C3'	C17	1.440(3)
C10	C9	1.437(2)	C4'	C5'	1.363(2)
C10	C4	1.366(2)	C18	C19	1.475(3)
C9'	C1'	1.398(2)	C12	C13	1.477(3)
C9'	C10'	1.440(3)	C21	C22	1.470(3)
C9'	C8'	1.376(2)	C15	C16	1.464(3)
C9	C1	1.391(2)			

Atom	Atom	Atom	Angle (°)	Atom	Atom	Atom	Angle (°)
C17	06	C18	116.59(16)	C3	C2	C11	125.84(14)
C14	04	C15	116.42(16)	C1	C2	C11	123.86(14)
C11	02	C12	118.03(16)	C1	C2	C3	110.27(15)
C20	08	C21	115.34(15)	C7	C8	C9	130.09(18)
C10	C3	C14	124.08(16)	02	C11	C1	110.89(16)
C2	C3	C10	107.09(16)	01	C11	O2	124.41(18)
C2	C3	C14	128.83(16)	01	C11	C1	124.67(17)
C3	C10	C9	107.57(15)	C7'	C6'	C6	117.49(16)
C4	C10	C3	126.11(17)	C5'	C6'	C6	116.41(16)
C4	C10	C9	126.31(16)	C5'	C6'	C7'	126.10(17)
C1'	C9'	C10'	106.88(15)	04	C14	C3	114.20(16)
C8'	C9'	C1'	126.74(17)	03	C14	O4	121.71(18)
C8'	C9'	C10'	126.36(16)	03	C14	C3	124.09(18)
C1	C9	C10	107.00(15)	C4	C5	C6	130.83(18)
C8	C9	C10	127.37(16)	C7'	C8'	C9'	130.40(18)
C8	C9	C1	125.63(17)	C8'	C7'	C6'	129.63(18)
C9'	C1'	C20	128.93(16)	C8	C7	C6	129.28(17)
C2'	C1'	C9'	107.15(16)	C1'	C2'	Cl2	123.85(14)
C2'	C1'	C20	123.92(16)	C3'	C2'	Cl2	124.74(14)
C3'	C10'	C9'	108.38(15)	C3'	C2'	C1'	111.39(15)
C4'	C10'	C9'	126.73(16)	C10'	C3'	C17	124.78(17)
C4'	C10'	C3'	124.85(17)	C2'	C3'	C10'	106.19(16)
C5	C4	C10	129.54(18)	C2'	C3'	C17	129.02(16)
C9	C1	C11	124.96(16)	C5'	C4'	C10'	129.66(18)
C2	C1	C9	108.03(16)	06	C17	C3'	114.29(16)
C2	C1	C11	126.99(16)	05	C17	06	121.62(19)
08	C20	C1'	113.10(15)	05	C17	C3'	124.07(18)
07	C20	08	122.79(17)	C4'	C5'	C6'	130.86(18)
07	C20	C1'	124.11(17)	06	C18	C19	107.51(18)
C5	C6	C6'	115.26(16)	02	C12	C13	106.15(18)
C7	C6	C6'	118.21(16)	08	C21	C22	106.92(17)
C7	C6	C5	126.53(16)	04	C15	C16	107.80(18)

Table S11. Bond Angles for 3a.

Table S12. Torsion angles for 3a.

Α	В	С	D	Angle (°)	Α	В	С	D	Angle (°)
Cl2	C2'	C3'	C10'	-177.69(15)	C2	C3	C10	С9	1.27(19)
Cl2	C2'	C3'	C17	2.8(3)	C2	C3	C10	C4	-179.00(17)

C3	C10	C9	C1	-1.75(19)	C2	C3	C14	O4	-6.6(3)
C3	C10	C9	C8	178.71(17)	C2	C3	C14	03	172.8(2)
C3	C10	C4	C5	-177.65(19)	C2	C1	C11	02	-38.2(3)
C10	C3	C2	C11	-178.22(13)	C2	C1	C11	01	143.4(2)
C10	C3	C2	C1	-0.3(2)	C8	C9	C1	C2	-178.90(17)
C10	C3	C14	04	173.50(17)	C8	C9	C1	C11	2.4(3)
C10	C3	C14	03	-7.2(3)	C11	02	C12	C13	164.69(18)
C10	C9	C1	C2	1.56(19)	C11	C1	C2	Cl1	-4.2(3)
C10	C9	C1	C11	-177.14(16)	C11	C1	C2	C3	177.86(17)
C10	C9	C8	C7	-0.8(3)	C6'	C6	C5	C4	176.97(19)
C10	C4	C5	C6	-0.1(4)	C6'	C6	C7	C8	-177.36(18)
C9'	C1'	C20	08	-15.9(3)	C14	04	C15	C16	176.6(2)
C9'	C1'	C20	O7	164.2(2)	C14	C3	C10	C9	-178.81(16)
C9'	C1'	C2'	Cl2	177.79(14)	C14	C3	C10	C4	0.9(3)
C9'	C1'	C2'	C3'	-0.9(2)	C14	C3	C2	Cl1	1.9(3)
C9'	C10'	C3'	C2'	-0.7(2)	C14	C3	C2	C1	179.77(18)
C9'	C10'	C3'	C17	178.83(18)	C5	C6	C6'	C7'	131.49(19)
C9'	C10'	C4'	C5'	1.2(4)	C5	C6	C6'	C5'	-48.1(2)
C9'	C8'	C7'	C6'	0.3(4)	C5	C6	C7	C8	1.9(3)
C9	C10	C4	C5	2.0(3)	C8'	C9'	C1'	C20	-1.5(3)
C9	C1	C2	Cl1	177.16(13)	C8'	C9'	C1'	C2'	178.79(18)
C9	C1	C2	C3	-0.8(2)	C8'	C9'	C10'	C3'	-178.18(18)
C9	C1	C11	02	140.24(18)	C8'	C9'	C10'	C4'	3.8(3)
C9	C1	C11	01	-38.1(3)	C7'	C6'	C5'	C4'	-1.6(4)
C9	C8	C7	C6	0.3(3)	C7	C6	C6'	C7'	-49.2(2)
C1'	C9'	C10'	C3'	0.2(2)	C7	C6	C6'	C5'	131.22(19)
C1'	C9'	C10'	C4'	-177.86(19)	C7	C6	C5	C4	-2.3(3)
C1'	C9'	C8'	C7'	176.8(2)	C2'	C1'	C20	08	163.84(18)
C1'	C2'	C3'	C10'	1.0(2)	C2'	C1'	C20	O7	-16.0(3)
C1'	C2'	C3'	C17	-178.5(2)	C2'	C3'	C17	06	-7.5(3)
C10'	C9'	C1'	C20	-179.78(18)	C2'	C3'	C17	05	170.7(2)
C10'	C9'	C1'	C2'	0.5(2)	C3'	C10'	C4'	C5'	-176.5(2)
C10'	C9'	C8'	C7'	-5.1(3)	C4'	C10'	C3'	C2'	177.35(19)
C10'	C3'	C17	06	173.09(18)	C4'	C10'	C3'	C17	-3.1(3)
C10'	C3'	C17	05	-8.7(4)	C17	06	C18	C19	-172.87(19)
C10'	C4'	C5'	C6'	-2.4(4)	C5'	C6'	C7'	C8'	3.8(3)
C4	C10	C9	C1	178.51(17)	C18	06	C17	05	0.6(3)
C4	C10	C9	C8	-1.0(3)	C18	06	C17	C3'	178.81(18)
C1	C9	C8	C7	179.71(18)	C12	02	C11	01	-7.7(3)
C20	08	C21	C22	-172.2(2)	C12	02	C11	C1	173.93(17)
C20	C1'	C2'	C12	-2.0(3)	C21	08	C20	07	1.5(3)

C20	C1'	C2'	C3'	179.28(17)	C21	08	C20	C1'	-178.34(17)
C6	C6'	C7'	C8'	-175.81(19)	C15	O4	C14	03	3.7(3)
C6	C6'	C5'	C4'	178.0(2)	C15	O4	C14	C3	-176.95(18)

Table S13. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **3a**.

Atom	x	v	z	U(eq)
H4	8083.72	1971.73	9203.09	31
H8	11465.52	6470.39	8215.23	30
Н5	6508.64	2053.13	8059.23	33
H8'	4917.46	5435.67	6226.19	32
H7'	6858.68	5496.67	7165.78	34
H7	9195.17	5631.57	7257.96	32
H4'	4004.4	407.04	5387.54	36
H5'	6067.13	1455.61	6530.02	37
H18A	-865.64	-3121.87	3514.65	42
H18B	118.59	-2565.2	2753.78	42
H12A	16045.11	9665.68	10042.01	45
H12B	17009.56	8852.14	10345.32	45
H21A	1562.86	6593.25	5816.74	45
H21B	2728.21	7262.33	5157.47	45
H15A	10616.06	185.21	11030.85	48
H15B	10434.97	1113.52	11879.94	48
H13A	15870.31	10162.98	11547.97	62
H13B	17679.04	10759.15	11560.44	62
H13C	16698.87	9249.54	11864.78	62
H19A	-1827.47	-2253.42	1923.49	67
H19B	-2775.27	-2642.44	2710.89	67
H19C	-2621.16	-3883.77	2097.53	67
H22A	4856.7	8417.18	6415.96	67
H22B	3774.34	7653.63	7091.11	67
H22C	3585.38	8861.45	6616.12	67
H16A	13310.24	1311.52	11712.30	68
H16B	12289.61	406.56	12373.48	68
H16C	13070.83	2151.39	12574.48	68

Figure S22. Distribution of the C–Cl bond distances for chloroazulenes featuring Cl-substitution at the five-membered ring of their azulenic scaffold: this work plus 17 hits (Table S14) in CCDC, version 5.45 (Nov. 2023), accessed on Nov. 15, 2023.

Table S14. X-ray crystallographically characterized chloroazulenes represented in Fig. S22.

Molecular structure	$d(C^2-Cl)$, Å	CCDC identifier
$\begin{bmatrix} EtO_2C & CO_2Et \\ CI & -CI \\ EtO_2C & CO_2Et \end{bmatrix}$	1.674(2) 1.682(2)	This work
EtO ₂ C Cl EtO ₂ C	1.7117 (17)	HOMRAE
EtO ₂ C CI EtO ₂ C	1.709(2)	AYIDIX
EtO ₂ C CICI EtO ₂ C	1.714(4)	XIGPOU
CI F Ph BI F CI Ph	1.71(2) 1.72(2)	FAQGUA

	1.75(2)	
	1.75(2)	FAOCOLI
	1.69(2)	
	1.69(2)	TAQUUU
CI	1.74(2)	
	1.73(2)	
	1.7237(17) 1.7234(17)	UROCAI
	1.722(4)	XOWQAD
	1.730(2)	XOWQEH
	1.726(3)	XOXCOE

Figure S23. The chlorodiphenylmethylium cation X-ray crystallographically characterized by Laube et al.²⁰

References

(1) T.R. Maher, A.D. Spaeth, B.M. Neal, C.L. Berrie, W.H. Thompson, V.W. Day and M.V. Barybin, J. Am. Chem. Soc., 2010, **132**, 15924-15926.

(2) P.T. Connelly, J.C. Applegate, D.A. Maldonado, M.K. Okeowo, W.C. Henke, A.G.

Oliver, C.L. Berrie and M.V. Barybin, *Dalton Trans.*, 2023, 52, 11419-11426.

- (3) M. Makosza, P. W. Osinski, and S. Ostrowski, Pol. J. Chem., 2001, 75, 275-281.
- (4) I. Suzuka and M. Yasunami, Japan JP2008285435, 2008.
- (5) T. Nozoe, S. Seto and S. Matsumura, Bull. Chem. Soc. Jpn., 1962, 35, 1990-1998.

(6) D.L. DuBose, R.E. Robinson, T.C. Holovics, D.R. Moody, E.C. Weintrob, C.L. Berrie, and M.V. Barybin, *Langmuir*, 2006, **22**, 4599-4606.

(7) S. Ito, T. Okujima and N. Morita, J. Chem. Soc., Perkin Trans. 1, 2002, 16, 1896-1905.

(8) B. Hou, Z. Zhou, C. Yu, X.-S. Xue, J. Zhang, X. Yang, J. Li, C. Ge, J. Wang and X. Gao, *ACS Macro Lett.*, 2022, **11**, 680-686.

(9) H. Xin, C. Ge, X. Yang, H. Gao, X. Yang and X. Gao, Chem. Sci., 2016, 7, 6701-6705.

(10) K. Kurotobi, H. Tabata, M. Miyauchi, T. Murafuji and Y. Sugihara, *Synthesis*, 2002, **8**, 1013-1016.

(11) E. Epifanovsky et al., J. Chem. Phys., 2021, 155, 084801.

(12) A.D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.

(13) T.H. Dunning Jr., J. Chem. Phys. 1989, 90, 1007-1023.

- (14) E. Cancès, B. Mennucci and J. Tomasi, J. Chem. Phys., 1997, 107, 3032-3041.
- (15) Q. Wu and T. Van Voorhis, J. Chem. Theory Comput., 2006, 2, 765-777.
- (16) Rigaku Oxford Diffraction (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Tokyo, Japan.

(17) O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard and H.J. Puschmann, *Appl. Cryst.* 2009, **42**, 339-341.

- (18) G.M. Sheldrick, Acta Cryst., 2015, A71, 3-8.
- (19) G.M. Sheldrick, Acta Cryst., 2015, C71, 3-8.
- (20) T. Laube, E. Bannwart, and S. Hollenstein, J. Am. Chem. Soc., 1993, 115, 1731-1733.