Supporting Information

Strategic Structure Modulation of Novel QuinoxalineDerived Liquid Organic Hydrogen Carriers for Enhanced Dehydrogenation Kinetics

Li Liu, Ting Zhu, Jiaqi Li, Can Wang, Yinheng Zhao, Ming Yang, Hansong Cheng, Yuan

Dong*

Hubei Hydrogen Energy Technology Innovation Center, Faculty of Materials Science and

Chemistry, China University of Geosciences, Wuhan 430074, P R China
*Corresponding authors. E-mail address: dongyuancug@163.com.

This file includes:

Number of pages: 27
Number of tables: 6
Number of figures: 3

1. Experimental

1.1 Materials

The experimental materials used in this paper were all commercially purchased reagents. The hydrogenation reactants, including 2-methylquinoline (2-MQL), 2-methylquinoxaline (2MQX) and 2,3-dimethylquinoxaline (2,3-DMQX), were purchased from Alfa Aesar Co. Ltd. The commercial $5 \mathrm{wt} \% \mathrm{Ru} / \mathrm{Al}_{2} \mathrm{O}_{3}$ catalysts and $5 \mathrm{wt} \% \mathrm{Pd} / \mathrm{Al}_{2} \mathrm{O}_{3}$ catalysts were provided by Shaanxi Kaida Chemical Co., LTD. The fully hydrogenated products, 10H-2-methylquinoline (10H-2-MQL), $10 \mathrm{H}-2$-methylquinoxaline (10H-2-MQX) and $10 \mathrm{H}-2,3$-dimethylquinoxaline (10H-2,3-DMQX) were achieved by hydrogenation of respective raw materials catalyzed by commercial $5 \mathrm{wt} \% \mathrm{Ru} / \mathrm{Al}_{2} \mathrm{O}_{3}$ in a stainless-steel high-pressure reactor (Shanghai LABE instrument LB250). In order to obtain fully hydrogenated products, all hydrogenation reactions were carried out at elevated reaction temperature and hydrogen pressure. Prior to the reaction, the reactor was purged with hydrogen multiple times to remove air from the system. The temperature was then raised to $180^{\circ} \mathrm{C}$, and the hydrogenation reaction was carried out at a hydrogen pressure of 9 MPa with a stirring speed of 600 rpm . Liquid samples were periodically extracted from the reactor and analyzed using a GC-MS (Agilent 7890-5975 C). The reaction was stopped after confirmation of complete hydrogenation was obtained through GC-MS analysis. The liquid samples diluted with hexane ($1: 100 \mathrm{wt} / \mathrm{wt}$) were injected by an autosampler. The injector temperature was set as $300^{\circ} \mathrm{C}$ in the whole run. Helium was used as a carrier gas at a constant flow rate of $20 \mathrm{ml} / \mathrm{min}$. Liquid mixtures were separated by the MS
capillary column (DB-17ms, $30 \mathrm{~m} \times 250 \mu \mathrm{~m} \times 0.25 \mu \mathrm{~m}$) with programming the oven in two temperature-rising stages. Initial temperature of $95^{\circ} \mathrm{C}$ was followed by an increase of $8^{\circ} \mathrm{C} / \mathrm{min}$ to $180^{\circ} \mathrm{C}$ and maintained for 3 min .

1.2 Catalytic dehydrogenation process

The dehydrogenation reactions of all three LOHCs was conducted in a 250 ml two-necked flask containing 1 g of LOHC and 0.2 g of the selected catalyst. To explore the hydrogen release performance of various LOHC materials, we utilized the fully hydrogenated products obtained in batches during the hydrogenation process as the dehydrogenation feedstock. A $5 \mathrm{wt} \%$ $\mathrm{Pd} / \mathrm{Al}_{2} \mathrm{O}_{3}$ catalyst was employed as the dehydrogenation catalyst for comparative analysis. Given that dehydrogenation is an endothermic reaction, temperature plays a crucial role in determining the dehydrogenation rate. Hence, our dehydrogenation experiments aimed to primarily investigate the impact of temperature on the dehydrogenation performance and kinetics. The influence of temperature on dehydrogenation rate was investigated by adding 5 $\mathrm{wt} \% \mathrm{Pd} / \mathrm{Al}_{2} \mathrm{O}_{3}$ within the temperature range of $180^{\circ} \mathrm{C}-210^{\circ} \mathrm{C}$. A small amount liquid samples were also periodically extracted from the reactor and analyzed using GC-MS (Agilent 78905975 C).

1.3 Calculation of Activation Energy

In order to calculate the activation energy for each stage of quinoxaline-based LOHCs dehydrogenation, we fitted the reaction results at each temperature by MATLAB software and used non-linear least squares to calculate the equilibrium constants k_{1} and k_{2} for each level of
the reaction. The specific calculation equations are as follows:
In the following equations, the concentrations of $10 \mathrm{H}-\mathrm{X}, 4 \mathrm{H}-\mathrm{X}$, and $0 \mathrm{H}-\mathrm{X}$ are defined as A , B, and C, respectively, t is real reaction time.

$$
\begin{gather*}
\mathrm{k}_{1} \mathrm{k}_{2} \tag{1}\\
\mathrm{~A} \rightarrow \mathrm{~B} \rightarrow \mathrm{C} \tag{2}\\
-\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{d} t}=\mathrm{k}_{1}[\mathrm{~A}] \tag{3}\\
\frac{\mathrm{d}[\mathrm{~B}]}{\mathrm{d} t}=\mathrm{k}_{1}[\mathrm{~A}]-\mathrm{k}_{2}[\mathrm{~B}] \tag{4}\\
\frac{d[\mathrm{C}]}{d t}=k_{2}[\mathrm{~B}]
\end{gather*}
$$

The Arrhenius curves for each stage of the reaction were obtained by plotting the natural logarithm of k_{1} and k_{2} against $1 / T$, respectively. The activation energy of each stage of the reaction is calculated according to the Arrhenius equation:

$$
\begin{equation*}
\operatorname{lnk}=\frac{-E_{a}}{\mathrm{RT}}+\mathrm{C} \tag{5}
\end{equation*}
$$

Here, R is the molar gas constant, $\mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1} ; \mathrm{T}$ is the reaction temperature, $\mathrm{K} ; \mathrm{Ea}$ is the apparent activation energy, $\mathrm{J} \cdot \mathrm{mol}^{-1}$.

No uncommon hazards are noted in all experiments.

1.4 DFT Calculations

1.4.1 Calculations of dehydrogenation temperatures

Model construction and calculations of quinolines were completed using Material studio software, and spin polarization calculations for each structure were performed using the DMol^{3} module based on density generalized function theory. The basic parameters of the calculations are as follows: the exchange-correlation generalized function is PW91 in the generalized gradient function GGA, the SCF accuracy is $2 \times 10^{-5} \mathrm{Ha}$, the maximum force convergence is $0.004 \mathrm{Ha} / \AA$, and the maximum displacement convergence accuracy is $0.005 \AA$.

The thermodynamic data such as Internal energy, Enthalpy, Entropy and Gibbs free energy of each structure were obtained by calculations to obtain the dehydrogenation reaction temperature of quinolines according to the reaction equation (6). Where, $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}+2 \mathrm{n}} \mathrm{N}_{\mathrm{z}}$ represents the hydride of quinoline analogs, $\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{N}_{\mathrm{z}}$ represents quinoline analogs, and n_{H} represents the release of stoichiometric number of hydrogen.

$$
\begin{equation*}
\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+2 n \mathrm{~N}_{\mathrm{z}} \rightarrow \mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{~N}_{\mathrm{z}}+\mathrm{nH}_{2} \tag{6}
\end{equation*}
$$

For a certain level of dehydrogenation reaction of $\mathrm{CxHy}+2 \mathrm{nNz}$, the equilibrium constant K and Gibbs free energy change $\Delta \mathrm{G}$ satisfy the relationship of Eq. (7). In addition, the equilibrium constant K and the conversion ratio are obtained by Eqs. (8) and (9), respectively.

$$
\begin{gather*}
\Delta G(T)=-R T \ln K \tag{7}\\
\mathrm{~K}=\frac{\left[\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{~N}_{\mathrm{z}}\right] \cdot\left[\mathrm{P}_{\mathrm{H}_{2}}\right]^{\mathrm{n}}}{\left[\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+2 \mathrm{n} \mathrm{~N}_{\mathrm{z}}\right]} \tag{8}\\
\mathrm{X}=\frac{\left[\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{~N}_{\mathrm{z}}\right]}{\left[\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+2 \mathrm{~N} \mathrm{~N}_{\mathrm{z}}\right]} \tag{9}
\end{gather*}
$$

It can be obtained by the derivation of Eqs. (7)-(9):

$$
\begin{equation*}
\Delta \mathrm{G}(\mathrm{~T})=-\mathrm{RT}\left(\ln \mathrm{X}+\mathrm{n} \ln \mathrm{P}_{\mathrm{H}_{2}}\right) \tag{10}
\end{equation*}
$$

The $\Delta \mathrm{G}(\mathrm{T})$ at different temperatures T can be determined from the above thermodynamic data, so that the function curve $f_{1}(T)$ can be plotted as a function of temperature T for $\Delta G(T)$ when ${ }^{\mathrm{H}_{2}}$ is 1 atm . When the dehydrogenation reaction (1) reaches catalytic equilibrium, the intersection of the function curve $f_{1}(T)$ with the temperature T axis is the dehydrogenation temperature T_{d}. Similarly, assuming that each step of the dehydrogenation is a complete dehydrogenation reaction ($X=100 \%$), the function curves $f_{p}(T)$ can be obtained for different
conditions of hydrogen partial pressure. However, the intersection of the curves $f_{1}(T)$ and $f_{P}(T)$ is the equilibrium temperature $\left(T_{d}\right)$ of the dehydrogenation reaction for a definite conversion ratio X (assuming 100% conversion) and a given hydrogen pressure $\mathrm{P}_{\mathrm{H}_{2}}$.

1.4.2 Calculation of Hydrogenation heat

Hydrogenation of quinoline molecules proceeds as in Eq. (11). The heat of hydrogenation of LOHCs was obtained by combining the energies of each molecule obtained from DMol^{3} calculations according to Eq. (12). Where ${ }^{E_{H_{2}}}$ is the calculated energy of $H_{2},{ }^{E_{C_{x}} H_{y} N_{z}}$ is the energy of $\mathrm{C}_{x} H_{y} N_{z}$, and ${ }^{E_{C}}{ }_{x} H_{y}+2 n^{N} N_{z}$ is the energy of $C_{x} H_{y+2 n} N_{z}$.

$$
\begin{gather*}
\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{~N}_{\mathrm{z}}+\mathrm{n}_{2} \rightarrow \mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+2 n \mathrm{~N}_{\mathrm{z}} \tag{11}\\
\text { Hydrogenation heat }=\frac{\mathrm{E}_{\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}+2 \mathrm{n}} \mathrm{~N}_{\mathrm{z}}}-\mathrm{E}_{\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{~N}_{\mathrm{z}}}-\mathrm{nE}_{\mathrm{H}_{2}}}{\mathrm{n}} \tag{12}
\end{gather*}
$$

1.4.3 Calculation of hydrogen storage molecule adsorption on $\operatorname{Pd}(111)$ surface

The conformational structures of different molecules for the molecular stepwise dehydrogenation of $10 \mathrm{H}-\mathrm{X}$ LOHCs were constructed by Materials Studio software. The reaction pathways for the stepwise dehydrogenation of $10 \mathrm{H}-\mathrm{X}$ were deduced by comparing the energies of the different isomeric conformations, and the detailed data are listed in Table S1S3.
$\operatorname{Pd}(111)$ facet exhibits a low surface energy with the closest packed, making them thermodynamically favorable and highly reactive compared to other facets ${ }^{1,2}$. Stable 10H-X, $8 \mathrm{H}-\mathrm{X}, 6 \mathrm{H}-\mathrm{X}, 4 \mathrm{H}-\mathrm{X}, 2 \mathrm{H}-\mathrm{X}$, and X structural models were displayed in Table $\mathrm{S} 1-\mathrm{S} 3$ and adsorbed onto the most stable (111) crystal plane of the Pd metal. The effect of the number
of N atoms and side groups on the rate of dehydrogenation was investigated by analyzing adsorption energy $\left(\mathrm{E}_{\text {ads }}\right)$ and reaction energy $(\Delta \mathrm{H})$ data. The Pd metal was sectioned along the (111) facets and expanded into 5×5 supercells. A vacuum layer of $15 \AA$ was added to avoid interactions of periodic atoms in the z -direction. The lattice parameter of the $\operatorname{Pd}(111)-\mathrm{p}(5 \times 5)$ flat plate structure is $13.76 \times 13.76 \times 21.74$, and the four-layer structure includes 100 Pd atoms. The $\operatorname{Pd}(111)-\mathrm{p}(5 \times 5)$ structure is optimized and the energy is calculated by fixing the lower two layers of Pd atoms while the surface two layers of Pd atoms are relaxed.

The adsorption energy ($\mathrm{E}_{\text {ads }}$) and reaction energy $(\Delta \mathrm{H})$ are calculated as follows:

$$
\begin{equation*}
E=E_{m / s l a b}-E_{\text {slab }}-E_{m} \tag{13}
\end{equation*}
$$

$\mathrm{E}_{\mathrm{m} / \mathrm{slab}}, \mathrm{E}_{\text {slab }}$, and E_{m} respectively represent the energy of the adsorbate on $\operatorname{Pd}(111)-\mathrm{p}(5 \times 5)$ slab, the energy of the slab itself, and the energy of the adsorbate.

$$
\begin{equation*}
\Delta H=\mathrm{E}_{\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}} \mathrm{~N}_{\mathrm{z}}}+\mathrm{nE}_{\mathrm{H}_{2}}-\mathrm{E}_{\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}+2 \mathrm{n}} \mathrm{~N}_{\mathrm{z}}}(n=1-5) \tag{14}
\end{equation*}
$$

$\mathrm{E}_{\mathrm{C}_{x} \mathrm{H}_{y} \mathrm{~N}_{z}}$ represents the energy of hydrogen-poor molecules on $\operatorname{Pd}(111)$ surfaces; ${ }^{E_{C_{x}}}{ }_{y+2 n} n_{z}$ refers to the energy of hydrogen-rich molecules on $\operatorname{Pd}(111)$ surfaces; ${ }^{\mathrm{E}_{2}}$ denotes the energy of hydrogen molecules.

2. Supplementary Figures and Tables

Figure S1. The theoretical dehydrogenation temperatures of Quinoxaline-based Liquid

Organic Hydrogen Carriers calculated under different H_{2} pressures.

Figure S2. Possible dehydrogenation reaction pathways of $10 \mathrm{H}-2-\mathrm{MQL}, 10 \mathrm{H}-2-\mathrm{MQX}$, and 10H-2,3-DMQX.

4H-2-MQL

2-MQL

4H-2-MQX

4H-2,3-DMQX

Figure S3. Bader charge of the stable molecular structure of $10 \mathrm{H}-\mathrm{X}, 4 \mathrm{H}-\mathrm{X}, \mathrm{X}(\mathrm{X}=2-\mathrm{MQL}$,
2-MQX, 2,3-DMQX).

Table S1. Hydrogen storage density, dehydrogenation temperatures with different H_{2} partial pressures and hydrogen heat of selected quinoxaline-derives.

Molecules	Hydrogen storage density (wt\%)	Dehydrogenation temperature (K)			Hydrogenation heat ($\mathrm{kJ} / \mathrm{mol}$)
		$1 \mathrm{~atm}^{\text {a }}$	$0.5 \mathrm{~atm}^{a}$	$10 \mathrm{~atm}^{\text {a }}$	
QL	7.19	331	316	387	-77.32
2-MQL	6.54	392	372	460	-76.50
6-MQL	6.54	392	380	465	-76.81
8-MQL	6.54	392	374	455	-75.87
2-MQX	6.49	326	312	384	-67.90
2,3-DMQX	5.95	308	295	363	-65.66

${ }^{a}$: partial pressure of H_{2}.

Table S2. Dehydrogenation performance comparisons of selected LOHCs.

Series | LOHCs |
| :---: |
| Carbazoles |

Table S3. Possible geometry configurations and energies of various isomers of 2-MQL
calculated by Materials Studio.
Code

Energy (eV)	-161.190	-159.037	-161.190	-161.528
Code	8H-2-MQL(13)	8H-2-MQL(14)	8H-2-MQL(15)	8H-2-MQL(16)
Structural formula				
Energy (eV)	-161.526	-161.200	-159.121	-161.199
Code	8H-2-MQL(17)	8H-2-MQL(18)	8H-2-MQL(19)	8H-2-MQL(20)
Structural formula				
Energy (eV)	-161.200	-161.278	-161.278	-159.016
Code	8H-2-MQL(21)	8H-2-MQL(22)	8H-2-MQL(23)	8H-2-MQL(24)
Structural formula				
Energy (eV)	-161.278	-161.246	-159.023	-161.244
Code	8H-2-MQL(25)	8H-2-MQL(26)	8H-2-MQL(27)	
Structural formula				

Energy (eV)	-161.245	-161.291	-161.292	
Code	6H-2-MQL(1)	6H-2-MQL(2)	6H-2-MQL(3)	6H-2-MQL(4)
Structural formula				
Energy (eV)	-153.485	-153.486	-151.014	-153.487
Code	6H-2-MQL(5)	6H-2-MQL(6)	6H-2-MQL(7)	6H-2-MQL(8)
Structural formula				
Energy (eV)	-153.579	-153.579	-153.725	-153.725
Code	6H-2-MQL(9)	6H-2-MQL(10)	6H-2-MQL(11)	6H-2-MQL(12)
Structural formula				
Energy (eV)	-153.725	-153.351	-151.208	-153.351

Code
Structural formula

Energy (eV)	-153.349	-153.436	-153.436	-151.145
Code	6H-2-MQL(17)	6H-2-MQL(18)	6H-2-MQL(19)	6H-2-MQL(20
Structural formula				
Energy (eV)	-153.436	-153.376	-151.184	-153.377
Code	6H-2-MQL(21)	6H-2-MQL(22)	6H-2-MQL(23)	
Structural formula				
Energy (eV)	-153.377	-153.500	-153.500	

Code
(eV)
Code
Energy (eV) -138.751 -

Table S4. Possible geometry configurations and energies of various isomers of 2-MQX calculated by Materials Studio.
Code
Energy
(eV) Code

Structural formula				
Energy (eV)	-156.276	-156.276		
Code	6H-2-MQX(1)	6H-2-MQX(2)	6H-2-MQX(3)	6H-2-MQX(4)
Structural formula				
Energy (eV)	-148.885	-148.884	-148.810	-148.805
Code	6H-2-MQX(5)	6H-2-MQX(6)	6H-2-MQX(7)	6H-2-MQX(8)
Structural formula				
Energy (eV)	-149.031	-148.667	-148.668	-148.666
Code	6H-2-MQX(9)	6H-2-MQX(10)	6H-2-MQX(11)	6H-2-MQX(12)
Structural formula				
Energy (eV)	-146.505	-148.618	-148.617	-146.497

Code	6H-2-MQX(13)	6H-2-MQX(14)	6H-2-MQX(15)	6H-2-MQX(16)
Structural formula				
Energy (eV)	-148.619	-146.502	-148.665	-148.664
Code	6H-2-MQX(17)			
Structural formula				
Energy (eV)	-148.664			
Code	4H-2-MQX(1)	4H-2-MQX(2)	4H-2-MQX(3)	4H-2-MQX(4)
Structural formula				
Energy (eV)	-142.097	-142.096	-138.598	-140.888
Code	4H-2-MQX(5)	4H-2-MQX(6)	4H-2-MQX(7)	4H-2-MQX(8)
Structural formula				
Energy	-140.889	-140.889	-138.794	-140.873

(eV)
Energy
(eV) \quad-133.905

Table S5. Possible geometry configurations and energies of various isomers of 2,3-DMQX calculated by Materials Studio.
Code

Structural formula				
Energy (eV)	-173.299	-173.383	-173.161	-173.163
Code	8H-2,3-DMQX(9)	8H-2,3-DMQX(10)	8H-2,3-DMQX(11)	8H-2,3-DMQX(12)
Structural formula				
Energy (eV)	-172.867	-172.866	-170.722	-172.866
Code	8H-2,3-DMQX(13)	8H-2,3-DMQX(14)	8H-2,3-DMQX(15)	8H-2,3-DMQX(16)
Structural formula				
Energy (eV)	-172.952	-170.634	-172.953	-172.953
Code	8H-2,3-DMQX(17)	8H-2,3-DMQX(18)	8H-2,3-DMQX(19)	8H-2,3-DMQX(20)
Structural formula				
Energy (eV)	-172.867	-172.867	-170.725	-172.867

Code 8H-2,3-DMQX(21) 8H-2,3-DMQX(22)

Structural formula				
Energy (eV)	-173.162	-173.163		
Code	6H-2,3-DMQX(1)	6H-2,3-DMQX(2)	6H-2,3-DMQX(3)	6H-2,3-DMQX(4)
Structural formula				
Energy (eV)	-165.610	-165.446	-165.611	-165.268
Code	6H-2,3-DMQX(5)	6H-2,3-DMQX(6)	6H-2,3-DMQX(7)	6H-2,3-DMQX(8)
Structural formula				
Energy (eV)	-165.268	-163.108	-165.268	-165.220
Code	6H-2,3-DMQX(9)	6H-2,3-DMQX(10)	6H-2,3-DMQX(11)	6H-2,3-DMQX(12)
Structural formula				
Energy	-163.108	-165.219	-165.218	-165.269

Structural formula				
Energy (eV)	-165.269	-163.115	-165.268	
Code	4H-2,3-DMQX(1)	4H-2,3-DMQX(2)	4H-2,3-DMQX(3)	4H-2,3-DMQX(4)
Structural formula				
Energy (eV)	-158.823	-157.469	-157.471	-155.179
Code	4H-2,3-DMQX(5)	4H-2,3-DMQX(6)	4H-2,3-DMQX(7)	4H-2,3-DMQX(8)
Structural formula				
Energy (eV)	-157.469	-157.454	-155.375	-157.452
Code	4H-2,3-DMQX(9)	4H-2,3-DMQX(10)	4H-2,3-DMQX(11)	4H-2,3-DMQX(12)
Structural formula				

Energy (eV)	-157.453	-157.557	-157.556	-155.099
Code	4H-2,3-DMQX(13)			
Structural formula				
Energy (eV)	-157.554			
Code	2H-2,3-DMQX(1)	2H-2,3-DMQX(2)	2H-2,3-DMQX(3)	2H-2,3-DMQX(4)
Structural formula				
Energy (eV)	-150.723	-150.723	-148.135	-150.724
Code	2H-2,3-DMQX(5)	2H-2,3-DMQX(6)	2H-2,3-DMQX(7)	2H-2,3-DMQX (8)
Structural formula				
Energy (eV)	-150.632	-148.365	-150.632	-150.627
Code	2H-2,3-DMQX(9)	2H-2,3-DMQX(10)	2H-2,3-DMQX(11)	2H-2,3-DMQX(12)

Structural
formula
$\mathbf{(e V)}$

X	Adsorption energy $^{a}(\mathrm{eV})$			Hydrogenation heat $(\mathrm{kJ} / \mathrm{mol})$	Total reaction energy $^{b}(\mathrm{eV})$
	$10 \mathrm{H}-\mathrm{X}$	$4 \mathrm{H}-\mathrm{X}$	X	-1.82	-76.50
2-MQL	-1.07	-0.71	-1.92		
2-MQX	-1.18	-0.85	-2.17	-67.90	3.85
2,3-DMQX	-1.18	-0.24	-1.82	-65.66	3.81

Table S6. Summary of adsorption energy, hydrogenation heat and total reaction energy.
${ }^{a}$: occurred in X with catalyst surface.
${ }^{b}$: calculated from $10 \mathrm{H}-\mathrm{X}$ dehydrogenation to form X .

References:

1. J. Zhou, J. S. Chung and S. G. Kang, Applied Surface Science, 2022, 579, 152142.
2. X. Li, P. Shen, X. Han, Y. Wang, Y. Zhu and Z. Wu, Applied Surface Science, 2021, 543, 148769.
3. B. Wang, T.-y. Chang, Z. Jiang, J.-j. Wei, Y.-h. Zhang, S. Yang and T. Fang, Int J Hydrogen Energ, 2018, 43, 7317-7325.
4. Y. Dong, M. Yang, T. Zhu, X. Chen, G. Cheng, H. Ke and H. Cheng, ACS Applied Energy Materials, 2018, 1, 4285-4292.
5. M. Yang, G. E. Cheng, D. D. Xie, T. Zhu, Y. Dong, H. Z. Ke and H. S. Cheng, Int J Hydrogen Energ, 2018, 43, 8868-8876.
6. L. Li, M. Yang, Y. Dong, P. Mei and H. Cheng, Int J Hydrogen Energ, 2016, 41, 1612916134.
7. Y. Dong, M. Yang, L. Li, T. Zhu, X. Chen and H. Cheng, Int J Hydrogen Energ, 2019, 44, 4919-4929.
