## **Electronic Supporting Information**

## Dioxane promoted photochemical O-alkylation of 1,3-dicarbonyl compounds

## beyond carbene insertion into C-H and C-C bonds

Xinlong Zhou, Jingjing Jiang, Min Zhang, Qingqing Wu, Keyong Zhu, Dongjie Shi, Sensen Hou,

## Jingjing Zhao\*, and Pan Li\*

College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China

#### Email: zhaojingjing@henu.edu.cn

#### Email: panli@henu.edu.cn

## **Table of Contents**

| General Information                                                                           | ESI2         |
|-----------------------------------------------------------------------------------------------|--------------|
| General Procedure for the Preparation of diazo compounds                                      | ESI2-ESI4    |
| The Reaction Equipment and Light Source                                                       | ESI5         |
| Optimization of Reaction Conditions                                                           | ESI6-ESI7    |
| Control Experiments                                                                           | ESI7         |
| Solvent Effect on the Chemoselectivity                                                        | ESI7-ESI9    |
| Stereoselectivity of Enol Ethers                                                              | ESI10        |
| Gram-Scale Synthesis                                                                          | ESI10        |
| Carbene Trapping Experiment                                                                   | ESI11        |
| Radical Trapping Experiment                                                                   | ESI11- ESI12 |
| Isotope-Labeling Experiment                                                                   | ESI12-ESI13  |
| Enolizability of Dibenzoylmethane in 1,4-Dioxane-d <sub>8</sub> and CDCl <sub>3</sub>         | ESI13        |
| Crystallographic Data for Compounds 3ga, 3ka and 4aa                                          | <u> </u>     |
| References                                                                                    | ESI18        |
| Typical Experimental Procedure and Data of All the Products                                   | ESI19-ESI31  |
| Copies of <sup>1</sup> H and <sup>13</sup> C{ <sup>1</sup> H} NMR Spectra of All the Products | ESI32-ESI70  |

#### **General Information:**

All reagents purchased from commercial sources were used as received. The silica gel for column chromatography was supplied as 200–300 meshes. The <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR spectra were recorded on a Bruker AVANCE III spectrometer and are referenced to the residual solvent signals (7.26 ppm for <sup>1</sup>H in CDCl<sub>3</sub> and 77.0 ppm for <sup>13</sup>C in CDCl<sub>3</sub>; 2.50 ppm for <sup>1</sup>H in  $d_6$ -DMSO and 39.5 ppm for <sup>13</sup>C in  $d_6$ -DMSO). The HRMS spectra were recorded on a Bruker MicroTOF Q II spectrometer.

**Caution!** Diazo compounds are reactive compounds that release nitrogen as the only byproduct. Although diazo compounds have been reported to be prone to explosions, we have not encountered any security issues to date. Reaction scales should be limited whenever possible.

#### General Procedure for the Preparation of Diazo Compounds.



Diazoacetates 2a-2n were prepared by the below mentioned method.

$$R^{1} \xrightarrow{I_{1}} CO_{2}R^{2} + T_{S}N_{3} \xrightarrow{DBU (1.1 \text{ equiv})} R^{1} \xrightarrow{I_{1}} CO_{2}R^{2}$$

To a stirred solution of 2-phenylacetate (10 mmol, 1 equiv) and TsN<sub>3</sub> (11 mmol, 1.1 equiv, 2.2 g) in MeCN (30 mL) was added DBU (11 mmol, 1.1 equiv, 1.7 g) slowly at 0 °C and stirred at the room temperature for 12 h. Saturated NaHCO<sub>3</sub> solution was added to quench the reaction and then this was extracted with EtOAc three times. The organic phase was washed with brine, dried over anhydrous MgSO<sub>4</sub> and evaporated to give the crude diazoacetate. The crude diazoacetate was then purified by flash column chromatography (PE/EtOAc = 50/1) to give the diazoacetate.

Ethyl 2-diazo-2-phenylacetate (2a, known compound).<sup>[2]</sup> <sup>1</sup>H NMR (400 MHz,
<sup>CO<sub>2</sub>Et</sup> CDCl<sub>3</sub>) δ 7.52 - 7.45 (m, 2 H), 7.42 - 7.33 (m, 2 H), 7.22 - 7.14 (m, 1 H), 4.33 (q, J = 7.1 Hz, 2 H), 1.34 (t, J = 7.1 Hz, 3 H).



2a

**Ethyl 2-diazo-2-(p-tolyl)acetate** (**2b**, known compound).<sup>[2]</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.41 – 7.32 (m, 2 H), 7.20 (d, *J* = 8.1 Hz, 2 H), 4.33 (q, *J* = 7.1 Hz, 2 H), 2.34 (s, 3 H), 1.34 (t, *J* = 7.1 Hz, 3 H).

F 2c

Ethyl 2-diazo-2-(4-fluorophenyl)acetate (2c, known compound).<sup>[2]</sup> <sup>1</sup>H
NMR (400 MHz, CDCl<sub>3</sub>) δ 7.51 - 7.38 (m, 2 H), 7.09 (t, J = 8.7 Hz, 2 H),
4.33 (q, J = 7.1 Hz, 2 H), 1.34 (t, J = 7.1 Hz, 3 H).



**Ethyl 2-(4-chlorophenyl)-2-diazoacetate** (**2d**, known compound).<sup>[2]</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.46 – 7.38 (m, 2 H), 7.37 – 7.32 (m, 2 H), 4.33 (q, *J* = 7.1 Hz, 2 H), 1.34 (t, *J* = 7.1 Hz, 3 H).



**Ethyl 2-(4-bromophenyl)-2-diazoacetate** (**2e**, known compound).<sup>[2]</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.53 – 7.46 (m, 2 H), 7.43 – 7.32 (m, 2 H), 4.33 (q, *J* = 7.1 Hz, 2 H), 1.34 (t, *J* = 7.1 Hz, 3 H).



**Ethyl 2-(4-cyanophenyl)-2-diazoacetate** (**2f**, known compound).<sup>[3]</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.68 – 7.56 (m, 4 H), 4.36 (q, *J* = 7.1 Hz, 2 H), 1.35 (t, *J* = 7.1 Hz, 3 H).



N<sub>2</sub>

Ме 2h

CO<sub>2</sub>Et

**Ethyl 2-diazo-2-(4-nitrophenyl)acetate** (**2g**, known compound).<sup>[2]</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.23 (d, *J* = 9.0 Hz, 2 H), 7.67 (d, *J* = 9.1 Hz, 2 H), 4.37 (q, *J* = 7.1 Hz, 2 H), 1.37 (t, *J* = 7.1 Hz, 3 H).

**Ethyl 2-diazo-2-(o-tolyl)acetate** (**2h**, known compound).<sup>[2]</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.43 – 7.34 (m, 1 H), 7.26 (d, *J* = 2.6 Hz, 3 H), 4.30 (q, *J* = 7.1 Hz, 2 H), 2.30 (s, 3 H), 1.31 (t, *J* = 7.1 Hz, 3 H).



Ethyl 2-diazo-2-(naphthalen-2-yl)acetate (2i, known compound).<sup>[2] 1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 – 7.80 (m, 3 H), 7.67 – 7.46 (m, 4 H), 4.33 (q, *J* = 7.1 Hz, 2 H), 1.32 (t, *J* = 7.1 Hz, 3 H).

Cyclohexyl 2-diazo-2-phenylacetate (2j, known compound).<sup>[1]</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.53 – 7.45 (m, 2 H), 7.38 (t, J = 7.8 Hz, 2 H), 7.17 (t, J 0 2j = 7.4 Hz, 1 H), 4.98 (m, 1 H), 1.97 – 1.83 (m, 2 H), 1.80 – 1.67 (m, 2 H), 1.58 - 1.49 (m, 3 H), 1.47 - 1.30 (m, 3 H).

> 2-(Trimethylsilyl)ethyl 2-diazo-2-phenylacetate (2k, known compound).<sup>[4]</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.55 – 7.45 (m, 2 H), 7.38 (t, J = 7.9 Hz, 2 H), 7.22 - 7.07 (m, 1 H), 4.48 - 4.25 (m, 2 H), 1.18 - 0.99 (m,

2 H), 0.07 (s, 9 H).



(1R,5R,7S)-Adamantan-2-yl 2-diazo-2-phenylacetate (**2I**, known compound). [5] 1H NMR (400 MHz, CDCl\_3)  $\delta$  7.56 – 7.46 (m, 2 H), 7.39 (m, 2 H), 7.22 – 7.12 (m, 1 H), 5.18 – 5.11 (m, 1 H), 2.09 (s, 2 H), 2.05 – 1.96 (m, 2 H), 1.93 – 1.71 (m, 8 H), 1.65 – 1.59 (m, 2 H).



(2m, known compound).<sup>[6]</sup> <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.51 – 7.44 (m, 2 H), 7.38 (t, J = 7.9 Hz, 2 H), 7.22 – 7.12 (m, 1 H), 5.41 (d, J = 5.2 Hz, 1 H), 4.86 – 4.70 (m, 1 H), 4.12 (q, J = 7.2 Hz, 1 H), 2.24 – 1.82 (m, 10 H), 1.71 – 1.60 (m, 4 H), 1.53 – 1.43 (m, 4 H), 1.27 – 1.15 (m, 4 H), 1.05 (s, 3 H), 0.64 (s, 3 H).



#### The Reaction Equipment and Light Source

We use RLH-18 8-position Photo Reaction System, which manufactured by Beijing Rogertech Co.ltd base in Beijing PRC. This Photo reactor we used have equipped 8 bule light 10W LED. This blue light 10 WLED's energy peak wavelength is 450 nm, peak width at half-height is 25 nm, lirradiance@10 W is 172 mW/cm<sup>2</sup>. Irradiation vessel is borosilicate glass test tube, LED irradiate through a high-reflection channel to the test tube, path length is 2 cm. No filter between LED and test tube. We conducted the photoreaction in room temperature (about 20°C-30°C). In summer, we controlled the temperature of the reaction mixture to keep in about 25°C using low-temperature cycle.



**Figure S1.** The Reaction Equipment and Light Source ( $\lambda_{max}$  = 450 nm,  $\Delta\lambda$  = 25 nm)

## **Optimization of Reaction Conditions**

Table S1. Solvent Screening<sup>a</sup>

| Ph CO <sub>2</sub> Et + | Ph CO <sub>2</sub> Et solvent, rt | Ph<br>H<br>O<br>CO <sub>2</sub> Et<br>Ph<br>CO <sub>2</sub> Et<br>3aa | + Ph CO <sub>2</sub> Et<br>Ph 4aa |
|-------------------------|-----------------------------------|-----------------------------------------------------------------------|-----------------------------------|
| entry                   | solvent                           | yield of <b>3aa</b> (%)                                               | yield of <b>4aa</b> (%)           |
| 1                       | 1,4-dioxane                       | 45                                                                    | 0                                 |
| 2                       | THF                               | < 5                                                                   | 0                                 |
| 3                       | MeCN                              | < 5                                                                   | 0                                 |
| 4                       | DMF                               | < 5                                                                   | 0                                 |
| 5                       | DMSO                              | < 5                                                                   | 0                                 |
| 6                       | MeOH                              | < 5                                                                   | 0                                 |
| 7                       | toluene                           | < 5                                                                   | 0                                 |
| 8                       | CHCl <sub>3</sub>                 | < 5                                                                   | 0                                 |
| 9                       | EA                                | < 5                                                                   | 0                                 |
| 10                      | DCE                               | < 5                                                                   | 0                                 |
| 11                      | MeNO <sub>2</sub>                 | < 5                                                                   | 0                                 |
| 12                      | DCM                               | < 5                                                                   | 0                                 |

<sup>a</sup>Reaction conditions: **1a** (0.4 mmol), **2a** (0.48 mmol), solvent (2 mL), blue LEDs ( $\lambda_{max}$  = 450 nm), rt, 6 h. Yield of the isolated product after column chromatography.

#### Table S2. Base Screening<sup>a</sup>

| Ph CO <sub>2</sub> Et | + Ph CO <sub>2</sub> Et<br>2a base (1.2 | equiv)<br>oxane, rt<br>Ph<br>O<br>CO <sub>2</sub> Et<br>Ph<br>CO <sub>2</sub> Et<br>3aa | + Ph CO <sub>2</sub> Et<br>4aa |
|-----------------------|-----------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------|
| entry                 | base                                    | vield of <b>3aa</b> (%)                                                                 | vield of <b>4aa</b> (%)        |
| 1                     | CH₃CO₂Na                                | 86                                                                                      | 0                              |
| 2 <sup>b</sup>        | CH₃CO₂Na and DBU                        | 0                                                                                       | 81                             |
| 3                     | Et <sub>3</sub> N                       | 67                                                                                      | 0                              |
| 4                     | DIPEA                                   | 52                                                                                      | 0                              |
| 5                     | DBU                                     | 0                                                                                       | 31                             |
| 6                     | DMAP                                    | 44                                                                                      | 0                              |
| 7                     | K <sub>2</sub> CO <sub>3</sub>          | 42                                                                                      | 0                              |
| 8                     | Na <sub>2</sub> CO <sub>3</sub>         | 38                                                                                      | 0                              |
| 9                     | K <sub>3</sub> PO <sub>4</sub>          | 35                                                                                      | 0                              |
| 10                    | КОН                                     | 41                                                                                      | 0                              |

<sup>&</sup>lt;sup>a</sup>Reaction conditions: **1a** (0.4 mmol), **2a** (0.48 mmol), base (0.48 mmol), 1,4-dioxane (2 mL), blue LEDs ( $\lambda_{max}$  = 450 nm), rt, 6 h. Yield of the isolated product after column chromatography. <sup>b</sup>One pot, two steps. 1.2 equiv DBU was added and continued to react at room temperature for another 2 h.

### Table S3. Control Experiments<sup>a</sup>

| Ph CO <sub>2</sub> Et + | $\begin{array}{c} N_2 \\ Ph \\ CO_2Et \\ 2a \end{array} \xrightarrow{CH_3CO_2Na} (1,4-di)$ | (1.2 equiv)<br>ioxane, rt<br>Ph<br>H<br>O<br>CO <sub>2</sub> Et<br>CO <sub>2</sub> Et<br><b>3aa</b> | + Ph CO <sub>2</sub> Et<br>4aa |
|-------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------|
| entry                   | conditions                                                                                 | yield of <b>3aa</b> (%)                                                                             | yield of <b>4aa</b> (%)        |
| 1                       | standard conditions                                                                        | 86                                                                                                  | 0                              |
| 2                       | 1.0 equiv CH <sub>3</sub> CO <sub>2</sub> Na                                               | 75                                                                                                  | 0                              |
| 3                       | without CH <sub>3</sub> CO <sub>2</sub> Na                                                 | 45                                                                                                  | 0                              |
| 4                       | open in Air                                                                                | 61                                                                                                  | 0                              |
| 5                       | in darkness                                                                                | Ν                                                                                                   | I.R.                           |

<sup>a</sup>Reaction conditions: **1a** (0.4 mmol), **2a** (0.48 mmol), CH<sub>3</sub>CO<sub>2</sub>Na (0.48 mmol), 1,4-dioxane (2 mL), blue LEDs ( $\lambda_{max}$  = 450 nm), rt, 6 h. Yield of the isolated product after column chromatography. N.R. indicates "no reaction".

## Solvent Effect on the Chemoselectivity

#### Table S4. Control Experiments of Generation 4aa from 3aa<sup>a</sup>

|       | $CO_2Et$ Duse (1)<br>$CO_2Et$ 1,4-die | $\rightarrow$ |                     |
|-------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|       | 3aa                                   | 4aa                                                                                                                                         |                     |
| entry | base                                  | conv. of <b>3aa</b> (%)                                                                                                                     | yield of <b>4aa</b> |
| 1     | DBU                                   | 100                                                                                                                                         | quant               |
| 2     | CH <sub>3</sub> CO <sub>2</sub> Na    | N.R.                                                                                                                                        |                     |
| 3     | Et <sub>3</sub> N                     | N.R.                                                                                                                                        |                     |
| 4     | DIPEA                                 | N.R.                                                                                                                                        |                     |
| 5     | DMAP                                  | N.R.                                                                                                                                        |                     |
| 6     | K <sub>2</sub> CO <sub>3</sub>        | N.R.                                                                                                                                        |                     |
| 7     | Na <sub>2</sub> CO <sub>3</sub>       | N.R.                                                                                                                                        |                     |
| 8     | K <sub>3</sub> PO <sub>4</sub>        | N.R.                                                                                                                                        |                     |
| 9     | КОН                                   | N.R.                                                                                                                                        |                     |

<sup>a</sup>Reaction conditions: **3aa** (0.4 mmol), base (0.48 mmol), 1,4-dioxane (2 mL), rt, 2 h. Yield of the isolated product after column chromatography. N.R. indicates "no reaction".

| Ph CO <sub>2</sub> Et + | Ph CO <sub>2</sub> Et<br>2a | plvent, rt Ph<br>Blvent, rt Ph<br>Bl | EtO <sub>2</sub> C CO <sub>2</sub> Et<br>COPh<br>3aa' |
|-------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| entry                   | solvent                     | yield of <b>3aa</b> (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | yield of <b>3aa'</b> (%)                              |
| 1                       | 1,4-dioxane                 | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N.D.                                                  |
| 2                       | THF                         | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N.D.                                                  |
| 3                       | MeCN                        | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N.D.                                                  |
| 4                       | DMF                         | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N.D.                                                  |
| 5                       | DMSO                        | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N.D.                                                  |
| 6                       | MeOH                        | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N.D.                                                  |
| 7                       | toluene                     | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N.D.                                                  |
| 8                       | CHCl₃                       | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N.D.                                                  |
| 9                       | EA                          | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N.D.                                                  |
| 10                      | DCE                         | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N.D.                                                  |
| 11                      | MeNO <sub>2</sub>           | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N.D.                                                  |
| 12                      | DCM                         | < 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N.D.                                                  |

#### Table S5. Solvent Effect on the Chemoselectivity of $\beta$ -Ketoester 1a

<sup>a</sup>Reaction conditions: **1a** (0.4 mmol), **2a** (0.48 mmol), solvent (2 mL), blue LEDs ( $\lambda_{max}$  = 450 nm), rt, 6 h. Yield of the isolated product after column chromatography. N.D. indicates "no detection".

| Ph CO <sub>2</sub> Et + | $\frac{N_2}{Ph} CO_2Et \xrightarrow{CH_3CO_2I} s$ | Na (1.2 equiv)<br>olvent, rt Ph H<br>O CO <sub>2</sub> Et +<br>Bh 3aa | EtO <sub>2</sub> C<br><b>COPh</b><br><b>3aa'</b> |
|-------------------------|---------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|
| entry                   | solvent                                           | yield of <b>3aa</b> (%)                                               | yield of <b>3aa'</b> (%)                         |
| 1                       | 1,4-dioxane                                       | 86                                                                    | N.D.                                             |
| 2                       | THF                                               | < 5                                                                   | N.D.                                             |
| 3                       | MeCN                                              | 36                                                                    | N.D.                                             |
| 4                       | DMF                                               | 12                                                                    | N.D.                                             |
| 5                       | DMSO                                              | < 5                                                                   | N.D.                                             |
| 6                       | MeOH                                              | < 5                                                                   | N.D.                                             |
| 7                       | toluene                                           | 24                                                                    | N.D.                                             |
| 8                       | CHCl₃                                             | < 5                                                                   | N.D.                                             |
| 9                       | EA                                                | 27                                                                    | N.D.                                             |
| 10                      | DCE                                               | 34                                                                    | N.D.                                             |
| 11                      | MeNO <sub>2</sub>                                 | 16                                                                    | N.D.                                             |
| 12                      | DCM                                               | 30                                                                    | N.D.                                             |
| 13                      | 1,3-dioxane                                       | N.D.                                                                  | N.D.                                             |

#### Table S6. Base-Promoted the O-alkylation of $\beta$ -Ketoester 1a

<sup>a</sup>Reaction conditions: **1a** (0.4 mmol), **2a** (0.48 mmol), CH<sub>3</sub>CO<sub>2</sub>Na (0.48 mmol), solvent (2 mL), blue LEDs ( $\lambda_{max}$  = 450 nm), rt, 6 h. Yield of the isolated product after column chromatography. N.D. indicates "no detection".

| O<br>Ph<br>CO <sub>2</sub> Ph + | Ph CO <sub>2</sub> Et solver | Ph<br>H<br>CO <sub>2</sub> Et<br>Ph<br>COPh | + O Ph<br>+ Ph<br>COPh   |
|---------------------------------|------------------------------|---------------------------------------------|--------------------------|
| 1g                              | 2a                           | 3ga                                         | 3ga'                     |
| entry                           | solvent                      | yield of <b>3ga</b> (%)                     | yield of <b>3ga'</b> (%) |
| 1                               | 1,4-dioxane                  | 90                                          | N.D.                     |
| 2                               | THF                          | N.D.                                        | 13                       |
| 3                               | MeCN                         | N.D.                                        | 28                       |
| 4                               | DMF                          | N.D.                                        | < 5                      |
| 5                               | DMSO                         | N.D.                                        | < 5                      |
| 6                               | MeOH                         | N.D.                                        | < 5                      |
| 7                               | toluene                      | N.D.                                        | 22                       |
| 8                               | CHCI <sub>3</sub>            | N.D.                                        | 25                       |
| 9                               | EA                           | N.D.                                        | 11                       |
| 10                              | DCE                          | N.D.                                        | 13                       |
| 11                              | MeNO <sub>2</sub>            | N.D.                                        | < 5                      |
| 12                              | DCM                          | N.D.                                        | 35                       |

## Table S7. Solvent Effect on the Chemoselectivity of 1,3-Diketone 1g

<sup>a</sup>Reaction conditions: **1g** (0.4 mmol), **2a** (0.48 mmol), solvent (2 mL), blue LEDs ( $\lambda_{max}$  = 450 nm), rt, 24 h. Yield of the

isolated product after column chromatography. N.D. indicates "no detection".

## Table S8. Solvent Effect on the Chemoselectivity of Cyclic 1,3-Diketone 1i

| 0<br><br>1i | $\begin{array}{c} + & \mathbf{Ph} \\ \mathbf{CO}_2 \mathbf{Et} \\ \mathbf{2a} \end{array}$ | ent, rt                 |
|-------------|--------------------------------------------------------------------------------------------|-------------------------|
| entry       | solvent                                                                                    | yield of <b>3ia</b> (%) |
| 1           | 1,4-dioxane                                                                                | 80                      |
| 2           | THF                                                                                        | < 5                     |
| 3           | MeCN                                                                                       | 38                      |
| 4           | DMF                                                                                        | < 5                     |
| 5           | DMSO                                                                                       | < 5                     |
| 6           | MeOH                                                                                       | < 5                     |
| 7           | toluene                                                                                    | 17                      |
| 8           | CHCl₃                                                                                      | 32                      |
| 9           | EA                                                                                         | 37                      |
| 10          | DCE                                                                                        | 35                      |
| 11          | MeNO <sub>2</sub>                                                                          | 33                      |
| 12          | DCM                                                                                        | 40                      |

<sup>a</sup>Reaction conditions: **1i** (0.4 mmol), **2a** (0.48 mmol), solvent (2 mL), blue LEDs ( $\lambda_{max}$  = 450 nm), rt, 24 h. Yield of the isolated product after column chromatography.

## Stereoselectivity of Enol Ethers Table S9. Stereoselectivity of Enol Ether 3aa

| Ph CO <sub>2</sub> Et + | Ph CO <sub>2</sub> Et | CH <sub>3</sub> CO <sub>2</sub> Na (1.2 equiv)<br>1,4-dioxane, rt<br>Ph<br>CC<br>Ph<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>C | $p_2Et + p_2Et + p_2Et Ph CO_2Et CO_2Et E-3aa$ |
|-------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| entry                   | Т                     | yield of <b>Z-3aa</b> (%)                                                                                                                      | yield of <b><i>E</i>-3aa</b> (%)               |
| 1                       | 0.5 h                 | 32                                                                                                                                             | N.D.                                           |
| 2                       | 1 h                   | 44                                                                                                                                             | N.D.                                           |
| 3                       | 6 h                   | 86                                                                                                                                             | N.D.                                           |
| 4                       | 24 h                  | 83                                                                                                                                             | N.D.                                           |
| 5                       | 72 h                  | 85                                                                                                                                             | N.D.                                           |

<sup>a</sup>Reaction conditions: **1a** (0.4 mmol), **2a** (0.48 mmol), CH<sub>3</sub>CO<sub>2</sub>Na (0.48 mmol), 1,4-dioxane (2 mL), blue LEDs ( $\lambda_{max}$  = 450 nm), rt. Yield of the isolated product after column chromatography. N.D. indicates "no detection".

#### Table S10. Stereoselectivity of Enol Ether 3ga

| O<br>Ph COPh + | Ph CO <sub>2</sub> Et | CH <sub>3</sub> CO <sub>2</sub> Na (1.2 equiv)<br>→ 1,4-dioxane, rt | Ph<br>O CO <sub>2</sub> Et +<br>Ph COPh | Ph<br>H<br>CO <sub>2</sub> Et |
|----------------|-----------------------|---------------------------------------------------------------------|-----------------------------------------|-------------------------------|
| 1g             | 2a                    |                                                                     | Z-3ga                                   | <b>E-3ga</b>                  |
| entry          | Т                     |                                                                     | ratio of Z/                             | E                             |
| 1              | 1 h                   |                                                                     | 38 : 1                                  |                               |
| 2              | 3 h                   |                                                                     | 1.1 : 1                                 |                               |
| 3              | 6 h                   |                                                                     | 1 : 1.4                                 |                               |

<sup>a</sup>Reaction conditions: **1g** (0.4 mmol), **2a** (0.48 mmol), CH<sub>3</sub>CO<sub>2</sub>Na (0.48 mmol), 1,4-dioxane (2 mL), blue LEDs ( $\lambda_{max}$  = 450 nm), rt.

#### **Gram-Scale Synthesis**



To a 100 mL tube with a stir bar was added ethyl 3-oxo-3-phenylpropanoate **1a** (5 mmol, 1 equiv, 0.96 g), ethyl 2-diazo-2-phenylacetate **2a** (6 mmol, 1.2 equiv, 1.14 g) and 1,4-dioxane (50 mL), followed by CH<sub>3</sub>CO<sub>2</sub>Na (6 mmol, 1.2 equiv, 0.49 g). Then tube was tightly screw capped. The mixture was stirred at room temperature under the blue LEDs for 12 h. The solvents were evaporated in vacuo, and the residue was purified by flash column chromatography (PE/EtOAc = 20/1), affording the desired product **3aa** (1.49 g, 84% yield).

## **Carbene Trapping Experiment**



To a 5 mL tube with a stir bar was added bethyl 3-oxo-3-phenylpropanoate **1a** (0.4 mmol, 1 equiv, 76.8 mg), ethyl 2-diazo-2-phenylacetate **2a** (0.48 mmol, 1.2 equiv, 91.2 mg) and 1,4-dioxane (2 mL). Then tube was tightly screw capped. The mixture was stirred at room temperature under the blue LEDs for 6 h. The solvents were evaporated in vacuo, and the residue was purified by flash column chromatography (PE/EtOAc = 20/1), affording the desired product **3aa** (63.7 mg, 45% yield) and **3aa''** (53.1 mg, 30% yield).

## **Radical Trapping Experiments**



To a 5 mL tube with a stir bar was added bethyl 3-oxo-3-phenylpropanoate **1a** (0.4 mmol, 1 equiv, 76.8 mg), ethyl 2-diazo-2-phenylacetate **2a** (0.48 mmol, 1.2 equiv, 91.2 mg), 1,4-dioxane (2 mL) and TEMPO (0.8 mmol, 2 equiv, 125 mg), followed by  $CH_3CO_2Na$  (0.48 mmol, 1.2 equiv, 39.4 mg). Then tube was tightly screw capped. The mixture was stirred at room temperature under the blue LEDs for 6 h. The solvents were evaporated in vacuo, and the residue was purified by flash column chromatography (PE/EtOAc = 20/1), affording the desired product **3aa** (113.3 mg, 80% yield).



To a 5 mL tube with a stir bar was added bethyl 3-oxo-3-phenylpropanoate **1a** (0.4 mmol, 1 equiv, 76.8 mg), ethyl 2-diazo-2-phenylacetate **2a** (0.48 mmol, 1.2 equiv, 91.2 mg), 1,4-dioxane (2 mL) and BHT (0.8 mmol, 2 equiv, 176 mg), followed by CH<sub>3</sub>CO<sub>2</sub>Na (0.48 mmol, 1.2 equiv, 39.4 mg). Then tube was tightly screw capped. The mixture was stirred at room temperature under the blue LEDs for 6 h. The solvents were evaporated in vacuo, and the

residue was purified by flash column chromatography (PE/EtOAc = 20/1), affording the desired product **3aa** (116.1 mg, 82% yield).

## **Isotope-Labeling Experiment**



To a 5 mL tube with a stir bar was added *d*-bethyl 3-oxo-3-phenylpropanoate *d*-1a (0.4 mmol, 1 equiv, 77.6 mg), ethyl 2-diazo-2-phenylacetate **2a** (0.48 mmol, 1.2 equiv, 91.2 mg) and dry 1,4-dioxane (2 mL), followed by CH<sub>3</sub>CO<sub>2</sub>Na (0.48 mmol, 1.2 equiv, 39.4 mg). Then tube was tightly screw capped. The mixture was stirred at room temperature under the blue LEDs for 6 h. The solvents were evaporated in vacuo, and the residue was purified by flash column chromatography (PE/EtOAc = 20/1), affording the desired product **3aa** (121.8 mg, 86% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.59 – 7.48 (m, 4 H), 7.46 – 7.31 (m, 6 H), 5.92 (s, 0.51 H), 5.57 (s, 0.36 H), 4.37 – 3.95 (m, 4 H), 1.32 (t, *J* = 7.1 Hz, 3 H), 1.16 (t, *J* = 7.1 Hz, 3 H).

#### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) Spectrum of 3aa



Figure S2



Enolizability of Dibenzoylmethane in 1,4-Dioxane-d<sub>8</sub> and CDCl<sub>3</sub>



## Crystallographic Data for Compound 3ga

Crystallization of **3ga** (30 mg) was dissolved in 1 mL of CHCl<sub>3</sub>. Then **3ga** were sealed in a 6.5 cm glass ampule with 5 mL of PE, the CHCl<sub>3</sub>/PE = 1 : 5 (volume ratio). The ampule was placed in a refrigerator at 25 °C and kept at that temperature for 48 hours. Colorless block was crystals deposited in the glass ampule. The data were collected on a Bruker D8 Venture CCD diffractometer.

A good-quality single-crystal of **3ga** was respectively picked carefully and their diffraction intensity data were collected on a Bruker Apex II diffractometer equipped with CCD twodimensional detector using monochromated Mo K $\alpha$  radiation ( $\lambda$  = 0.71073 Å) at 150.0 K. Routine Lorentz and polarization corrections were applied and a multi-scan absorption correction was utilized with the SADABS program. Direct methods were used to solve the structures, refined on F<sup>2</sup> by full-matrix least-squares method, using the SHELXTL-97 program. All H atoms connected to C atoms were generated geometrically and refined isotropically as a riding model using the default Olex2 parameters.

The ellipsoid contour 30% probability levels in the caption for the image of the structure.



Figure S5: Single crystal structure of 3ga

| Table S11 Crystal data and structure refinement for 3ga. |                                                               |  |
|----------------------------------------------------------|---------------------------------------------------------------|--|
| Identification code                                      | 3ga                                                           |  |
| CCDC                                                     | 2300405                                                       |  |
| Empirical formula                                        | C <sub>25</sub> H <sub>22</sub> O <sub>4</sub>                |  |
| Formula weight                                           | 386.42                                                        |  |
| Temperature/K                                            | 150.0                                                         |  |
| Crystal system                                           | monoclinic                                                    |  |
| Space group                                              | P21/c                                                         |  |
| a/Å                                                      | 10.2833(18)                                                   |  |
| b/Å                                                      | 10.038(2)                                                     |  |
| c/Å                                                      | 20.688(4)                                                     |  |
| α/°                                                      | 90                                                            |  |
| β/°                                                      | 98.406(7)                                                     |  |
| γ/°                                                      | 90                                                            |  |
| Volume/Å <sup>3</sup>                                    | 2112.7(7)                                                     |  |
| Z                                                        | 4                                                             |  |
| ρ <sub>calc</sub> g/cm <sup>3</sup>                      | 1.215                                                         |  |
| µ/mm <sup>-1</sup>                                       | 0.082                                                         |  |
| F(000)                                                   | 816.0                                                         |  |
| Crystal size/mm <sup>3</sup>                             | 0.22 × 0.16 × 0.13                                            |  |
| Radiation                                                | ΜοΚα (λ = 0.71073)                                            |  |
| 2O range for data collection/°                           | 3.98 to 51.99                                                 |  |
| Index ranges                                             | -12 ≤ h ≤ 12, -12 ≤ k ≤ 12, -25 ≤ l ≤ 25                      |  |
| Reflections collected                                    | 20567                                                         |  |
| Independent reflections                                  | 4160 [R <sub>int</sub> = 0.0893, R <sub>sigma</sub> = 0.0761] |  |
| Data/restraints/parameters                               | 4160/12/263                                                   |  |
| Goodness-of-fit on F <sup>2</sup>                        | 1.043                                                         |  |
| Final R indexes [I>=2σ (I)]                              | $R_1 = 0.0604, wR_2 = 0.1480$                                 |  |
| Final R indexes [all data]                               | R <sub>1</sub> = 0.0982, wR <sub>2</sub> = 0.1723             |  |
| Largest diff. peak/hole / e Å <sup>-3</sup>              | 0.27/-0.22                                                    |  |

#### Crystallographic Data for Compound 3ka

Crystallization of **3ka** (40 mg) was dissolved in 1 mL of DCM. Then **3ka** were sealed in a 6.5 cm glass ampule with 5 mL of PE, the DCM/PE = 1 : 5 (volume ratio). The ampule was placed in a refrigerator at 25 °C and kept at that temperature for 48 hours. Colorless block was crystals deposited in the glass ampule. The data were collected on a Bruker D8 Venture CCD diffractometer.

A good-quality single-crystal of **3ka** was respectively picked carefully and their diffraction intensity data were collected on a Bruker Apex II diffractometer equipped with CCD twodimensional detector using monochromated Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å) at 150.0 K. Routine Lorentz and polarization corrections were applied and a multi-scan absorption correction was utilized with the SADABS program. Direct methods were used to solve the structures, refined on F<sup>2</sup> by full-matrix least-squares method, using the SHELXTL-97 program. All H atoms connected to C atoms were generated geometrically and refined isotropically as a riding model using the default Olex2 parameters.

The ellipsoid contour 30% probability levels in the caption for the image of the structure.



Figure S6: Single crystal structure of 3ka

| Table S12 Crystal data and structure refinement for 3ka. |                                                  |
|----------------------------------------------------------|--------------------------------------------------|
| Identification code                                      | 3ka                                              |
| CCDC                                                     | 2297295                                          |
| Empirical formula                                        | C <sub>20</sub> H <sub>22</sub> O <sub>5</sub> S |
| Formula weight                                           | 374.43                                           |
| Temperature/K                                            | 150.0                                            |
| Crystal system                                           | monoclinic                                       |
| Space group                                              | C2/c                                             |
| a/Å                                                      | 21.549(3)                                        |
| b/Å                                                      | 10.8252(14)                                      |
| c/Å                                                      | 17.856(3)                                        |
| α/°                                                      | 90                                               |
| β/°                                                      | 113.929(4)                                       |
| γ/°                                                      | 90                                               |
| Volume/Å <sup>3</sup>                                    | 3807.4(9)                                        |

| Z                                   | 8                                                             |
|-------------------------------------|---------------------------------------------------------------|
| ρ <sub>calc</sub> g/cm <sup>3</sup> | 1.306                                                         |
| µ/mm <sup>-1</sup>                  | 0.197                                                         |
| F(000)                              | 1584.0                                                        |
| Crystal size/mm <sup>3</sup>        | 0.12 × 0.09 × 0.09                                            |
| Radiation                           | ΜοΚα (λ = 0.71073)                                            |
| 2O range for data collection/°      | 4.136 to 51.994                                               |
| Index ranges                        | -26 ≤ h ≤ 25, -13 ≤ k ≤ 13, -22 ≤ l ≤ 22                      |
| Reflections collected               | 20858                                                         |
| Independent reflections             | 3739 [R <sub>int</sub> = 0.0536, R <sub>sigma</sub> = 0.0374] |
| Data/restraints/parameters          | 3739/0/237                                                    |
| Goodness-of-fit on F <sup>2</sup>   | 1.063                                                         |
| Final R indexes [I>=2σ (I)]         | $R_1 = 0.0416, wR_2 = 0.0937$                                 |
| Final R indexes [all data]          | $R_1 = 0.0624, wR_2 = 0.1089$                                 |
| Largest diff. peak/hole / e Å-3     | 0.24/-0.33                                                    |

## **Crystallographic Data for Compound 4aa**

Crystallization of **4aa** (45 mg) was dissolved in 1 mL of DCM. Then **4aa** were sealed in a 6.5 cm glass ampule with 5 mL of PE, the DCM/PE = 1 : 5 (volume ratio). The ampule was placed in a refrigerator at 25 °C and kept at that temperature for 48 hours. Colorless block was crystals deposited in the glass ampule. The data were collected on a Bruker D8 Venture CCD diffractometer.

A good-quality single-crystal of **4aa** was respectively picked carefully and their diffraction intensity data were collected on a Bruker Apex II diffractometer equipped with CCD twodimensional detector using monochromated Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å) at 296.3 K. Routine Lorentz and polarization corrections were applied and a multi-scan absorption correction was utilized with the SADABS program. Direct methods were used to solve the structures, refined on F<sup>2</sup> by full-matrix least-squares method, using the SHELXTL-97 program. All H atoms connected to C atoms were generated geometrically and refined isotropically as a riding model using the default Olex2 parameters.

The ellipsoid contour 30% probability levels in the caption for the image of the structure.





 Table S13 Crystal data and structure refinement for 4aa.

| Identification code                 | 4aa                                                |
|-------------------------------------|----------------------------------------------------|
| CCDC                                | 2245771                                            |
| Empirical formula                   | C19H16O4                                           |
| Formula weight                      | 308.32                                             |
| Temperature/K                       | 296.3                                              |
| Crystal system                      | monoclinic                                         |
| Space group                         | P21/c                                              |
| a/Å                                 | 10.9362(6)                                         |
| b/Å                                 | 17.7920(10)                                        |
| c/Å                                 | 8.2146(4)                                          |
| α/°                                 | 90                                                 |
| β/°                                 | 108.127(2)                                         |
| ٧/°                                 | 90                                                 |
| Volume/Å <sup>3</sup>               | 1519.04(14)                                        |
| Z                                   | 4                                                  |
| ρ <sub>calc</sub> g/cm <sup>3</sup> | 1.348                                              |
| µ/mm <sup>-1</sup>                  | 0.094                                              |
| F(000)                              | 648.0                                              |
| Crystal size/mm <sup>3</sup>        | 0.25 × 0.21 × 0.2                                  |
| Radiation                           | ΜοΚα (λ = 0.71073)                                 |
| 2O range for data collection/°      | 3.918 to 51.996                                    |
| Index ranges                        | -13 ≤ h ≤ 13, -21 ≤ k ≤ 19, -10 ≤ l ≤ 9            |
| Reflections collected               | 14415                                              |
| Independent reflections             | 2977 [ $R_{int} = 0.0713$ , $R_{sigma} = 0.0515$ ] |
| Data/restraints/parameters          | 2977/0/209                                         |
| Goodness-of-fit on F <sup>2</sup>   | 1.051                                              |
| Final R indexes [I>=2σ (I)]         | R <sub>1</sub> = 0.0446, wR <sub>2</sub> = 0.0898  |
| Final R indexes [all data]          | R <sub>1</sub> = 0.0774, wR <sub>2</sub> = 0.1062  |
| Largest diff. peak/hole / e Å-3     | 0.18/-0.26                                         |

#### References

[1] S. Jana, Z. Yang, C. Pei, X. Xu and R. Koenigs, *Chem. Sci.*, 2019, **10**, 10129–10134.

[2] M. Hu, C. Ni and J. Hu, J. Am. Chem. Soc. 2012, 134, 15257-1526.

[3] F. Ye, S. Qu, L. Zhou, C. Peng, C. Wang, J. Cheng, M. Hossain, Y. Liu, Y. Zhang, Z. Wang and J. Wang, *J. Am. Chem. Soc.* 2015, **137**, 4435–4444.

[4] David M. Guptill, Carolyn M. Cohen, Huw M. L. Davies, Org. Lett. 2013, 15, 6120-6123.

[5] G. Zha, J. Han, X. Hu, H. Qin, H. Fang and C. Zhang, *Chem. Commun.* 2016, **52**, 7458–7461.

[6] K. Zhu, W. Yu, X. Zhou, C. Xu, G. Zhao, Y. Chai, S. Li, Y. Xu and P. Li, *Chem. Commun.* 2023, **59**, 12605–12608.

[7] Uehara, Misaki.; Suematsu, Hidehiro.; Yasutmi, Yoichi.; Katsuki, Tsutomu. Enantioenriched Synthesis of Cyclopropenes with a Quaternary Stereocenter, Versatile Building Blocks. *J. Am. Chem. Soc.* **2011**, *133*, 170–171.

#### Typical Experimental Procedure and Data of the Z-Enol Ethers 3



To a 5 mL tube with a stir bar was added  $\beta$ -ketoesters compounds **1** (0.4 mmol, 1 equiv), aryl diazoacetates **2** (0.48 mmol, 1.2 equiv) and 1,4-dioxane (2 mL), followed by CH<sub>3</sub>CO<sub>2</sub>Na (0.48 mmol, 1.2 equiv, 39.4 mg). Then tube was tightly screw capped. The mixture was stirred at room temperature under the blue LEDs for 6 h. The solvents were evaporated in vacuo, and the residue was purified by flash column chromatography (PE/EtOAc = 20/1), affording the desired *Z*-enol ethers **3**.

Ethyl (*Z*)-3-(2-ethoxy-2-oxo-1-phenylethoxy)-3-phenylacrylate (3aa, new compound): 121.8 mg of 3aa was obtained from 1a (76.8 mg, 0.4 mmol) and 2a (91.2 mg, 0.48 mmol) in 86% yield. Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 – 7.49 (m, 4 H), 7.44 – 7.31 (m, 6 H), 5.92 (s, 1 H), 5.57 (s, 1 H), 4.39 – 4.00 (m, 4 H), 1.31 (t, *J* = 7.1 Hz, 3 H), 1.15 (t, *J* = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  169.1, 165.1, 164.9, 135.1, 134.8, 130.3, 128.9, 128.4, 128.4, 127.7, 127.6, 101.2, 81.2, 61.3, 59.8, 14.2, 13.8. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>23</sub>O<sub>5</sub> 355.1540, found 355.1532.

Ethyl (*Z*)-3-(2-ethoxy-2-oxo-1-phenylethoxy)but-2-enoate (3ba, new compound): 85.3 mg of 3ba was obtained from 1b (52.0 mg, 0.4 mmol) and 2a (91.2 mg, 0.48 mmol) in 73% yield. Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.66 – 7.56 (m, 2 H), 7.48 – 7.31 (m, 3 H), 6.04 (s, 1 H), 5.01 (s, 1 H), 4.25 – 3.90 (m, 4 H), 2.01 (s, 3 H), 1.17 (t, *J* = 7.1 Hz, 3 H), 1.13 (t, *J* = 7.0 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  169.4, 166.0, 164.1, 135.5, 128.8, 128.5, 127.1, 97.0, 77.2, 61.5, 58.6, 19.1, 14.3, 13.9. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>20</sub>NaO<sub>5</sub> 315.1203, found 315.1200.

<sup>h</sup><sub>H</sub> Ethyl (*Z*)-3-(2-ethoxy-2-oxo-1-phenylethoxy)-3-(pyridin-2-yl)acrylate
 <sup>CO<sub>2</sub>Et</sup> (3ca, new compound): 86.6 mg of 3ca was obtained from 1c (77.2 mg, 0.4 mmol) and 2a (91.2 mg, 0.48 mmol) in 61% yield. Purified by column

3ca

chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.45 (d, J = 4.4 Hz, 1 H), 7.84 (d, J = 8.0 Hz, 1 H), 7.60 (m, 1 H), 7.49 – 7.39 (m, 2 H), 7.24 (m, 3 H), 7.20 – 7.11 (m, 1 H), 6.48 (s, 1 H), 6.36 (s, 1 H), 4.23 – 3.87 (m, 4 H), 1.18 (t, J = 7.2 Hz, 3 H), 1.04 (t, J = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  169.6, 165.4, 161.8, 152.7, 148.9, 136.7, 135.3, 129.0, 128.5, 127.6, 124.5, 122.2, 100.8, 82.1, 61.4, 60.1, 14.2, 13.9. HRMS (ESI) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>21</sub>NNaO<sub>5</sub> 378.1312, found 378.1310.

Ethyl (*Z*)-2-(1-(2-oxodihydrofuran-3(2 H)-ylidene)ethoxy)-2-phenylacetate (3da, new compound): 75.4 mg of 3da was obtained from 1d (51.2 mg, 0.4

 $_{3da}$  mmol) and **2a** (91.2 mg, 0.48 mmol) in 65% yield. Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.52 – 7.36 (m, 5 H), 6.08 (s, 1 H), 4.28 – 3.99 (m, 4 H), 3.09 – 2.70 (m, 2 H), 2.37 (t, *J* = 2.1 Hz, 3 H), 1.13 (t, *J* = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  171.6, 169.3 163.1, 135.4, 129.1, 128.9, 127.2, 102.3, 76.2, 64.2, 61.6, 25.4, 13.9, 12.6. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>18</sub>NaO<sub>5</sub> 313.1046, found 313.1050.

Ph<br/>H<br/>CO2EtEthyl2-(2-ethoxy-2-oxo-1-phenylethoxy)cyclopent-1-ene-1-carboxylate3ea(3ea, new compound): 92.9 mg of 3ea was obtained from 1e (62.4 mg, 0.4 mmol)<br/>and 2a (91.2 mg, 0.48 mmol) in 73% yield. Purified by column chromatography(PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ ) δ 7.59 – 7.50 (m, 2 H),<br/>7.49 – 7.31 (m, 3 H), 5.92 (s, 1 H), 4.25 – 3.97 (m, 4 H), 2.85 – 2.62 (m, 1 H), 2.50 – 2.40 (m,<br/>3 H), 1.97 – 1.63 (m, 2 H), 1.20 (t, J = 7.1 Hz, 3 H), 1.13 (t, J = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR(100 MHz, DMSO- $d_6$ ) δ 169.3, 166.5, 164.0, 135.4, 128.8, 128.5, 126.9, 105.0, 78.6, 61.4,<br/>58.8, 31.3, 29.1, 18.9, 14.3, 13.9. HRMS (ESI) m/z: [M + Na]+ Calcd for C<sub>18</sub>H<sub>22</sub>NaO<sub>5</sub> 341.1359,<br/>found 341.1357.

O<sub>2</sub>Et

Ethyl 2-(2-ethoxy-2-oxo-1-phenylethoxy)cyclohex-1-ene-1-carboxylate (3fa, new compound): 73.0 mg of **3fa** was obtained from **1f** (68.0 mg, 0.4 mmol) and **2a** (91.2 mg, 0.48 mmol) in 55% yield. Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  7.58 –

7.50 (m, 2 H), 7.45 – 7.30 (m, 3 H), 5.77 (s, 1 H), 4.21 – 3.92 (m, 4 H), 2.38 – 2.01 (m, 4 H), 1.70 – 1.52 (m, 2 H), 1.46 (q, *J* = 6.3 Hz, 2 H), 1.15 (t, *J* = 6.3 Hz, 3 H), 1.11 (t, J = 6

H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 169.6, 167.0, 159.2, 136.1, 128.6, 128.4, 127.2, 108.4, 76.9, 61.1, 59.4, 26.2, 25.2, 22.0, 21.5, 14.1, 13.9. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>24</sub>NaO<sub>5</sub> 355.1516, found 355.1510.

Ethyl (*Z*)-3-(2-ethoxy-2-oxo-1-(p-tolyl)ethoxy)-3-phenylacrylate (3ab, new compound): 129.5 mg of 3ab was obtained from 1a (76.8 mg, 0.4 mmol) and 2b (97.9 mg, 0.48 mmol) in 88% yield. Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.59 – 7.49 (m, 2 H), 7.46 – 7.31 (m, 5 H), 7.15 (d, *J* = 7.8 Hz, 2 H), 5.88 (s, 1 H), 5.56 (s, 1 H), 4.30 – 3.99 (m, 4 H), 2.34 (s, 3 H), 1.32 (t, *J* = 7.1 Hz, 3 H), 1.17 (t, *J* = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  169.3, 165.2, 165.0, 138.8, 135.0, 132.2, 130.3, 129.2, 128.4, 127.8, 127.6, 101.2, 81.1, 61.3, 59.9, 21.2, 14.3, 13.9. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>24</sub>NaO<sub>5</sub> 391.1516, found 391.1511.

Ethyl (*Z*)-3-(2-ethoxy-1-(4-fluorophenyl)-2-oxoethoxy)-3-phenylacrylate (3ac, new compound): 139.9 mg of 3ac was obtained from 1a (76.8 mg, 0.4  $_{CO_2Et}^{CO_2Et}$  mmol) and 2c (99.8 mg, 0.48 mmol) in 94% yield. Purified by column

<sub>3ac</sub> chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.56 – 7.47 (m, 4 H), 7.47 – 7.30 (m, 3 H), 7.04 (t, *J* = 8.5 Hz, 2 H), 5.88 (s, 1 H), 5.57 (s, 1 H), 4.43 – 3.94 (m, 4 H), 1.31 (t, *J* = 7.1 Hz, 3 H), 1.16 (t, *J* = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) δ 168.9, 164.9 (d, <sup>2</sup>*J*<sub>C-F</sub> = 24.9 Hz), 162.9 (d, <sup>1</sup>*J*<sub>C-F</sub> = 247.9 Hz), 134.6, 131.0 (d, <sup>4</sup>*J*<sub>C-F</sub> = 3.3 Hz), 130.3, 129.5 (d, <sup>3</sup>*J*<sub>C-F</sub> = 8.4 Hz), 128.4, 127.6, 115.5, 115.3, 101.4, 80.3, 61.4, 59.8, 14.2, 13.8. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -112.36. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>21</sub>FNaO<sub>5</sub> 395.1265, found 395.1261.



Ethyl (*Z*)-3-(1-(4-chlorophenyl)-2-ethoxy-2-oxoethoxy)-3-phenylacrylate (**3ad**, new compound): 118.0 mg of **3ad** was obtained from **1a** (76.8 mg, 0.4 mmol) and **2d** (107.5 mg, 0.48 mmol) in 76% yield. Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz,

DMSO-*d*<sub>6</sub>) δ 7.60 (m, 2 H), 7.56 – 7.40 (m, 7 H), 5.94 (s, 1 H), 5.66 (s, 1H),

4.32 – 3.74 (m, 4 H), 1.23 (t, J = 7.1 Hz, 3 H), 1.05 (t, J = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) δ 168.8, 165.0, 164.8, 134.9, 134.7, 133.7, 130.4, 129.0, 128.7, 128.5, 127.7,

101.5, 80.3, 61.6, 59.9, 14.3, 13.9. HRMS (ESI) *m*/*z*: [M + Na]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>21</sub>ClNaO<sub>5</sub> 411.0970, found 411.0970.

Ethyl (*Z*)-3-(1-(4-bromophenyl)-2-ethoxy-2-oxoethoxy)-3-phenylacrylate (3ae, new compound): 136.8 mg of 3ae was obtained from 1a (76.8 mg, 0.4 mmol) and 2e (129.1 mg, 0.48 mmol) in 79% yield. Purified by column  $_{CO_2Et}^{CO_2Et}$  chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>)  $\delta$  7.54 – 7.45 (m, 4 H), 7.43 – 7.32 (m, 5 H), 5.87 (s, 1 H), 5.57 (s, 1 H), 4.39 – 3.82 (m, 4 H), 1.30 (t, *J* = 7.1 Hz, 3 H), 1.14 (t, *J* = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  168.7, 165.0, 164.8, 134.6, 134.2, 131.7, 130.4, 129.3, 128.5, 127.7, 123.2, 101.5, 80.4, 61.6, 59.9, 14.3, 13.9. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>21</sub>BrNaO<sub>5</sub> 455.0465, found 455.0458.



3ae

Ethyl (Z)-3-(1-(4-cyanophenyl)-2-ethoxy-2-oxoethoxy)-3-phenylacrylate (3af, new compound): 95.5 mg of 3af was obtained from 1a (76.8 mg, 0.4 mmol) and 2f (103.2 mg, 0.48 mmol) in 63% yield. Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>)  $\delta$  7.74 – 7.62 (m, 4 H), 7.56 – 7.48 (m, 2 H), 7.48 – 7.31 (m, 3 H), 5.94 (s, 1 H), 5.58 (s, 1 H), 4.31 – 3.91 (m, 4 H), 1.30 (t, *J* = 7.1 Hz, 3 H), 1.14 (t, *J* = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  168.2, 164.9, 164.8, 140.2, 134.4, 132.3, 130.6, 128.7, 128.2, 127.8, 118.4, 112.8, 101.8, 80.2, 62.0, 60.1, 14.3, 13.9. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>21</sub>NNaO<sub>5</sub> 402.1312, found 402.1302.

Ethyl (*Z*)-3-(2-ethoxy-1-(4-nitrophenyl)-2-oxoethoxy)-3-phenylacrylate (3ag, new compound): 87.8 mg of 3ag was obtained from 1a (76.8 mg, 0.4 mmol) and 2g (112.8 mg, 0.48 mmol) in 55% yield. Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.28 – 8.19 (m, 2 H), 7.81 – 7.74 (m, 2 H), 7.58 – 7.51 (m, 2 H), 7.50 – 7.32 (m, 3 H), 6.01 (s, 1 H), 5.60 (s, 1 H), 4.42 – 3.84 (m, 4 H), 1.31 (t, *J* = 7.2 Hz, 3 H), 1.16 (t, *J* = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  167.9, 164.5, 164.2, 147.8, 142.1, 133.7, 130.9, 128.8, 128.7, 127.7, 123.8, 101.0, 79.6, 61.7, 59.7, 14.2, 13.8. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>21</sub>NNaO<sub>7</sub> 422.1210, found 422.1208. H CO2Et CO2Et

3ah

<mark>CO₂Et</mark> CO₂Et

3aj

Ethyl (*Z*)-3-(2-ethoxy-2-oxo-1-(o-tolyl)ethoxy)-3-phenylacrylate (3ah, new compound): 98.6 mg of 3ah was obtained from 1a (76.8 mg, 0.4 mmol) and 2h (97.9 mg, 0.48 mmol) in 67% yield. Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  7.62 –

7.38 (m, 6 H), 7.33 – 7.16 (m, 3 H), 6.14 (s, 1 H), 5.59 (s, 1 H), 4.28 – 3.86 (m, 4 H), 2.23 (s, 3 H), 1.23 (t, J = 7.1 Hz, 3 H), 1.06 (t, J = 7.0 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  169.3, 165.4, 164.9, 136.4, 134.9, 133.8, 130.4, 130.2, 128.8, 128.4, 128.1, 127.8, 126.2, 101.5, 78.0, 61.3, 59.8, 19.0, 14.3, 13.9. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>24</sub>NaO<sub>5</sub> 391.1516, found 391.1514.

Ethyl (*Z*)-3-(2-ethoxy-1-(naphthalen-2-yl)-2-oxoethoxy)-3-phenylacrylate (3ai, new compound): 114.7 mg of 3ai was obtained from 1a (76.8 mg, 0.4 mmol) and 2i (115.2 mg, 0.48 mmol) in 71% yield. Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz,

<sup>3ai</sup> DMSO-*d*<sub>6</sub>)  $\delta$  8.26 – 8.18 (m, 1 H), 8.04 – 7.92 (m, 2 H), 7.68 (d, *J* = 7.1 Hz, 1 H), 7.64 – 7.52 (m, 5 H), 7.50 – 7.35 (m, 3 H), 6.67 (s, 1 H), 5.68 (s, 1 H), 4.17 – 3.98 (m, 4 H), 1.20 (t, *J* = 7.1 Hz, 3 H), 1.02 (t, *J* = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  169.0, 164.8, 164.5, 134.5, 133.5, 131.1, 130.8, 130.6, 129.9, 128.7, 128.7, 127.6, 127.1, 126.8, 126.1, 125.4, 123.7, 80.0, 79.0, 61.4, 59.7, 14.2, 13.8. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>24</sub>NaO<sub>5</sub> 427.1516, found 427.1517.

Ethyl (*Z*)-3-(2-(cyclohexyloxy)-2-oxo-1-phenylethoxy)-3-phenylacrylate (**3a**j, new compound): 135.5 mg of **3a**j was obtained from **1a** (76.8 mg, 0.4 mmol) and **2**j (117.1 mg, 0.48 mmol) in 83% yield. Purified by column

chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz,

DMSO- $d_6$ )  $\delta$  7.66 - 7.61 (m, 2 H), 7.57 - 7.28 (m, 8 H), 5.98 (s, 1 H), 5.64 (s, 1 H), 4.79 - 4.52 (m, 1 H), 4.14 (q, J = 7.1 Hz, 2 H), 1.73 - 1.34 (m, 5 H), 1.33 - 1.10 (m, 8 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO- $d_6$ )  $\delta$  168.0, 164.6, 164.3, 135.2, 134.3, 130.7, 129.1, 128.6, 128.6, 127.6, 127.4, 99.8, 80.6, 73.1, 59.5, 30.6, 30.4, 24.7, 22.6, 22.5, 14.12. HRMS (ESI) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>28</sub>NaO<sub>5</sub> 431.1829, found 431.1830.

Ethyl (Z)-3-(2-oxo-1-phenyl-2-(2-(trimethylsilyl)ethoxy)ethoxy)-3-

O<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>TMS CO<sub>2</sub>Et

phenylacrylate (3ak, new compound): 124.4 mg of 3ak was obtained from 1a (76.8 mg, 0.4 mmol) and 2k (125.8 mg, 0.48 mmol) in 73% 3ak yield. Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ 7.67 – 7.56 (m, 2 H), 7.53 – 7.34 (m, 8 H), 5.97 (s, 1 H), 5.65 (s, 1 H), 4.24 - 3.94 (m, 4 H), 1.23 (t, J = 7.1 Hz, 3 H), 0.80 (t, J = 8.3 Hz, 2 H), -0.07 (s, 9 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 168.7, 164.5, 164.4, 135.0, 134.4, 130.7, 129.2, 128.7, 128.7, 127.6, 127.6, 100.0, 80.7, 63.4, 59.6, 16.6, 14.2, -1.6. HRMS (ESI) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>24</sub>H<sub>30</sub>NaO<sub>5</sub>Si 449.1755, found 449.1747.

Ethyl (Z)-3-(2-(((1R,5R,7S)-adamantan-2-yl)oxy)-2-oxo-1-phenylethoxy) -3-phenylacrylate (3al, new compound): 167.4 mg of 3al was obtained CO<sub>2</sub>Et from 1a (76.8 mg, 0.4 mmol) and 2l (142.1 mg, 0.48 mmol) in 91% yield. 3al Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>) δ 7.66 - 7.61 (m, 2 H), 7.58 - 7.53 (m, 2 H), 7.50 - 7.35 (m, 6 H), 6.04 (s, 1 H), 5.61 (s, 1 H), 4.77 (s, 1 H), 4.13 (q, J = 7.1 Hz, 2 H), 1.83 – 1.58 (m, 11 H), 1.55 – 1.48 (m, 1 H), 1.44 – 1.36 (m, 1 H), 1.34 – 1.28 (m, 1 H), 1.23 (t, J = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 168.0, 164.7, 164.3, 135.4, 134.4, 130.7, 129.1, 128.7, 128.6, 127.6, 127.3, 99.7, 80.7, 77.7, 59.5, 36.6, 35.5, 35.5, 31.2, 31.1, 31.0, 30.9, 26.5, 26.3, 14.2. HRMS (ESI) *m*/*z*: [M + Na]<sup>+</sup> Calcd for C<sub>29</sub>H<sub>32</sub>NaO<sub>5</sub> 483.2142, found 483.2136.



Ethyl (Z)-3-(2-(((3S,8S,9S,10R,13S,14S,17S)-17-acetyl-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetra decahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-2-

oxo-1-phenylethoxy)-3-phenylacrylate (3am, new

compound): 124.8 mg of **3am** was obtained from **1a** (76.8 mg, 0.4 mmol) and **2m** (220.8 mg, 0.48 mmol) in 50% yield. Purified by column chromatography (PE/EtOAc = 20/1); white solid; mp 66.7 – 69.1 °C. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ 7.69 – 7.60 (m, 2 H), 7.57 – 7.51 (m, 2 H), 7.50 – 7.34 (m, 6 H), 6.08 – 5.90 (m, 1 H), 5.67 (d, J = 4.3 Hz, 1 H), 5.43 – 5.17 (m, 1 H), 4.52 - 4.33 (m, 1 H), 4.14 (q, J = 7.1 Hz, 2 H), 2.59 - 2.46 (m, 1 H), 2.22 - 2.11 (m, 1 H), 2.07 -1.89 (m, 7 H), 1.86 – 1.45 (m, 7 H), 1.43 – 1.28 (m, 4 H), 1.23 (t, J = 7.1 Hz, 3 H), 1.11 – 0.86

(m, 6 H), 0.51 (s, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 208.1, 168.0, 164.6, 164.5, 164.3, 139.0, 138.8, 135.0, 134.5, 130.6, 129.1, 128.6, 127.6, 127.3, 122.2, 99.8, 80.7, 74.5, 62.5, 59.5, 55.9, 49.2, 43.1, 37.8, 37.0, 36.2, 36.0, 31.2, 31.1, 27.0, 23.9, 22.2, 20.5, 18.8, 14.2, 12.8. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>40</sub>H<sub>48</sub>NaO<sub>6</sub> 647.3343, found 647.3334.



3ga

(Z)-3-phenyl-3-(2-(2-(2,2,2-trifluoro-1-

113.9 mg of 3an was obtained from 1a (76.8 mg, 0.4 mmol) and

**2n** (89.3 mg, 0.48 mmol) in 65% yield. Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.68 - 7.55 (m, 2 H), 7.52 - 7.31 (m, 8 H), 5.64 (s, 1 H), 4.77 (q, J = 6.7 Hz, 1 H), 4.35 – 4.11 (m, 4 H), 3.84 – 3.73 (m, 2 H), 3.73 – 3.62 (m, 4 H), 1.30 (t, J = 7.2 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.6, 165.0, 135.0, 132.7, 130.3, 129.2, 128.4, 128.3, 128.1, 127.4, 123.7 (q, <sup>1</sup>*J*<sub>C-F</sub> = 281.7 Hz), 100.2, 79.9 (q, <sup>2</sup>J<sub>C-F</sub> = 30.9 Hz), 72.2, 70.4, 70.3, 69.7, 59.6, 14.2. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) δ -76.62. HRMS (ESI) *m/z*: [M + K]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>25</sub>F<sub>3</sub>KO<sub>5</sub> 477.1286, found 477.1295.

#### Typical Experimental Procedure and Data of the E-Enol Ethers 3



To a 5 mL tube with a stir bar was added 1,3-dicarbonyl compounds 1 (0.4 mmol, 1 equiv), ethyl 2-diazo-2-phenylacetate 2a (0.48 mmol, 1.2 equiv) and 1,4-dioxane (2 mL). Then tube was tightly screw capped. The mixture was stirred at room temperature under the blue LEDs for 24 h. The solvents were evaporated in vacuo, and the residue was purified by flash column chromatography (PE/EtOAc = 20/1), affording the desired *E*-enol ethers **3**.

Ethyl (E)-2-((3-oxo-1,3-diphenylprop-1-en-1-yl)oxy)-2-phenylacetate (3ga, <sup>CO<sub>2</sub>Et</sup> new compound): 139.0 mg of **3ga** was obtained from **1g** (89.6 mg, 0.4 mmol) and 2a (91.2 mg, 0.48 mmol) in 90% yield. Purified by column chromatography (PE/EtOAc = 20/1); white solid; mp 82.3 - 84.2 °C. <sup>1</sup>H NMR (400 MHz,

DMSO-*d*<sub>6</sub>) δ 7.89 – 7.75 (m, 2 H), 7.68 – 7.53 (m, 3 H), 7.52 – 7.28 (m, 10 H), 6.44 (s, 1 H), 6.37 (s, 1 H), 4.32 – 4.10 (m, 2 H), 1.14 (t, J = 7.0 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-  $d_6$ ) δ 189.2, 168.8, 167.2, 138.7, 134.9, 134.6, 132.5, 129.9, 129.3, 129.1, 128.9, 128.5, 128.0, 127.9, 127.4, 101.1, 77.7, 61.6, 14.0. HRMS (ESI) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>22</sub>NaO<sub>4</sub> 409.1410, found 409.1408.

Ethyl (*E*)-2-((4-oxopent-2-en-2-yl)oxy)-2-phenylacetate (3ha, new compound): 90.1 mg of 3ha was obtained from 1h (40.0 mg, 0.4 mmol) and 2a (91.2 mg, 0.48 mmol) in 86% yield. Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  7.54 – 7.49 (m, 2 H), 7.48 – 7.35 (m, 3 H), 5.88 (s, 1 H), 5.62 (s, 1 H), 4.32 – 3.82 (m, 2 H), 2.25 (s, 3 H), 2.07 (s, 3 H), 1.15 (t, *J* = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  196.0, 168.5, 168.5, 134.5, 129.3, 128.9, 127.3, 101.8, 76.9, 61.4, 31.9, 18.9, 13.9. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>18</sub>NaO<sub>4</sub> 285.1097, found 285.1099.

Ethyl 2-((3-oxocyclohex-1-en-1-yl)oxy)-2-phenylacetate (3ia, new compound): 87.7 mg of 3ia was obtained from 1i (44.8 mg, 0.4 mmol) and 2a (91.2 mg, 0.48 mmol) in 80% yield. Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.51 – 7.43 (m, 2 H), 7.38 (m, 3 H), 5.43 (s, 1 H), 5.28 (s, 1 H), 4.26 – 4.07 (m, 2 H), 2.68 – 2.54 (m, 1 H), 2.55 – 2.44 (m, 1 H), 2.39 – 2.27 (m, 2 H), 2.10 – 1.83 (m, 2 H), 1.19 (t, *J* = 7.1 Hz, 3 H).
<sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) δ 199.1, 175.9, 168.0, 133.7, 129.2, 128.7, 126.9, 104.1, 77.9, 61.8, 36.5, 28.7, 20.8, 13.7. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>18</sub>NaO<sub>4</sub> 297.1097, found 297.1100.

Ethyl 2-((2-methyl-3-oxocyclopent-1-en-1-yl)oxy)-2-phenylacetate (3ja, new compound): 94.3 mg of 3ja was obtained from 1j (44.8 mg, 0.4 mmol) and 2a (91.2 mg, 0.48 mmol) in 86% yield. Purified by column chromatography
 a (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ 7.59 –

7.36 (m, 5 H), 6.18 (s, 1 H), 4.27 – 4.00 (m, 2 H), 2.81 – 2.53 (m, 2 H), 2.40 – 2.18 (m, 2 H), 1.54 (s, 3 H), 1.14 (t, J = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO- $d_6$ )  $\delta$  204.0, 182.6, 168.9, 135.1, 129.3, 129.0, 127.3, 115.9, 77.7, 61.7, 33.4, 24.7, 13.9, 6.0. HRMS (ESI) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>18</sub>NaO<sub>4</sub> 297.1097, found 297.1098.

3ja

Ethyl (E)-2-phenyl-2-((1-tosylprop-1-en-2-yl)oxy)acetate (3ka, new compound): 121.2 mg of 3ka was obtained from 1k (84.8 mg, 0.4 mmol) and 2a (91.2 mg, 0.48 mmol) in 81% yield. Purified by column chromatography (PE/EtOAc = 20/1); white solid; mp 63.5 – 64.1 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)

δ 7.74 – 7.65 (m, 2 H), 7.47 – 7.33 (m, 5 H), 7.32 – 7.20 (m, 2 H), 5.51 (s, 1 H), 5.33 (s, 1 H), 4.30 – 3.92 (m, 2 H), 2.42 (s, 3 H), 2.33 (s, 3 H), 1.14 (t, *J* = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) δ 167.9, 167.6, 143.5, 140.5, 133.5, 129.6, 129.4, 128.9, 126.9, 126.5, 105.7, 78.5, 62.0, 21.5, 18.1, 13.9. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>22</sub>NaO<sub>5</sub>S 397.1080, found 397.1081.

3ka

Ethyl 2-((2-cyanocyclopent-1-en-1-yl)oxy)-2-phenylacetate (3la, new compound): 90.0 mg of 3la was obtained from 1l (43.6 mg, 0.4 mmol) and 2a (91.2 mg, 0.48 mmol) in 83% yield. Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.54 – 7.44 (m, 2 H), 7.44 – 7.33 (m, 3 H), 5.96 (s, 1 H), 4.30 – 4.13 (m, 2 H), 2.74 – 2.43 (m, 4 H), 2.07 – 1.82 (m, 2 H), 1.22 (t, *J* = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>) δ 170.0, 168.5, 134.4, 129.2, 128.7, 127.1, 116.5, 81.9, 79.7, 62.1, 33.2, 31.7, 20.1, 13.9. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>17</sub>NNaO<sub>3</sub> 294.1101, found 294.1094.

#### Typical Experimental Procedure and Data of the Furan-3(2H)-One 4



To a 5 mL tube with a stir bar was added  $\beta$ -Ketoesters compounds **1** (0.4 mmol, 1 equiv), aryl diazoacetates **2** (0.48 mmol, 1.2 equiv) and 1,4-dioxane (2 mL), followed by CH<sub>3</sub>CO<sub>2</sub>Na (0.48 mmol, 1.2 equiv, 39.4 mg). Then tube was tightly screw capped. The mixture was stirred at room temperature under the blue LEDs for 6 h. Then DBU (0.48 mmol, 1.2 equiv, 73.1 mg) was added to the above reaction, and the mixture was stirred at room temperature for another 2 h. The solvents were evaporated in vacuo, and the residue was purified by flash column chromatography (PE/EtOAc = 20/1), affording the desired furan-3(2H)-ones **4**.

Ethyl 3-oxo-2,5-diphenyl-2,3-dihydrofuran-2-carboxylate (4aa, new compound): 99.8 mg of 4aa was obtained from 1a (76.8 mg, 0.4 mmol) and 4aa 2a (91.2 mg, 0.48 mmol) in 81% yield. Purified by column chromatography (PE/EtOAc = 20/1); white solid; mp 64.6 – 65.7 °C <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 – 7.93 (m, 2 H), 7.85 – 7.76 (m, 2 H), 7.68 – 7.50 (m, 3 H), 7.47 – 7.35 (m, 3 H), 6.04 (s, 1 H), 4.27 (q, *J* = 7.1 Hz, 2 H), 1.26 (t, *J* = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  196.1, 185.2, 164.8, 133.5, 133.2, 129.0, 128.9, 128.4, 128.2, 127.3, 125.7, 99.2, 90.5, 62.9, 13.9. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>16</sub>NaO<sub>4</sub> 331.0941, found 331.0937.

Ethyl 3-oxo-2-phenyl-5-(pyridin-2-yl)-2,3-dihydrofuran-2-carboxylate (4ca, new compound): 68.0 mg of 4ca was obtained from 1c (77.2 mg, 0.4 mmol) and 2a (91.2 mg, 0.48 mmol) in 55% yield. Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  8.95 – 8.72 (m, 1 H), 8.23 (d, *J* = 7.8 Hz, 1 H), 8.11 (m, 1 H), 7.77 – 7.63 (m, 3 H), 7.52 – 7.37 (m, 3 H), 6.54 (s, 1 H), 4.22 (q, *J* = 7.1 Hz, 2 H), 1.15 (t, *J* = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO- $d_6$ )  $\delta$  196.4, 184.6, 164.7, 151.2, 146.5, 138.4, 133.4, 129.6, 129.0, 128.2, 126.0, 123.0, 101.5, 90.9, 63.3, 14.3. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>16</sub>NO<sub>4</sub> 310.1074, found 310.1084.

Ethyl 3-oxo-2-phenyl-2,3,4,5,6,7-hexahydrobenzofuran-2-carboxylate
(4fa, new compound): 49.2 mg of 4fa was obtained from 1f (68.0 mg, 0.4 4fa mmol) and 2a (91.2 mg, 0.48 mmol) in 43% yield. Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ 7.58 (m, 2 H), 7.41 (m, 3 H), 4.27 - 4.04 (m, 2 H), 2.71 - 2.59 (m, 2 H), 2.20 - 1.94 (m, 2 H), 1.78 (q, *J* = 6.0 Hz, 2 H), 1.69 - 1.49 (m, 2 H), 1.15 (t, *J* = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>) δ 194.3, 189.1, 164.7, 133.5, 128.9, 128.4, 125.6, 110.4, 89.0, 62.5, 25.2, 21.2, 21.1, 18.0, 13.9. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>17</sub>H<sub>18</sub>NaO<sub>4</sub> 309.1097, found 309.1087.



Ethyl 3-oxo-5-phenyl-2-(p-tolyl)-2,3-dihydrofuran-2-carboxylate (4ab, new compound): 94.0 mg of 4ab was obtained from 1a (76.8 mg, 0.4 mmol) and 2b (97.9 mg, 0.48 mmol) in 73% yield. Purified by column

chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.02 – 7.89 (m, 2 H), 7.69 – 7.64 (m, 2 H), 7.64 – 7.57 (m, 1 H), 7.57 – 7.50 (m, 2 H), 7.21 (d, *J* = 8.1 Hz, 2 H), 6.03 (s, 1 H), 4.39 – 4.14 (m, 2 H), 2.35 (s, 3 H), 1.26 (t, *J* = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  196.4, 185.2, 165.0, 138.9, 133.2, 130.6, 129.1, 129.0, 128.3, 127.4, 125.7, 99.2, 90.6, 62.8, 21.1, 13.9. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>18</sub>NaO<sub>4</sub> 345.1097, found 345.1089.



Ethyl 2-(4-fluorophenyl)-3-oxo-5-phenyl-2,3-dihydrofuran-2-carboxylate (4ac, new compound): 106.9 mg of 4ac was obtained from 1a (76.8 mg, 0.4 mmol) and 2c (99.8 mg, 0.48 mmol) in 82% yield. Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz,

CDCl<sub>3</sub>)  $\delta$  7.99 – 7.93 (m, 2 H), 7.84 – 7.76 (m, 2 H), 7.68 – 7.59 (m, 1 H), 7.55 (dd, J = 8.3, 6.7 Hz, 2 H), 7.17 – 7.01 (m, 2 H), 6.03 (s, 1 H), 4.26 (q, J = 7.1 Hz, 2 H), 1.26 (t, J = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  196.1, 185.3, 164.7, 163.1 (d, <sup>1</sup>J<sub>C-F</sub> = 248.3 Hz), 133.4, 129.3 (d, <sup>4</sup>J<sub>C-F</sub> = 3.3 Hz), 129.1, 128.2, 127.8 (d, <sup>3</sup>J<sub>C-F</sub> = 8.3 Hz), 127.4, 115.3 (d, <sup>2</sup>J<sub>C-F</sub> = 21.8 Hz), 99.2, 89.9, 63.0, 14.0. <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -107.98. HRMS (ESI) *m*/*z*: [M + Na]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>15</sub>FNaO<sub>4</sub> 349.0847, found 349.0844.



Ethyl2-(4-chlorophenyl)-3-oxo-5-phenyl-2,3-dihydrofuran-2-carboxylate (4ad, new compound): 88.9 mg of 4ad was obtained from 1a(76.8 mg, 0.4 mmol) and 2d (107.5 mg, 0.48 mmol) in 65% yield. Purified

by column chromatography (PE/EtOAc = 20/1); white solid; mp 97.5 - 99.1

<sup>o</sup>C <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 – 7.90 (m, 2 H), 7.80 – 7.73 (m, 2 H), 7.68 – 7.60 (m, 1 H), 7.55 (m, 2 H), 7.43 – 7.30 (m, 2 H), 6.03 (s, 1 H), 4.26 (q, *J* = 7.1 Hz, 2 H), 1.26 (t, *J* = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  195.8, 185.4, 164.5, 135.1, 133.4, 131.8, 129.1, 128.5, 128.1, 127.4, 127.2, 99.1, 89.8, 63.1, 13.9. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>15</sub>CINaO<sub>4</sub> 365.0551, found 365.0552.



Ethyl2-(4-bromophenyl)-3-oxo-5-phenyl-2,3-dihydrofuran-2-carboxylate (4ae, new compound): 73.3 mg of 4ae was obtained from 1a(76.8 mg, 0.4 mmol) and 2e (129.1 mg, 0.48 mmol) in 48% yield. Purified bycolumn chromatography (PE/EtOAc = 20/1); white solid; mp 92.3 – 94.7 °C

<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.20 – 8.00 (m, 2 H), 7.79 – 7.56 (m, 7 H), 6.62 (s, 1 H), 4.21 (q, *J* = 7.1 Hz, 2 H), 1.15 (t, *J* = 7.1 Hz, 3 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  195.8, 185.6, 164.6, 134.3, 132.9, 131.9, 129.8, 128.2, 127.9, 127.9, 123.1, 99.6, 89.6, 63.4, 14.2. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>15</sub>BrNaO<sub>4</sub> 409.0046, found 409.0037.

**Cyclohexyl 3-oxo-2,5-diphenyl-2,3-dihydrofuran-2-carboxylate** (**4aj**, new compound): 115.8 mg of **4aj** was obtained from **1a** (76.8 mg, 0.4 mmol) and **2j** (117.1 mg, 0.48 mmol) in 80% yield. Purified by column chromatography (PE/EtOAc = 20/1); slightly yellow oil. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.18 – 8.04 (m, 2 H), 7.80 – 7.55 (m, 5 H), 7.50 – 7.25 (m, 3 H), 6.59 (s, 1 H), 4.95 – 4.68 (m, 1 H), 1.72 – 1.59 (m, 2 H), 1.56 – 1.18 (m, 8 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  189.0, 177.9, 156.1, 125.4, 125.2, 120.8, 120.6, 119.9, 119.0, 117.4, 90.6, 82.6, 66.8, 22.3, 22.3, 16.8, 14.3. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>22</sub>NaO<sub>4</sub> 385.1410, found 385.1400.



2-(Trimethylsilyl)ethyl 3-oxo-2,5-diphenyl-2,3-dihydrofuran-2carboxylate (4ak, new compound): 121.6 mg of 4ak was obtained from 1a (76.8 mg, 0.4 mmol) and 2k (125.8 mg, 0.48 mmol) in 80%

yield. Purified by column chromatography (PE/EtOAc = 20/1); white solid; mp 89.7 – 91.2 °C <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 – 7.91 (m, 2 H), 7.85 – 7.74 (m, 2 H), 7.65 – 7.56 (m, 1 H), 7.54 (m, 2 H), 7.45 – 7.33 (m, 3 H), 6.03 (s, 1 H), 4.38 – 4.20 (m, 2 H), 1.05 – 0.98 (m, 2 H), - 0.01 (s, 9 H). <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  196.1, 185.1, 164.9, 133.5, 133.2, 129.0, 128.9, 128.3, 128.2, 127.3, 125.7, 99.2, 90.5, 65.4, 17.1, -1.7. HRMS (ESI) *m/z*: [M + Na]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>24</sub>NaO<sub>4</sub>Si 403.1336, found 403.1334.



(3S,8S,9S,10R,13S,14S,17S)-17-Acetyl-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1Hcyclopenta[a]phenanthren-3-yl 3-oxo-2,5-diphenyl-2,3dihydrofuran-2-carboxylate (4am, new compound): 94.8 mg of 4am was obtained from 1a (76.8 mg, 0.4 mmol) and

**2m** (220.8 mg, 0.48 mmol) in 41% yield. Purified by column chromatography (PE/EtOAc = 20/1); white solid; mp 114.8 – 117.2 °C. <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.18 – 8.02 (m, 2 H), 7.79 – 7.58 (m, 5 H), 7.53 – 7.38 (m, 3 H), 6.58 (s, 1 H), 5.35 (s, 1 H), 4.69 – 4.46 (m, 1 H),

2.62 – 2.50 (m, 1 H), 2.32 – 2.14 (m, 2 H), 2.07 – 1.91 (m, 6 H), 1.80 – 1.67 (m, 1 H), 1.62 – 1.28 (m, 9 H), 1.15 – 0.88 (m, 7 H), 0.50 (s, 3 H).  ${}^{13}C{}^{1H}$  NMR (100 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  208.3, 195.6, 184.9, 163.8, 138.8, 133.6, 133.2, 129.3, 129.0, 128.4, 127.6, 127.3, 125.5, 122.4, 99.2, 89.8, 76.1, 62.5, 55.9, 54.9, 49.1, 43.2, 37.8, 37.1, 36.2, 36.0, 31.2, 31.1, 27.0, 24.0, 22.2, 20.5, 18.9, 12.8. HRMS (ESI) *m/z*: [M + H]<sup>+</sup> Calcd for C<sub>38</sub>H<sub>43</sub>O<sub>5</sub> 579.3105, found 579.3111.

## Copies of <sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR Spectra of All the Products

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) Spectrum of **3aa** 



 $^{13}\text{C}\{^{1}\text{H}\}$  NMR (100 MHz, CDCl<sub>3</sub>) Spectrum of 3aa





#### ESI33



















## <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) Spectrum of **3ga**





NOESY NMR (400 MHz, DMSO- $d_6$ ) Spectrum of **3ha**. Based on the obvious NOE effect in H<sub>a</sub> and H<sub>b</sub>, the stereochemistry is *E*.





# <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, DMSO-*d*<sub>6</sub>) Spectrum of **3ha**





## <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) Spectrum of **3ja**



















# <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) Spectrum of **3ac**





















## <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) Spectrum of **3ah**





























![](_page_59_Figure_0.jpeg)

![](_page_59_Figure_1.jpeg)

![](_page_60_Figure_0.jpeg)

![](_page_60_Figure_1.jpeg)

![](_page_61_Figure_0.jpeg)

![](_page_61_Figure_1.jpeg)

![](_page_62_Figure_0.jpeg)

![](_page_62_Figure_1.jpeg)

![](_page_62_Figure_2.jpeg)

![](_page_63_Figure_0.jpeg)

![](_page_63_Figure_1.jpeg)

# <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>) Spectrum of **4ac**

![](_page_64_Figure_1.jpeg)

![](_page_65_Figure_0.jpeg)

![](_page_65_Figure_1.jpeg)

![](_page_66_Figure_0.jpeg)

## <sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) Spectrum of **4ae**

![](_page_67_Figure_0.jpeg)

![](_page_67_Figure_1.jpeg)

![](_page_68_Figure_0.jpeg)

![](_page_68_Figure_1.jpeg)

![](_page_69_Figure_0.jpeg)

![](_page_69_Figure_1.jpeg)