Supplementary Information for

Space-Confined Twin-Polymerization Enabling Homogeneous Integration of Ultrafine TiO₂ Nanoparticles into Sulfur-Doped Carbon Matrix for Boosting Lithium Storage

Haisheng Huang,^a Yun Lu, ^b Shuguang Bi,^{*a} Changwang Yan,^b and Yingkui Yang^{*ab}

^a State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China E-mail: sgbi@wtu.edu.cn; ykyang@wtu.edu.cn

^b School of Materials Science and Engineering, Hubei University, Wuhan 430062, China

Experimental section

Materials: 2-Thiophenemethanol (98%, ThM), and titanium ethoxide (TTEO) were purchased from Beijing Bailingwei Co., Ltd. Trifluoroacetic acid (CF₃COOH), toluene, dichloromethane, ethanol, acetone and *n*-hexane are commercially available from Sinopharm Group Chemical Reagent Co., Ltd., China. All chemical solvents are analytical grade, and were purified by distillation before use.

Synthesis of Ti-ThM: ThM (8.12 g, 6.7 mL), TTEO (4.01g, 3.7 mL) and 0.3 wt% KOH were mixed at 80°C for 1 h and then 100°C for 1 h under an argon atmosphere [Refs: *Macromol. Rapid Commun.*, 2015, **36**, 1623; *Macromol. Theory Simul.*, 2012, **21**, 615]. The reaction mixture was subjected to the re-crystallization by a pre-mixed solvent of toluene and *n*-hexane (1:1 v/v). The brown crystal (6.7 g) of Ti-ThM was collected by drying at 60°C overnight under vacuum.

*Preparation of tp-TiO*₂@SC *derived from twin polymerization:* Typically, Ti-ThM (2.0 g) was dissolved in toluene (10 mL) at room temperature, and the resulting mixture was slowly added to a solution of CF₃COOH (0.89 mL) in dichloromethane (5 mL) under an argon atmosphere. The brown solution was then heated to 60°C for 0.5 h and 100°C for 1 h, depositing a brownish black solid. The generated SiO₂@poly(2-thiophenemethanol) (TiO₂@PThM) composite was filtered and washed using dichloromethane, ethanol, and acetone until the filtrate was colorless. The dark TiO₂@PThM product was further yielded by drying under vacuum at 60°C overnight. Finally, the resulted powder was thermally annealed at 550°C for 5 h under argon atmosphere, producing ultrafine TiO₂ nanoparticles encapsulated in the S-doped carbon matrix (*tp*-TiO₂@SC).

Preparation of sp-TiO₂/SC *derived from simultaneous polymerization:* For comparison, *sp*-TiO₂/SC was similarly produced by simultaneous polymerization as described elsewhere [Ref: *Energy Technol.*, 2019, **7**, 1900247]. As mentioned above, Ti-ThM has a stoichiometric ratio (3.5:1) of ThM to TTEO in its chemical structure. Therefore, two individual monomers of

ThM and TTEO with an equivalent feed ratio of 3.5:1 were simultaneously initiated by CF₃COOH to perform one-pot cationic polymerization under identical experimental processes (**Fig. S4a**). The *sp*-TiO₂/SC product was finally obtained by carbonizing the TiO₂/PThM composite.

In a control experiment, bulk TiO₂ nanoparticles were also prepared using ethanol instead of ThM under similar experimental conditions as reported previously [Ref: *Energy Technol.*, 2019, **7**, 1900247].

Materials characterization: TEM images were obtained from TecnaiG20 transmission electron microscope at an acceleration voltage of 200 kV. XRD patterns were collected on a Rigaku D/Max2400 diffractometer equipped with a CuK α radiation source in the range of 2θ =5-80°. Vibrational properties were analyzed using a Renishaw Raman spectrometer by exciting at 514.5 nm. TGA was carried out on a Mettler Toledo (Switzerland) at a heating rate of 20°C min⁻¹ in air atmosphere. XPS spectra were determined by X-ray photoelectron spectrometer (PHI MultiPak) with an excitation source of Mg K α radiation.

Electrochemical measurements: Battery measurements were performed using a coin-type cell (model 2032). The electrodes were fabricated by mixing 80% active materials, 10% acetylene black, and 10% polyvinylidene fluoride in *N*-methyl pyrrolidone. The resulting uniform slurry was then coated onto a Cu foil and the solvent was evaporated at 90°C for 12 h under vacuum. The lithium foil, the porous membrane (Celgard 2400) were used as the counter electrode, and the separator, respectively. 1 M LiPF₆ solution in a 1:1 (volume) mixture of ethylene carbonate and dimethyl carbonate was used as the electrolyte. Charge/discharge profiles were recorded on a LAND CT2001A battery measurement system. Both CV and EIS tests were performed on a CHI 760D electrochemical work station.

Fig. S1 Synthesis routes of (μ4-oxido)-hexakis(μ-thiophene-2-methoxo)-octakis(thiophene-2-methoxo)-tetratitanium (Ti-ThM).

Fig. S2 Typical TEM image of the TiO₂@PThM composite.

Fig. S3 (a) Typical SEM image, and (b) size distribution diagram of tp-TiO₂@SC.

Fig. S4 (a) CF₃COOH-catalyzed simultaneous polymerization of individual ThM and TTEO with an equivalent feed ratio of 3.5:1 to produce the $TiO_2/PThM$ composite and subsequent thermal carbonization to form TiO_2 nanoparticles in the S-doped carbon matrix (*sp*-TiO₂/SC), and typical TEM images of (b) *sp*-TiO₂/SC and (c) bulk TiO₂.

Fig. S5 TGA cures of *tp*-TiO₂@SC, *sp*-TiO₂/SC, and bulk TiO₂ meaused in air.

Fig. S6 (a) XRD patterns and (b) Raman spectra of *sp*-TiO₂/SC, and bulk TiO₂.

Fig. S7 XPS survey spectra of *sp*-TiO₂/SC, and bulk TiO₂.

Fig. S8 CV profiles of (a) sp-TiO₂/SC, and (b) bulk TiO₂ at 0.2 mV s⁻¹.

Fig. S9 Rate performance of sp-TiO₂/SC and bulk TiO₂ in the range of 50 to 500 mA g⁻¹.

Fig. S10 Cycling stability after running 2000 cycles at 5000 mA g⁻¹ for tp-TiO₂@SC.

Fig. S11 Typical TEM images (a, b) and (c) XRD patterns of the *tp*-TiO₂@SC electrode after running 200 cycles at 50 mA g⁻¹.

Fig. S12 (a) CV curves of tp-TiO₂@SC at sweep rates of 0.6 to 2.0 mV s⁻¹, (b) the capacitive-(blue) and diffusion-controlled contribution (blank) at 0.6 mV s⁻¹, and (c) the normalized capacitive-/diffusion-controlled contribution fractions at various scan rates.

Fig. S13 (a) Nyquist plots and (b) the relationship between the real part of impedance (Z) and the reciprocal of square root of frequency ($\omega^{-0.5}$) of *sp*-TiO₂/SC and bulk TiO₂.

Materials	TiO ₂ size (nm)	Carbon (wt%)	Cycle performance	Rate capability	References
<i>sp-</i> TiO ₂ @SC	5	40.9	582 mAh g ⁻¹ after 200 cycles at 0.05 A g ⁻¹ 144 mAh g ⁻¹ after 2000 cycles at 5 A g ⁻¹	667 mAh g ⁻¹ at 0.05 A g ⁻¹ 313 mAh g ⁻¹ at 0.5 A g ⁻¹	This work
TiO ₂ /metal- organic frameworks	9.9	35.7	446 mAh g ⁻¹ after 1000 cycles	646 mAh g ⁻¹ at 0. 017 A g ⁻¹ 335 mAh g ⁻¹ at 3.36 A g ⁻¹	[1] Chem. Eng. J. 2022, 430,132689
TiO ₂ /porous carbons	-	72	377 mAh g ⁻¹ after 50 cycles	377 mAh g ⁻¹ at 0.035 A g ⁻¹ 117 mAh g ⁻¹ at 0.7 A g ⁻¹	[2] Res. Chem. Intermed. 2017, 43,2891
TiO ₂ /graphitic carbons	-	-	321 mAh g ⁻¹ after 1000 cycles	434 mAh g ⁻¹ at 0.1 A g ⁻¹ 255 mAh g ⁻¹ at 5 A g ⁻¹	[3] Surf. Interfaces 2022, 35,102404
TiO ₂ /N-rich carbons	60~150	54.8	303 mAh g ⁻¹ after 125 cycles	297 mAh g ⁻¹ at 0.034 A g ⁻¹ 87 mAh g ⁻¹ at 3.35 A g ⁻¹	[4] Electrochim. Acta 2017, 255, 417
TiO ₂ @N-doped C	-	17	462 mAh g ⁻¹ after 300 cycles	382 mAh g ⁻¹ at 0.05 A g ⁻¹ 112 mAh g ⁻¹ at 10 A g ⁻¹	[5] Electrochim. Acta 2019, 299, 540
TiO ₂ @N-doped carbon coaxial nanotubes	-	33.6	480 mAh g ⁻¹ after 80 cycles	480 mAh g ⁻¹ at 0.1 A g ⁻¹ 140 mAh g ⁻¹ at 2 A g ⁻¹	[6] Appl. Surf. Sci. 2018, 458, 1018
S-doped carbon@TiO ₂	4~8	78.1	648 mAh g ⁻¹ after 200 cycles	768 mAh g ⁻¹ at 0.1 A g ⁻¹ 442 mAh g ⁻¹ at 2 A g ⁻¹	[7] Energy Storage Mater. 2018, 13, 215
carbon@mesopor ous TiO ₂ @CNTs	5~6	39.8	191 mAh g ⁻¹ after 200 cycles	223 mAh g ⁻¹ at 0.017 A g ⁻¹ 115 mAh g ⁻¹ at 0.85 A g ⁻¹	[8] Electrochim. Acta 2019, 312, 119
R-TiO ₂ @C hollow spheres	>10	5.7	191 mAh g ⁻¹ after 200 cycles	310 mAh g ⁻¹ at 0.668 A g ⁻¹ 50 mAh g ⁻¹ at 3.34 A g ⁻¹	[9] J. Alloy. Compd. 2023, 969, 172258
TiO ₂ on graphene	-	18.9	573 mAh g ⁻¹ after 600 cycles	373 mAh g ⁻¹ at 0.1 A g ⁻¹ 199 mAh g ⁻¹ at 5 A g ⁻¹	[10] J. Mater. Chem. A 2018, 6, 7070
Watermelon-like TiO ₂ @carbon sphere	~25	65.9	312 mAh g ⁻¹ after 200 cycles	496 mAh g ⁻¹ at 0.085 A g ⁻¹ 180 mAh g ⁻¹ at 3.4 A g ⁻¹	[11] Nanotechnology 2020, 31, 215407
Nanowires embedded porous TiO ₂ @C	-	88	128 mAh g ⁻¹ after 2500 cycles	271 mAh g ⁻¹ at 0.105 A g ⁻¹ 32 mAh g ⁻¹ at 10.5 A g ⁻¹	[12] Ceram. Int. 2020, 46, 9119
TiO ₂ /Carbon nanosheets	-	~40	273 mAh g ⁻¹ after 1500 cycles	575 mAh g ⁻¹ at 0.1 A g ⁻¹ 79 mAh g ⁻¹ at 12.8 A g ⁻¹	[13] ACS Appl. Nano Mater. 2021, 4, 11288
TiO ₂ /S-doped carbon fibers	-	78.9	607 mAh g ⁻¹ after 150 cycles	738 mAh g^{-1} at 0.1 A g^{-1} 454 mAh g^{-1} at 2 A g^{-1}	[14] <i>Small</i> 2019, 15, 1902201

Table S1 Lithium storage performance of TiO_2 /carbon composites

TiO ₂ @CNTs	-	-	201 mAh g ⁻¹ after 650 cycles	272 mAh g ⁻¹ at 0.1 A g ⁻¹ 133 mAh g ⁻¹ at 40 A g ⁻¹	[15] Adv. Mater. Interfaces 2016, 3, 1600375
TiO ₂ @N-doped carbon foams	10	-	149 mAh g ⁻¹ after 100 cycles	203 mAh g ⁻¹ at 0.1 A g ⁻¹ 104 mAh g ⁻¹ at 2 A g ⁻¹	[16] <i>Small</i> 2016, 12, 6724
Carbon nanolayer- wrapped TiO ₂	30	15.5	403 mAh g ⁻¹ after 1000 cycles	474 mAh g ⁻¹ at 0.1 A g ⁻¹ 182 mAh g ⁻¹ at 5 A g ⁻¹	[17] ACS Appl. Nano Mater. 2021, 4, 7832
TiO ₂ @carbon microspheres	20-50	28.2	322 mAh g ⁻¹ after 100 cycles	351 mAh g ⁻¹ at 0.1 A g ⁻¹ 145 mAh g ⁻¹ at 2 A g ⁻¹	[18] Diam. Relat. Mater. 2023, 136, 109913
TiO ₂ /carbon nanosheets	100	1.6	89 mAh g ⁻¹ after 500 cycles	287 mAh g ⁻¹ at 0.05 A g ⁻¹ 169 mAh g ⁻¹ at 2 A g ⁻¹	[19] Adv. Mater. Interfaces 2022, 9, 2102375
N-doped carbon-coated TiO ₂ hollow spheres	-	10.1	166 mAh g ⁻¹ after 2000 cycles	390 mAh g ⁻¹ at 0.1 A g ⁻¹ 141 mAh g ⁻¹ at 10 A g ⁻¹	[20] <i>Nanoscale.</i> 2021, 13, 2 368
Carbon-coated TiO ₂	14.5	3.5		225 mAh g ⁻¹ at 0.168 A g ⁻¹ 91 mAh g ⁻¹ at 8.4 A g ⁻¹	[21] ACS Appl. Mater. Interfaces 2019, 11, 11391
TiO ₂ encapsulated by sawdust- derived biochar	10	-	100 mAh g ⁻¹ after 2500 cycles	418 mAh g ⁻¹ at 0.1 A g ⁻¹ 60 mAh g ⁻¹ at 5 A g ⁻¹	[22] Sci. Total Environ. 2021, 794, 148688
T_1O_2 in pomegranate- like carbon sphere	10~20	68.9	203 mAh g ⁻¹ after 2000 cycles	$\label{eq:200} \begin{array}{l} \sim\!\!300 \text{ mAh } g^{\text{-1}} \text{ at } 0.1 \text{ A } g^{\text{-1}} \\ \sim\!\!100 \text{ mAh } g^{\text{-1}} \text{ at } 5 \text{ A } g^{\text{-1}} \end{array}$	[23] J. Colloid Interf. Sci. 2023, 633 546-554
TiO_2 in carbon nanospheres TiO_2 @holely carbon nanofibers	-	67.6 19	895 mAh g ⁻¹ after 100 cycles 354 mAh g ⁻¹ after 100 cycles	959 mAh g ⁻¹ at 0.062 A g ⁻¹ 244 mAh g ⁻¹ at 1.55 A g ⁻¹ 473 mAh g ⁻¹ at 0.1 A g ⁻¹ 147 mAh g ⁻¹ at 5 A g ⁻¹	[24] Ionics 2022, 28, 1635 [25] J. Alloy. Compd. 2022, 926, 166943
Carbon modified hierarchical hollow tubes composed of TiO ₂	-	-	177 mAh g ⁻¹ after 100 cycles	188 mAh g ⁻¹ at 0.175 A g ⁻¹ 106 mAh g ⁻¹ at 3.5 A g ⁻¹	[26] J. Alloy. Compd. 2021, 857,158048
TiO ₂ /carbon nanosheet	10~20	6.3	110 mAh g ⁻¹ after 2000 cycles	220 mAh g ⁻¹ at 0.168 A g ⁻¹ 38 mAh g ⁻¹ at 8.4 A g ⁻¹	[27] J. Mater Sci. Technol. 2019, 35, 1977
Graphene-boosted defective rutile TiO _{2-x}	200~300	-	157 mAh g ⁻¹ after 1400 cycles	$\begin{array}{c} 254 \text{ mAh } \mathrm{g}^{\text{-1}} \text{ at } 0.084 \text{ A } \mathrm{g}^{\text{-1}} \\ 134 \text{ mAh } \mathrm{g}^{\text{-1}} \text{ at } 0.84 \text{ A } \mathrm{g}^{\text{-1}} \end{array}$	[28] Mater. Chem. Front. 2021, 5, 3226
TiO ₂ quantum dots confined in 3D carbon	-	12.1	76 mAh g ⁻¹ after 10000 cycles	421 mAh g ⁻¹ at 0.1 A g ⁻¹ 108 mAh g ⁻¹ at 5 A g ⁻¹	[29] J. Colloid Interf. Sci. 2021, 582, 874
TiO ₂ -carbon hybrid nanostructures	-	28	321 mAh g ⁻¹ after 100 cycles	447 mAh g ⁻¹ at 0.06 A g ⁻¹ 251 mAh g ⁻¹ at 1.2 A g ⁻¹	[30] Adv. Funct. Mater. 2016, 26, 1338
TiO ₂ nanofibers decorated with N- doped carbon	8	9.2	176 mAh g ⁻¹ after 2000 cycles	401 mAh g ⁻¹ at 0. 034 A g ⁻¹ 97 mAh g ⁻¹ at 6.7 A g ⁻¹	[31] ACS Appl. Mater. Interfaces 2018, 10, 35060
CNT-C@TiO ₂	9~13	22.8	206 mAh g ⁻¹ after 200 cycles	414 mAh g ⁻¹ at 0.1 A g ⁻¹ 72 mAh g-1 at 1.6 A g ⁻¹	[32] J. Mater. Sci. 2019, 54, 592.
Mesoporous TiO ₂ /carbon spheres	-	1.9	140 mAh g ⁻¹ a fter 600 cycles	161 mAh g ⁻¹ at 0.34 A g ⁻¹ 103 mAh g ⁻¹ at 1.7 A g ⁻¹	[33] ACS Sustainable Chem. Eng. 2022, 10, 10955
Carbon coated TiO_2 aerogel	~5	8.6	133 mAh g ⁻¹ after 3000 cycles	215 mAh g ⁻¹ at 0.017 A g ⁻¹ 127 mAh g ⁻¹ at 3.35 A g ⁻¹	[34] Chem. Eng. J. 2018, 351, 825