Supporting Information

One-pot C-N/C-C bond formation and oxidation of donor-acceptor cyclopropanes with tetrahydroisoquinolines: access to benzo-fused indolizines

1	General Information	S2
2	Optimization of Ring-Opening of Donor-Acceptor Cyclopropanes	S2
3	General Procedure for the Preparation of DACs (GP-1)	S3
4	General Procedure for the Synthesis of 20-q , 3 and 4	S4
5	Scale-up Synthesis of 3aa	S4-S5
6	Crystal Data and Structure Refinement of 3ag	S5-S6
7	ESI-HRMS Spectra of Radical Trapping Experiments	S7
8	Characterization Data	S8-S29
9	References	S29
10	NMR (¹ H and ¹³ C) Spectra	S30-S72

Table of Contents

General Information. 1,2,3,4-Tetrahydroisoquinolines, MgI₂ (98%), Mn(OAc)₃:2H₂O (97%), MnO₂ (\geq 99%), 2,3-dichloro-5,6-dicyano-*p*-benzoquinone (DDQ) (98%) of Aldrich, TCI chemicals and BLD pharm were used as received. Solvents were dried prior as per the standard procedure. Cyclopropanes¹ and 2,3,4,5-tetrahydro-1*H*-benzo[*c*]azepine² were prepared according to the reported procedure. Merck silica gel G/GF254 plates were used for analytical TLC and Rankem silica gel (60-120 mesh) was utilized for column chromatography. NMR spectra were recorded with Bruker Avance III 600, 500 and 400 MHz spectrometers using CDCl₃ as solvent and Me₄Si as an internal standard. Chemical shifts (δ) and spin-spin coupling constant (*J*) are reported in ppm and in Hz, respectively, and other data are reported as follows: s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, dd = doublet of doublets. Melting points were determined using a Büchi B-540 apparatus and are uncorrected. FT-IR spectra were collected on Perkin Elmer IR spectrometer. UHPLC-QTOF-ESI-MS instrument was used for recording mass spectra. Single crystal X-ray data was collected on a Bruker SMART APEX equipped with a CCD area detector using Mo/K*a* radiation and the structure was solved by direct method using *SHELXL*-2014/7 (Göttingen, Germany).

NH 1a	+ Ph CO ₂ Me CO ₂ Me 2a	Lewis acid solvent, temp, 12 h		MeO ₂ C A CO ₂ Me
Entry	Lewis acid	Solvent	Temp. (°C)	Yield(%) ^b
1	InCl ₃	CH ₂ Cl ₂	r.t.	n.d.
2	FeCl ₃	CH_2Cl_2	r.t.	n.d.
3	AlCl ₃	CH_2Cl_2	r.t.	12
4	SnCl ₂	CH_2Cl_2	r.t.	trace
5	MgI_2	CH_2Cl_2	r.t.	15
6	MgI_2	$(CH_2Cl)_2$	r.t.	22
7	MgI_2	$(CH_2Cl)_2$	80	61

Table S1 Optimization of Ring-Opening of Donor-Acceptor Cyclopropanes (DACs)^a

8	MgI_2	toluene	80	88
9	MgI_2	xylene	80	75
10	MgI_2	toluene	110	79

^aReaction conditions: 1a (0.2 mmol), 2a (0.24 mmol), Lewis acid (20 mol %), solvent (2 mL), 12
h; ^bIsolated yield. r.t.= room temperature. n.d. = not detected.

General Procedure for the Preparation of DACs (GP-1).¹

Cyclopropanes **2a-p** were synthesized from aromatic aldehydes through a standard synthetic sequence of Knoevenagel/Corey-Chaykovsky reactions.

To a stirred solution of aldehyde (5 mmol) in benzene (10 mL), dimethyl malonate (5 mmol, 660 mg), piperidine (0.5 mmol, 50 μ L) and acetic acid (0.5 mmol, 28 μ L) were added. The flask was equipped with a Dean-Stark trap and condenser, and the solution was heated to reflux in an oil bath for 12 h. After completion, evaporation of the solvent gave a residue that was purified by silica gel column chromatography using ethyl acetate and hexane.

Sodium hydride (4 mmol, 60% dispersion in mineral oil, 96 mg) was suspended in dimethylformamide (DMF) (10 mL) under nitrogen. Trimethylsulfoxonium iodide (3.85 mmol, 847 mg) was added, and the solution was stirred for 1 h at room temperature. A solution of the appropriate benzylidene malonate (3.5 mmol) in DMF (1 mL) was added, and the reaction mixture was stirred for 12 h at room temperature. After completion, the solution was poured onto a mixture of ice and 2 M HCl (5 mL) and extracted with diethyl ether (25 mL). Drying (Na₂SO₄) and evaporation of the solvent gave a residue that was purified on a silica gel column chromatography using hexane and ethyl acetate as an eluent to give cyclopropanes.

Substrates 2k and 2o-r are new and their complete characterization data are provided, whereas 2a,^{1a} 2b,^{1c} 2c-d,^{1b} 2e,^{1c} 2f,^{1b} 2g-h,^{1a} 2i,^{1c} 2j-l,^{1b} 2m^{1a} and 2n^{1c} are known, synthesized according to the reported procedure and ¹H NMR are given to show the purity.

General Procedure for the Synthesis of 20-q.

Step 1: Synthesis of Aldehydes³

First, carboxylic acid (1 mmol), dicyclohexylcarbodiimide (DCC) (1.5 mmol, 309 mg), 4dimethylaminepyridine (DMAP) (0.15 mmol, 18 mg) and alcohol/phenol (1.2 mmol) were stirred in CH_2Cl_2 (10 mL) for 12 h at room temperature. The reaction mixture was then passed through as short pad of celite. The solvent was evaporated and the residue was purified on silica gel chromatography using ethyl acetate/hexane as an eluent.

Step 2: Synthesis of DA Cyclopropanes¹

DA Cyclopropanes were made using GP-1.

General Procedure for the Synthesis of 3. Amine 1 (0.2 mmol), cyclopropane 2 (0.24 mmol) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with $Mn(OAc)_3 \cdot 2H_2O$ (0.6 mmol, 160 mg) in MeOH (2 mL) for 12 h at 80 °C. The progress of the reaction was monitored by TLC using ethyl acetate and hexane. The reaction mixture was diluted with ethyl acetate (2 x 15 mL) and washed with water (2 x 5 mL). Drying (Na₂SO₄) and evaporation of the solvent gave the residue that was purified on silica gel column chromatography using ethyl acetate and hexane as eluent to afford **3**.

General Procedure for the Synthesis of 4. Amine 1 (0.2 mmol), cyclopropane 2 (0.24 mmol) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with $Mn(OAc)_3 \cdot 2H_2O$ (1.0 mmol, 268 mg) in MeOH (2 mL) for 12 h at 80 °C. The progress of the reaction was monitored by TLC using ethyl acetate and hexane. The reaction mixture was diluted with ethyl acetate (2 x 15 mL) and washed with water (2 x 5 mL). Drying (Na₂SO₄) and evaporation of the solvent gave the residue that was purified on silica gel column chromatography using ethyl acetate and hexane as eluent to afford 4.

Scale-up Synthesis of 3aa. 1,2,3,4-Tetrahydroisoquinoline 1a (2 mmol, 266 mg), dimethyl 2phenylcyclopropane-1,1-dicarboxylate 2a (2.4 mmol, 561 mg) and MgI₂ (20 mol %, 111 mg) were stirred in toluene (10 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (6 mmol, 1.6 g) in MeOH (10 mL) for 12 h at 80 °C. The progress of the reaction was monitored by TLC using ethyl acetate and hexane. The reaction mixture was diluted with ethyl acetate (2 x 30 mL) and washed with water (2 x 10 mL). Drying (Na₂SO₄) and evaporation of the solvent gave the residue that was purified on silica gel column chromatography using ethyl acetate and hexane as eluent to afford **3aa** in 41% yield (248 mg).

Sample Preparation for Crystal Growth. The compound **3ag** was dissolved in minimum volume of acetonitrile and kept at room temperature for slow evaporation (2 days). The block shaped crystal was then subjected to X-ray diffraction.

Crystal Data and Structure Refinement

Figure S1. ORTEP diagram of Methyl 3-(*p*-tolyl)-5,6-dihydropyrrolo[2,1-*a*]isoquinoline-1-carboxylate **3ag** with 50% ellipsoid (CCDC 2290607). H-Atoms omitted for clarity.

Identification code	3ag
Empirical formula	'C21 H19 N1 O2'
Formula weight	317.37
Crystal habit, colour	Neddle /colourless
Crystal size, mm ³	0.32 x 0.29 x 0.27
Temperature, T/K	296 K
Wavelength, $\lambda/Å$	0.71073
Crystal system	'monoclinic '

Space group	' P 21/c '	
Unit cell dimensions	a = 10.0187(6) Å	
	b = 15.8815(10) Å	
	c = 10.6953(7) Å	
	$\alpha = 90$	
	$\beta = 99.728$	
	$\gamma = 90$	
Volume, <i>V</i> /Å ³	1677.28(18)	
Ζ	4	
Calculated density, g cm ⁻³	1.257	
Absorption coefficient, μ/mm^{-1}	0.081	
F(000)	672	
θ range for data collection	2.062 to 28.345°	
Limiting indices	$-13 \le h \le 12, -21 \le k \le 21, -14 \le l \le 14$	
Reflection collected / unique	4177/2685	
Completeness to θ	99.6% (<i>θ</i> =28.345°)	
Absorption correction	None	
Max. and min. transmission	0.974 and 0.978	
Refinement method	'SHELXL-2014/7 (Sheldrick, 2014)'	
Data / restraints / parameters	4177/0/219	
Goodness–of–fit on F ²	0.853	
Final R indices [I>2sigma(I)]	R1 = 0.0640, wR2 = 0.1850	
R indices (all data)	R1 = 0.1009, wR2 = 0.2209	

ESI-HRMS Spectra of Radical Trapping Experiments

Characterization Data

Dimethyl 2-phenylcyclopropane-1,1-dicarboxylate 2a.^{1a} Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.21-7.14 (m, 3H), 7.12-7.10 (m, 2H), 3.72 (s, 3H), 3.28 (s, 3H), 3.15 (t, J = 9.0 Hz, 1H), 2.13 (dd, J = 8.0, 5.0 Hz, 1H), 1.67 (dd, J = 9.5, 5.5 Hz, 1H).

Dimethyl 2-(*o***-tolyl)cyclopropane-1,1-dicarboxylate 2b.**^{1c} Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.08-7.01 (m, 3H), 6.97 (d, J = 7.6 Hz, 1H), 3.74 (s, 3H), 3.21 (s, 3H), 3.11 (t, J = 8.4 Hz, 1H), 2.28 (s, 3H), 2.24 (dd, J = 8.4, 5.2 Hz, 1H), 1.65 (dd, J = 8.8, 4.8 Hz, 1H).

Dimethyl 2-(3-bromophenyl)cyclopropane-1,1-dicarboxylate 2c.^{1b}

Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.30-7.28 (m, 2H), 7.09-7.03 (m, 2H), 3.72 (s, 3H), 3.35 (s, 3H), 3.10 (t, *J* = 8.0 Hz, 1H), 2.08 (dd, *J* = 8.0, 5.5 Hz, 1H), 1.67 (dd, *J* = 9.5, 5.5 Hz, 1H).

Dimethyl 2-(3-(trifluoromethyl)phenyl)cyclopropane-1,1-dicarboxyla-

te 2d.^{1b} Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.44-7.42 (m, 1H), 7.38 (s, 1H), 7.34-7.30 (m, 2H), 3.73 (s, 3H), 3.31 (s, 3H), 3.19 (t, J = 8.5 Hz, 1H), 2.14 (dd, J = 8.0, 5.0 Hz, 1H), 1.72 (dd, J = 9.0, 5.5 Hz, 1H).

Dimethyl 2-(4-bromophenyl)cyclopropane-1,1-dicarboxylate 2e.^{1c} Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, J = 8.5 Hz, 2H), 7.00 (d, J = 8.0 Hz, 2H), 3.72 (s, 3H), 3.34 (s, 3H), 3.09 (t, J = 8.5 Hz, 1H), 2.07 (dd, J = 8.0, 5.0 Hz, 1H), 1.67 (dd, J = 9.0, 5.0 Hz, 1H).

Dimethyl 2-(4-fluorophenyl)cyclopropane-1,1-dicarboxylate 2f.^{1b} Colorless liquid; ¹H NMR (500 MHz, CDCl₃) δ 7.11-7.07 (m, 2H), 6.91-6.86 (m, 2H), 3.72 (s, 3H), 3.32 (s, 3H), 3.12 (t, J = 8.5 Hz, 1H), 2.08 (dd, J = 8.0, 5.5 Hz, 1H), 1.67 (dd, J = 9.0, 5.0 Hz, 1H).

Dimethyl 2-(*p***-tolyl)cyclopropane-1,1-dicarboxylate 2g.**^{1a} Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.06 (s, 4H), 3.78 (s, 3H), 3.38 (s, 3H), 3.18 (t, *J* = 8.4 Hz, 1H), 2.29 (s, 3H), 2.17 (dd, *J* = 8.0, 5.2 Hz, 1H), 1.72 (dd, *J* = 9.2, 5.2 Hz, 1H).

Dimethyl 2-(4-methoxyphenyl)cyclopropane-1,1-dicarboxy-late

2h.^{1a} Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, *J* = 8.4 Hz, 2H), 6.81 (d, *J* = 8.8 Hz, 2H), 3.78 (s, 3H), 3.77 (s, 3H), 3.38 (s, 3H), 3.18 (t, *J* = 8.4 Hz, 1H), 2.15 (dd, *J* = 8.0, 4.8 Hz, 1H), 1.72 (dd, *J* = 9.2, 5.2 Hz, 1H).

Dimethyl 2-(4-nitrophenyl)cyclopropane-1,1-dicarboxylate 2i.^{1c}

Yellow solid; ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, *J* = 8.5 Hz, 2H), 7.30 (d, *J* = 8.5 Hz, 2H), 3.74 (s, 3H), 3.35 (s, 3H), 3.21 (t, *J* = 8.5 Hz, 1H), 2.16 (dd, *J* = 8.5, 6.0 Hz, 1H), 1.77 (dd, *J* = 9.5, 5.5 Hz, 1H).

Dimethyl 2-([1,1'-biphenyl]-4-yl)cyclopropane-1,1-dicarboxylate 2j.^{1b} Colorless solid; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, J = 8.0 Hz, 2H), 7.52 (d, J = 7.2 Hz, 2H), 7.42 (t, J = 7.6 Hz, 2H), 7.32 (t, J = 7.2 Hz, 1H), 7.27-7.24 (m, 2H), 3.79 (s, 3H), 3.39 (s,

3H), 3.26 (t, *J* = 8.0 Hz, 1H), 2.25-2.21 (m, 1H), 1.78 (dd, *J* = 9.2, 5.2 Hz, 1H).

Dimethyl 2-(pyren-1-yl)cyclopropane-1,1-dicarboxylate 2k. The product **2k** was synthesized according to general procedure GP-1; Analytical TLC on silica gel, 1:19 ethyl acetate/hexane; $R_f = 0.41$; yellow solid; mp 138-139 °C; yield 76% (954 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.36 (d, J = 9.5 Hz, 1H), 8.14-8.07 (m, 3H), 8.03 (d, J = 8.0 Hz, 1H), 7.99-7.92 (m, 3H), 7.77 (d, J = 8.0 Hz, 1H), 3.91 (t, J = 8.5 Hz, 1H), 3.86 (s, 3H), 2.88 (s, 3H), 2.57-2.55 (m, 1H), 1.93-1.91 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 170.5, 167.2, 131.4, 131.06, 131.02, 130.8, 128.2, 127.9, 127.54, 127.53, 126.1, 126.0, 125.4, 125.3, 124.7, 124.6, 124.4, 123.7,

53.1, 52.1, 37.3, 31.1, 19.5; FT-IR (neat) 2952, 1726, 1602, 1435, 1323, 1283, 1206, 1130, 1094 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₉H₂₃O₄: 359.1278, found: 359.1284.

Dimethyl 2-(thiophen-2-yl)cyclopropane-1,1-dicarboxylate 21.^{1a} Brown liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.16 (dd, J = 5.2, 1.2 Hz, 1H), 6.89 (dd, J = 4.8, 3.6 Hz, 1H), 6.84-6.82 (m, 1H), 3.78 (s, 3H), 3.48 (s, 3H), 3.28 (t, J = 8.8 Hz, 1H), 2.14 (dd, J = 7.6, 5.2 Hz, 1H), 1.83 (dd, J = 9.6, 5.2 Hz, 1H).

Dimethyl 2-vinylcyclopropane-1,1-dicarboxylate 2m.^{1a} Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 5.48-5.39 (m, 1H), 5.31 (dd, J = 17.2, 1.6 Hz, 1H), 5.15 (dd, J = 10.0, 1.6 Hz, 1H), 3.74 (s, 6H), 2.59 (q, J = 8.0 Hz, 1H), 1.72 (dd, J = 7.6, 4.8 Hz, 1H), 1.59-1.57 (m, 1H).

2n Diethyl 2-phenylcyclopropane-1,1-dicarboxylate 2n.^{1c} Colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.19 (m, 5H), 4.29-4.18 (m, 2H), 3.84 (q, *J* = 7.2 Hz, 2H), 3.21 (t, *J* = 8.4 Hz, 1H), 2.17 (dd, *J* = 8.0, 5.2 Hz, 1H), 1.70 (dd, *J* = 9.2, 5.2 Hz, 1H), 1.29 (t, *J* = 7.2 Hz, 3H), 0.86 (t, *J* = 6.8 Hz, 3H).

thyl 2-(4-((((3*S*,8*S*,9*S*,10

R,13*R*,14*S*,17*R*)-10,13-dimethyl-17-((*R*)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,12,13,14, 15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl)oxy)carbonyl)phenyl)cyclo propane-1,1-dicarboxylate 20. The product 20 was synthesized according to general procedure GP-1; Analytical TLC on silica gel, 1:19 ethyl acetate/hexane; $R_f = 0.34$; colorless solid; mp 9798 °C; yield 63% (1.42 g); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.4 Hz, 2H), 5.41 (d, *J* = 4.0 Hz, 1H), 4.87-4.79 (m, 1H), 3.79 (s, 3H), 3.38 (s, 3H), 3.24 (t, *J* = 8.4 Hz, 1H), 2.46 (d, *J* = 7.6 Hz, 2H), 2.22 (dd, *J* = 8.0, 5.2 Hz, 1H), 2.03-1.96 (m, 3H), 1.93-1.88 (m, 1H), 1.86-1.81 (m, 1H), 1.79-1.76 (m, 1H), 1.74-1.68 (m, 1H), 1.62-1.45 (m, 7H), 1.40-1.31 (m, 3H), 1.27-1.23 (m, 2H), 1.21-1.20 (m, 1H), 1.18-1.17 (m, 1H), 1.13-1.11 (m, 2H), 1.10-1.09 (m, 1H), 1.06 (s, 3H), 1.03-0.96 (m, 3H), 0.93 (d, *J* = 6.8 Hz, 3H), 0.87 (dd, *J* = 6.8, 1.6 Hz, 6H), 0.69 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.0, 166.9, 165.8, 139.9, 139.7, 130.0, 129.5, 128.4, 122.9, 74.8, 56.8, 56.2, 53.0, 52.5, 50.1, 42.4, 39.8, 39.6, 38.3, 37.6, 37.1, 36.7, 36.3, 35.9, 32.2, 32.07, 32.02, 28.3, 28.1, 28.0, 24.4, 23.9, 22.9, 22.7, 21.1, 19.5, 19.3, 18.8, 12.0; FT-IR (neat) 3420, 2934, 2867, 1714, 1612, 1438, 1333, 1274, 1115, 1020 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₄₁H₅₉O₆: 647.4306, found: 647.4308.

[2.2.1]heptan-2-yl)oxy)carbonyl)phenyl)cyclopropane-1,1-dicarboxylate 2p. The product 2p was synthesized according to general procedure GP-1; Analytical TLC on silica gel, 1:19 ethyl acetate/hexane; $R_f = 0.33$; thick liquid; yield 68% (987 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.4 Hz, 2H), 7.27-7.25 (m, 2H), 5.10 (d, J = 9.6 Hz, 1H), 3.80 (s, 3H), 3.40 (s, 3H), 3.25 (t, J = 8.4 Hz, 1H), 2.50-2.42 (m, 1H), 2.22 (dd, J = 8.0, 5.6 Hz, 1H), 2.14-2.08 (m, 1H), 1.79 (dd, J = 9.2, 5.2 Hz, 2H), 1.73 (t, J = 4.4 Hz, 1H), 1.44-1.37 (m, 1H), 1.33-1.28 (m, 1H), 1.12 (d, J = 14.0 Hz, 1H), 0.96 (s, 3H), 0.91 (d, J = 4.0 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 170.0, 166.9, 166.6, 139.9, 130.1, 129.5, 128.5, 80.7, 53.0, 52.5, 49.1, 47.9, 45.1, 37.6, 36.9, 32.2, 28.1, 27.5, 19.8, 19.3, 19.0, 13.7; FT-IR (neat) 2953, 2879, 1713, 1612, 1436, 1330, 1269, 1217, 1114, 1020 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₄H₃₁O₆: 415.2115, found: 415.2115.

2-(4-(((((1*R*,2*S*,4*R*)-1,7,7-trimethylbicyclo

Dimethyl 2-(4-((((1R,2S,5R)-2-isopropyl-5-methyl cyclohexyl)oxy)carbonyl)phenyl)cyclo propane-1,1-dicarboxylate 2q. The product **2q** was synthesized according to general procedure GP-1; Analytical TLC on silica gel, 1:19 ethyl

acetate/hexane; $R_f = 0.37$; thick liquid; yield 65% (948 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.0 Hz, 2H), 7.27-7.24 (m, 2H), 4.94-4.88 (m, 1H), 3.80 (s, 3H), 3.40 (s, 3H), 3.25 (t, J = 8.4 Hz, 1H), 2.22 (dd, J = 7.6, 5.2 Hz, 1H), 2.12 (d, J = 11.6 Hz, 1H), 1.97-1.90 (m, 1H), 1.80-1.71 (m, 4H), 1.60-1.49 (m, 2H), 1.15-1.07 (m, 2H), 0.92 (dd, J = 6.4, 4.0 Hz, 6H), 0.79 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 170.0, 166.8, 165.9, 139.8, 130.0, 129.5, 128.4, 75.0, 53.0, 52.5, 47.3, 41.0, 37.5, 34.4, 32.2, 31.5, 26.5, 23.7, 22.1, 20.8, 19.3, 16.6; FT-IR (neat) 2953, 2869, 1728, 1711, 1612, 1436, 1330, 1267, 1217, 1178, 1111, 1019 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₄H₃₃O₆: 417.2272, found: 417.2275.

Dimethyl 2-(2-bromo-5-fluorophenyl)cyclopropane-1,1-dicarboxylate 2r. The product **2r** was synthesized according to general procedure GP-1; Analytical TLC on silica gel, 1:19 ethyl acetate/hexane; $R_f = 0.42$; colorless solid; mp 53-54 °C; yield 72% (831 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.50 (dd, J = 8.8, 5.6 Hz, 1H), 6.88-6.81 (m, 2H), 3.82 (s, 3H), 3.42 (s, 3H), 3.29 (t, J = 8.8 Hz, 1H), 2.18 (dd, J = 8.4, 5.6 Hz, 1H), 1.81 (dd, J = 9.2, 5.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 169.6, 166.8, 162.7 ($J_{C-F} = 245.37$ Hz), 136.9 ($J_{C-F} = 7.87$ Hz), 131.7 ($J_{C-F} = 7.87$ Hz), 121.0 ($J_{C-F} = 3.25$ Hz), 116.7 ($J_{C-F} = 23.75$ Hz), 116.3 ($J_{C-F} = 22$ Hz), 53.1, 52.5, 36.6, 33.5, 19.5; FT-IR (neat) 2952, 1727, 1582, 1470, 1437, 1328, 1287, 1271, 1212, 1130, 1038 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₃H₁₃BrFO₄: 330.9976, found: 330.9981.

Synthesis of Dimethyl 2-(2-(3,4-dihydroisoquinolin-2(1H)-yl)-2-phenylethyl) malonate A. 1,2,3,4-Tetrahydroisoquinoline (THIQ) 1a (0.2 mmol, 26 mg), dimethyl 2-phenylcyclopropane-1,1-dicarboxylate 2a (0.24 mmol, 47 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The progress of the reaction was monitored by TLC using ethyl acetate and hexane as eluent. The reaction mixture was cooled to room temperature and purified on silica gel column chromatography using ethyl acetate and hexane as an eluent. Analytical TLC on silica gel, 1:9 ethyl acetate/hexane; R_f = 0.46; thick liquid; yield 88% (64 mg); ¹H NMR (400 MHz, CDCl₃) δ 7.35-7332 (m, 2H), 7.28-7.23 (m, 3H), 7.08-7.00 (m, 3H), 6.96-6.94 (m, 1H), 3.68-3.64 (m, 4H), 3.60-3.56 (m, 1H), 3.54 (s, 3H), 3.53-3.47 (m, 2H), 2.88-2.81 (m, 4H), 2.53-2.45 (m, 1H), 2.31-2.25 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 170.09, 170.03, 137.7, 135.3, 134.5, 128.7, 128.6, 128.2, 127.7, 126.6, 125.9, 125.4, 67.3, 52.5, 52.4, 52.3, 49.9, 47.5, 31.4, 29.4; FT-IR (Neat) 2951, 1749, 1731, 1495, 1434, 1346, 1196, 1150, 1099, 1029 cm⁻¹; HRMS (ESI) *m/z* [M+H]⁺ calcd for C₂₂H₂₆NO₄: 368.1856, found: 368.1871.

Methyl 3-phenyl-5,6-dihydropyrrolo[2,1-*a*]isoquinoline-1-carboxylate

Methyl 3-(3-bromophenyl)-5,6-dihydropyrrolo[2,1-a]isoquinoline-

3aa. 1,2,3,4-Tetrahydroisoquinoline **1a** (0.2 mmol, 26 mg), cyclopropane **2a** (0.24 mmol, 56 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (0.6 mmol, 160 mg) in MeOH (2 mL) for 12 h at 80 °C according general procedure. Analytical TLC on silica gel, 1:49 ethyl acetate/hexane; $R_f = 0.42$; thick liquid; yield 64% (38 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.52 (d, *J* = 8.0 Hz, 1H), 7.45-7.33 (m, 6H), 7.25-7.21 (m, 2H), 6.79 (s, 1H), 4.06 (t, *J* = 6.0 Hz, 2H), 3.86 (s, 3H), 2.95 (t, *J* = 6.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.8, 133.8, 133.59, 133.55, 131.8, 129.1, 128.7, 128.6, 128.1, 127.75, 127.73, 127.3, 127.1, 112.2, 111.8, 51.3, 42.4, 30.3; FT-IR (neat) 2948, 1706, 1603, 1464, 1261, 1200, 1176, 1090, 1010 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₀H₁₈NO₂: 304.1332, found: 304.1335.

1-carboxylate 3ac. 1,2,3,4-Tetrahydroisoquinoline **1a** (0.2 mmol, 26 mg), cyclopropane **2c** (0.24 mmol, 74 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃· 2H₂O (0.6 mmol, 160 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:49 ethyl acetate/hexane; $R_f = 0.39$; colorless solid; mp 94-95 °C; yield 53% (40 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 7.6 Hz, 1H), 7.49 (s, 1H), 7.43-7.39 (m, 1H), 7.30-7.23 (m, 3H), 7.21-7.14 (m, 2H), 6.74 (s, 1H), 3.98 (t, *J* = 6.4 Hz, 2H), 3.79 (s, 3H), 2.90 (t, *J* = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 134.3, 133.9, 133.5, 131.9, 130.6, 130.1, 128.4, 128.2, 127.9, 127.5, 127.3, 127.2, 122.7, 112.9, 112.1, 51.3, 42.5, 30.2; FT-IR (neat) 2947,

1708, 1596, 1470, 1263, 1200, 1178, 1088, 1014 cm⁻¹; HRMS (ESI) m/z $[M+H]^+$ calcd for $C_{20}H_{17}BrNO_2$: 382.0437, found: 382.0437.

Methyl 3-(4-bromophenyl)-5,6-dihydropyrrolo[2,1-*a***]isoquinoline-1-carboxylate 3ae. 1,2,3,4-Tetrahydroisoquinoline 1a (0.2 mmol, 26 mg), cyclopropane 2e (0.24 mmol, 74 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (0.6 mmol, 160 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:49 ethyl acetate/hexane; R_f = 0.40; colorless solid; mp 93-94 °C; yield 63% (48 mg); ¹H NMR (400 MHz, CDCl₃) \delta 8.51 (d,** *J* **= 7.6 Hz, 1H), 7.58 (d,** *J* **= 8.4 Hz, 2H), 7.37-7.33 (m, 1H), 7.27-7.21 (m, 4H), 6.79 (s, 1H), 4.02 (t,** *J* **= 6.4 Hz, 2H), 3.85 (s, 3H), 2.96 (t,** *J* **= 6.4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) \delta 165.6, 134.1, 133.4, 132.2, 131.9, 130.7, 130.5, 128.4, 128.1, 127.9, 127.3, 127.2, 121.9, 112.5, 112.0, 51.4, 42.4, 30.2; FT-IR (neat) 2924, 1708, 1551, 1483, 1462, 1201, 1177, 1089, 1007 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₀H₁₇BrNO₂: 382.0437, found: 382.0438.**

Methyl 3-(4-fluorophenyl)-5,6-dihydropyrrolo[2,1-a]isoquino-

line-1-carboxylate 3af. 1,2,3,4-Tetrahydroisoquinoline **1a** (0.2 mmol, 26 mg), cyclopropane **2f** (0.24 mmol, 60 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (0.6 mmol, 160 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:49 ethyl acetate/hexane; $R_f = 0.37$; orange solid; mp 122-123 °C; yield 52% (33 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, *J* = 8.0 Hz, 1H), 7.30-7.26 (m, 3H), 7.18-7.14 (m, 2H), 7.06 (t, *J* = 8.4 Hz, 2H), 6.68 (s, 1H), 3.94 (t, *J* = 6.4 Hz, 2H), 3.78 (s, 3H), 2.89 (t, *J* = 6.4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 163.5 (*J*_{C-F} = 246.3 Hz), 133.8, 133.4, 132.4, 130.9 (*J*_{C-F} = 8.1 Hz), 128.6, 128.19, 128.11 (*J*_{C-F} = 3.2 Hz), 127.8, 127.3, 127.2, 115.8 (*J*_{C-F} = 21.3 Hz),

112.3, 111.9, 51.3, 42.4, 30.3; FT-IR (neat) 2949, 1707, 1560, 1492, 1464, 1262, 1201, 1178, 1088, 1011 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₀H₁₇FNO₂: 322.1238, found: 322.1238.

3-(p-tolyl)-5,6-dihydropyrrolo[2,1-a]isoquinoline-1-

carboxylate 3ag. 1,2,3,4-Tetrahydroisoquinoline **1a** (0.2 mmol, 26 mg), cyclopropane **2g** (0.24 mmol, 59 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (0.6 mmol, 160 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:49 ethyl acetate/hexane; $R_f = 0.43$; colorless solid; mp 97-98 °C; yield 65% (41 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.44 (d, *J* = 8.0 Hz, 1H), 7.27 (t, *J* = 7.0 Hz, 1H), 7.22-7.13 (m, 6H), 6.68 (s, 1H), 3.97 (t, *J* = 6.5 Hz, 2H), 3.78 (s, 3H), 2.87 (t, *J* = 6.5 Hz, 2H), 2.33 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.8, 137.6, 133.6, 133.5, 129.4, 129.08, 129.02, 128.7, 128.1, 127.6, 127.2, 127.1, 111.9, 111.8, 51.3, 42.4, 30.3, 21.3; FT-IR (neat) 2923, 1708, 1493, 1464, 1261, 1200, 1176, 1089, 1018 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₁H₂₀NO₂: 318.1489, found: 318.1491.

\bigcup Methyl 3-(4-methoxyphenyl)-5,6-dihydropyrrolo[2,1-*a*]isoqui-

noline-1-carboxylate 3ah. 1,2,3,4-Tetrahydroisoquinoline **1a** (0.2 mmol, 26 mg), cyclopropane **2h** (0.24 mmol, 63 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (0.6 mmol, 160 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:49 ethyl acetate/hexane; R_f = 0.38; colorless solid; mp 115-116 °C; yield 68% (45 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, *J* = 7.6 Hz, 1H), 7.29-7.23 (m, 3H), 7.18-7.13 (m, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 6.65 (s, 1H), 3.94 (t, *J* = 6.4 Hz, 2H), 3.78 (s, 6H), 2.87 (t, *J* = 6.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.9, 159.4, 133.5, 133.38, 133.34, 130.4, 128.7, 128.0, 127.6, 127.3, 127.1, 124.3, 114.1, 111.7, 111.6, 55.5, 51.3, 42.2, 30.3; FT-IR (neat) 2947, 1704,

1558, 1493, 1463, 1249, 1200, 1175, 1088, 1036 cm⁻¹; HRMS (ESI) m/z $[M+H]^+$ calcd for $C_{21}H_{20}NO_3$: 334.1438, found: 334.1438.

Wethyl 3-([1,1'-biphenyl]-4-yl)-5,6-dihydropyrrolo[2,1-*a***]isoquinoline-1-carboxylate 3aj.** 1,2,3,4-Tetrahydroisoquinoline **1a** (0.2 mmol, 26 mg), cyclopropane **2j** (0.24 mmol, 74 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (0.6 mmol, 160 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:49 ethyl acetate/hexane; R_f = 0.39; colorless solid; mp 109-110 °C; yield 59% (44 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.46 (d, *J* = 8.0 Hz, 1H), 7.59 (dd, *J* = 15.2, 8.0 Hz, 4H), 7.41-7.37 (m, 4H), 7.32-7.26 (m, 2H), 7.19-7.14 (m, 2H), 6.77 (s, 1H), 4.04 (t, *J* = 6.4 Hz, 2H), 3.79 (s, 3H), 2.90 (t, *J* = 6.4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 163.5, 161.5, 133.8, 133.4, 132.4, 130.9, 130.8, 128.5, 128.1, 128.03, 128.00, 127.8, 127.3, 127.1, 115.8, 115.6, 112.2, 111.8, 51.3, 42.3, 30.2; FT-IR (neat) 2947, 1706, 1549, 1483, 1463, 1263, 1200, 1176, 1089, 1007 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₆H₂₂NO₂: 380.1645, found: 380.1649.

Methyl 3-(pyren-1-yl)-5,6-dihydropyrrolo[2,1-a]isoquinoline-

1-carboxylate 3ak. 1,2,3,4-Tetrahydroisoquinoline **1a** (0.2 mmol, 26 mg), cyclopropane **2k** (0.24 mmol, 85 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (0.6 mmol, 160 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:49 ethyl acetate/hexane; $R_f = 0.41$; yellow solid; mp 193-194 °C; yield 67% (57 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.59 (d, J = 8.0 Hz, 1H), 8.17-8.12 (m, 3H), 8.08-8.03 (m, 2H), 8.01-7.95 (m, 2H), 7.91 (dd, J = 16.0, 8.0 Hz, 2H), 7.32 (t, J = 7.2 Hz, 1H), 7.20-7.16 (m, 1H), 7.14-7.12 (m, 1H), 6.90 (s, 1H), 3.84 (s, 3H), 3.74-3.69 (m, 1H), 3.66-3.59 (m, 1H), 2.86 (q,

J = 6.0 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 166.0, 133.5, 133.4, 131.7, 131.6, 131.4, 131.0, 130.7, 128.9, 128.6, 128.4, 128.2, 128.0, 127.8, 127.5, 127.4, 127.2, 126.6, 126.4, 125.7, 125.5, 124.99, 124.90, 124.7, 124.6, 114.1, 111.9, 51.4, 42.6, 30.1; FT-IR (neat) 2926, 1706, 1524, 1466, 1261, 1202, 1177, 1088, 1020 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₃₀H₂₂NO₂: 428.1645, found: 428.1646.

Methyl 3-(thiophen-2-yl)-5,6-dihydropyrrolo[2,1-a]isoquinoline-1-

carboxylate 3al. 1,2,3,4-Tetrahydroisoquinoline **1a** (0.2 mmol, 26 mg), cyclopropane **2l** (0.24 mmol, 57 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (0.6 mmol, 160 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:49 ethyl acetate/hexane; $R_f = 0.37$; colorless solid; mp 109-110 °C; yield 61% (37 mg); ¹H NMR (500 MHz, CDCl₃) δ 8.44 (d, *J* = 8.0 Hz, 1H), 7.28-7.25 (m, 2H), 7.18-7.14 (m, 2H), 7.04-7.03 (m, 1H), 6.97-6.95 (m, 1H), 6.79 (s, 1H), 4.05 (t, *J* = 6.0 Hz, 2H), 3.78 (s, 3H), 2.92 (t, *J* = 6.5 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 165.6, 134.2, 133.4, 133.2, 128.3, 128.1, 127.9, 127.6, 127.3, 127.1, 126.8, 126.1, 126.0, 113.6, 111.9, 51.4, 41.9, 30.1; FT-IR (neat) 2924, 1708, 1465, 1333, 1262, 1201, 1176, 1088, 1018 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₈H₁₆NO₂S: 310.0896, found: 310.0897.

3-phenyl-5,6-dihydropyrrolo[2,1-*a*]isoquinoline-1-carboxylate

3an. 1,2,3,4-Tetrahydroisoquinoline **1a** (0.2 mmol, 26 mg), cyclopropane **2n** (0.24 mmol, 62 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (0.6 mmol, 160 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:49 ethyl acetate/hexane; $R_f = 0.42$; colorless solid; mp 68-69 °C; yield 60% (38 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, J = 8.0 Hz, 1H), 7.46-7.41 (m, 3H), 7.39-7.32 (m, 3H), 7.23-

7.20 (m, 2H), 6.81 (s, 1H), 4.34 (q, J = 7.2 Hz, 2H), 4.06 (t, J = 6.4 Hz, 2H), 2.95 (t, J = 6.4 Hz, 2H), 1.38 (t, J = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.4, 133.6, 133.5, 133.4, 131.9, 129.1, 128.7, 128.6, 128.2, 127.7, 127.6, 127.2, 127.0, 112.32, 112.30, 60.0, 42.4, 30.3, 14.6; FT-IR (neat) 2927, 1701, 1603, 1521, 1484, 1462, 1261, 1198, 1175, 1089, 1036 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₁H₂₀NO₂: 318.1489, found: 318.1492.

3-(4-((((3S,

8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-6-methylheptan-2-yl)-2,3,4,7,8,9,10,11,

12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl)oxy)carbonyl)phe-

nyl)-8,9-dimethoxy-5,6-dihydropyrrolo[2,1-a]isoquinoline-1-carboxylate 3bo. Amine 1b (0.2 mmol, 38 mg), cyclopropane 20 (0.24 mmol, 155 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (0.6 mmol, 160 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 3:7 ethyl acetate/hexane; $R_f = 0.47$; colorless solid; mp 144-145 °C; yield 42% (65 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 8.11 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 6.86 (s, 1H), 6.74 (s, 1H), 5.44 (d, J = 4.0 Hz, 1H), 4.92-4.84 (m, 1H), 4.08 (t, J = 6.0 Hz, 2H), 3.99 (s, 3H), 3.92 (s, 3H), 3.86 (s, 3H), 2.92 (t, J = 6.4 Hz, 2H), 2.49 (d, J = 7.6 Hz, 2H), 2.04-1.91 (m, 5H), 1.86-1.73 (m, 3H), 1.56-1.46 (m, 7H), 1.41-1.32 (m, 4H), 1.28-1.22 (m, 5H), 1.16-1.12 (m, 3H), 1.08 (s, 3H), 1.03-0.98 (m, 3H), 0.93 (d, J = 6.4Hz, 3H), 0.88-0.86 (m, 6H), 0.69 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.8, 165.7, 148.7, 147.7, 139.7, 136.1, 135.1, 132.1, 129.9, 129.6, 128.5, 126.4, 123.0, 121.2, 113.3, 112.0, 111.2, 110.4, 74.9, 60.5, 56.8, 56.2, 56.1, 51.4, 50.2, 42.8, 42.4, 39.8, 39.6, 38.3, 37.1, 36.8, 36.3, 35.9, 32.09, 32.04, 29.7, 28.3, 28.1, 28.0, 24.4, 23.9, 22.9, 22.7, 21.2, 19.5, 18.8, 12.0; FT-IR (neat) 2933, 2867, 1707, 1607, 1501, 1468, 1271, 1251, 1200, 1171, 1145, 1088, 1028 cm⁻¹; HRMS (ESI) $m/z [M+H]^+$ calcd for $C_{50}H_{66}NO_6$: 776.4885, found: 776.4877.

Methyl 8,9-dimethoxy-3-(4-((((1R,2S,4R)-1,7,7-

trimethylbicyclo[2.2.1]heptan-2-yl)oxy)carbonyl)phenyl)-5,6-dihydropyrrolo[2,1-a]isoquinoline-1-carboxylate 3bp. Amine 1b (0.2 mmol, 38 mg), cyclopropane 2p (0.24 mmol, 99 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (0.6 mmol, 160 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 3:7 ethyl acetate/hexane; $R_f = 0.42$; colorless solid; mp 84-85 °C; yield 39% (42 mg); ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 8.40 \text{ (s, 1H)}, 8.13 \text{ (d, } J = 8.4 \text{ Hz}, 2\text{H}), 7.48 \text{ (d, } J = 8.4 \text{ Hz}, 2\text{H}), 6.87 \text{ (s, 1H)},$ 6.74 (s, 1H), 5.16 (d, J = 10.0 Hz, 1H), 4.08 (t, J = 6.4 Hz, 2H), 3.99 (s, 3H), 3.92 (s, 3H), 3.86 (s, 3H), 2.92 (t, J = 6.4 Hz, 2H), 2.53-2.46 (m, 1H), 2.18-2.12 (m, 1H), 1.87-1.79 (m, 1H), 1.75 (t, J = 4.4 Hz, 1H), 1.36-1.29 (m, 2H), 1.15 (dd, J = 14.0, 3.6 Hz, 1H), 0.98 (s, 3H), 0.93 (s, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 166.6, 165.7, 148.7, 147.8, 136.2, 135.1, 132.1, 129.9, 129.6, 128.5, 126.4, 121.2, 113.3, 112.0, 111.2, 110.4, 80.8, 56.3, 56.1, 51.4, 49.2, 48.0, 45.1, 42.8, 37.1, 28.2, 27.5, 19.8, 19.0, 13.7; FT-IR (neat) 2952, 1706, 1608, 1530, 1501, 1470, 1455, 1272, 1250, 1200, 1171, 1117, 1088, 1017 cm⁻¹; HRMS (ESI) m/z $[M+H]^+$ calcd for C₃₃H₃₈NO₆: 544.2694, found: 544.2693.

Methyl 3-(4-((((1S,2R,5S)-2-isopropyl-5-methyl-

cyclohexyl)oxy)carbonyl)phenyl)-8,9-dimethoxy-5,6-dihydropyrrolo[2,1-*a*]isoquinoline-1carboxylate 3bq. Amine 1b (0.2 mmol, 26 mg), cyclopropane 2q (0.24 mmol, 99 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (0.6 mmol, 160 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 3:7 ethyl acetate/hexane; $R_f = 0.44$; thick liquid; yield 46% (50 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.40 (s, 1H), 8.11 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 6.86 (s, 1H), 6.74 (s, 1H), 4.99-4.92 (m, 1H), 4.08 (t, J = 6.4 Hz, 2H), 3.99 (s, 3H), 3.92 (s, 3H), 3.86 (s, 3H), 2.92 (t, J = 6.4 Hz, 2H), 2.16 (d, J = 12.0 Hz, 1H), 2.01-1.94 (m, 1H), 1.77-1.71 (m, 2H), 1.62-1.53 (m, 3H), 1.13 (q, J = 11.6 Hz, 2H), 0.94 (dd, J = 6.4, 3.2 Hz, 6H), 0.82 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.9, 165.7, 148.7, 147.7, 136.1, 135.0, 132.1, 129.9, 129.6, 128.5, 126.4, 121.2, 113.3, 112.0, 111.2, 110.4, 75.1, 56.2, 56.0, 51.4, 47.4, 42.8, 41.1, 34.4, 31.6, 29.7, 26.7, 23.7, 22.1, 20.9, 16.6; FT-IR (neat) 2952, 2869, 1704, 1608, 1501, 1469, 1455, 1336, 1272, 1250, 1200, 1172, 1089, 1029 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₃₃H₄₀NO₆: 546.2850, found: 546.2851.

noline-1-carboxylate 3ba. Amine **1b** (0.2 mmol, 38 mg), cyclopropane **2a** (0.24 mmol, 56 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (0.6 mmol, 160 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 3:7 ethyl acetate/hexane; R_f = 0.45; orange solid; mp 125-126 °C; yield 72% (52 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.45-7.33 (m, 5H), 6.77 (s, 1H), 6.72 (s, 1H), 4.04 (t, *J* = 6.4 Hz, 2H), 3.99 (s, 3H), 3.91 (s, 3H), 3.85 (s, 3H), 2.89 (t, *J* = 6.8 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 165.9, 148.5, 147.7, 134.1, 133.0, 131.9, 129.0, 128.6, 127.6, 126.3, 121.5, 112.1, 111.9, 110.8, 110.4, 56.2, 56.0, 51.3, 42.5, 29.7; FT-IR (neat) 2947, 1701, 1528, 1496, 1472, 1288, 1248, 1202, 1171, 1090 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₂H₂₂NO₄: 364.1543, found: 364.1546.

yl 7-bromo-3-phenyl-5,6-dihydropyrrolo[2,1-*a*]isoquinoline-1-

carboxylate 3ca. Amine **1c** (0.2 mmol, 42 mg), cyclopropane **2a** (0.24 mmol, 56 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with $Mn(OAc)_3 \cdot 2H_2O$ (0.6 mmol, 160 mg) in MeOH (2

mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:19 ethyl acetate/hexane; $R_f = 0.44$; colorless solid; mp 86-87 °C; yield 52% (39 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.47 (d, J = 8.0 Hz, 1H), 7.47 (dd, J = 14.0, 8.0 Hz, 3H), 7.40-7.36 (m, 3H), 7.21 (t, J = 8.0 Hz, 1H), 6.82 (s, 1H), 4.06 (t, J = 6.8 Hz, 2H), 3.85 (s, 3H), 3.13 (t, J = 6.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 165.7, 133.6, 133.1, 132.7, 131.6, 131.5, 130.6, 129.0, 128.7, 128.2, 127.9, 127.3, 123.1, 112.6, 112.5, 51.4, 42.0, 29.8; FT-IR (neat) 2925, 1709, 1552, 1456, 1284, 1222, 1198, 1173, 1146, 1097 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₀H₁₇BrNO₂: 382.0437, found: 382.0454.

^JMethyl 8-bromo-3-phenyl-5,6-dihydropyrrolo[2,1-*a*]isoquinoline-1-

carboxylate 3da. Amine **1d** (0.2 mmol, 42 mg), cyclopropane **2a** (0.24 mmol, 56 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (0.6 mmol, 160 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:19 ethyl acetate/hexane; $R_f = 0.43$; thick liquid; yield 47% (35 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.45 (d, J = 8.4 Hz, 1H), 7.47-7.42 (m, 3H), 7.39-7.35 (m, 4H), 6.79 (s, 1H), 4.04 (t, J = 6.8 Hz, 2H), 3.85 (s, 3H), 2.93 (t, J = 6.4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.7, 135.5, 133.8, 132.8, 131.6, 130.25, 130.23, 129.7, 129.1, 128.7, 127.9, 127.6, 121.3, 112.4, 112.2, 51.4, 42.1, 30.0; FT-IR (neat) 2925, 1705, 1568, 1461, 1260, 1201, 1176, 1096, 1081, 1009 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₀H₁₇BrNO₂: 382.0437, found: 382.0437.

Methyl 7-phenyl-4,5-dihydrothieno[2,3-g]indolizine-9-carboxylate 3ea.

Amine 1e (0.2 mmol, 27 mg), cyclopropane 2a (0.24 mmol, 56 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (0.6 mmol, 160 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:19 ethyl acetate/hexane; $R_f = 0.41$;

thick liquid; yield 54% (33 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, J = 5.2 Hz, 1H), 7.46-7.34 (m, 5H), 7.17 (d, J = 5.6 Hz, 1H), 6.69 (s, 1H), 4.15 (t, J = 6.4 Hz, 2H), 3.85 (s, 3H), 3.09 (t, J = 7.2 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 165.5, 133.67, 133.60, 132.2, 132.1, 130.0, 129.1, 128.7, 127.88, 127.80, 122.1, 111.0, 110.1, 51.2, 43.0, 24.8; FT-IR (neat) 2948, 2925, 1704, 1571, 1469, 1436, 1265, 1196, 1090, 1061, 1042 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₈H₁₆NO₂S: 310.0896, found: 310.0895.

Methyl 3-phenyl-6,7-dihydro-5*H***-benzo[c]pyrrolo[1,2-***a***]azepine-1carboxylate 3fa.** Amine **1f** (0.2 mmol, 29 mg), cyclopropane **2a** (0.24 mmol, 56 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (0.6 mmol, 160 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:19 ethyl acetate/hexane; $R_f = 0.42$; thick liquid; yield 51% (32 mg); ¹H NMR (500 MHz, CDCl₃) δ 7.71-7.69 (m, 1H), 7.44-7.42 (m, 4H), 7.37-7.35 (m, 1H), 7.34-7.29 (m, 2H), 7.26-7.25 (m, 1H), 6.77 (s, 1H), 4.12-4.00 (m, 1H), 3.75 (s, 3H), 3.55-3.34 (m, 1H), 2.79-2.74 (m, 2H), 2.63-2.28 (m, 1H), 2.23-1.89 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 165.3, 139.1, 138.4, 134.1, 132.6, 131.9, 131.5, 128.8, 128.7, 128.5, 127.8, 126.2, 111.9, 110.9, 51.0, 42.6, 33.1, 30.7; FT-IR (neat) 2947, 2927, 1710, 1603, 1524, 1466, 1408, 1257, 1185, 1095, 1034 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₁H₂₀NO₂: 318.1489, found: 318.1492.

Methyl 3-phenylpyrrolo[2,1-*a*]isoquinoline-1-carboxylate 4aa. 1,2,3,4-Tetrahydroisoquinoline 1a (0.2 mmol, 26 mg), cyclopropane 2a (0.24 mmol, 56 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (1.0 mmol, 268 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:49 ethyl acetate/hexane; $R_f = 0.43$; colorless solid; mp 90-92 °C; yield 48% (28 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.79 (d, J = 8.4 Hz, 1H), 7.95 (d, J = 7.6 Hz, 1H), 7.56-7.52 (m, 2H), 7.49-7.42 (m, 5H), 7.38-7.34 (m, 1H), 7.22 (s, 1H), 6.87 (d, J = 7.2 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 166.0, 132.8, 131.3, 129.4, 129.1, 129.0, 128.4, 128.2, 127.8, 127.7, 127.3, 126.7, 126.1, 122.0, 116.5, 113.6, 108.7, 51.6; FT-IR (neat) 2948, 2922, 1702, 1604, 1505, 1458, 1259, 1198, 1151, 1089, 1035 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₀H₁₆NO₂: 302.1176, found: 302.1176.

late 4ac. 1,2,3,4-Tetrahydroisoquinoline **1a** (0.2 mmol, 26 mg), cyclopropane **2c** (0.24 mmol, 74 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (1.0 mmol, 268 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:49 ethyl acetate/hexane; R_f = 0.40; colorless solid; mp 105-106 °C; yield 40% (30 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.78 (d, *J* = 8.0 Hz, 1H), 7.92 (d, *J* = 7.6 Hz, 1H), 7.64 (t, *J* = 2.0 Hz, 1H), 7.58-7.53 (m, 2H), 7.50-7.40 (m, 3H), 7.31 (t, *J* = 8.0 Hz, 1H), 7.24 (s, 1H), 6.91 (d, *J* = 7.2 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 133.4, 133.1, 132.1, 131.3, 130.6, 129.0, 127.98, 127.94, 127.7, 127.4, 126.8, 126.5, 126.0, 123.2, 121.6, 117.2, 114.1, 108.9, 51.6; FT-IR (neat) 2947, 2924, 1702, 1596, 1504, 1458, 1336, 1259, 1199, 1152, 1088, 1030 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₀H₁₅BrNO₂: 380.0281, found: 380.0282.

3-(3-bromophenyl)pyrrolo[2,1-a]isoquinoline-1-carboxy-

Methyl 3-(4-bromophenyl)pyrrolo[2,1-*a*]isoquinoline-1-carboxylate 4ae. 1,2,3,4-Tetrahydroisoquinoline 1a (0.2 mmol, 26 mg), cyclopropane 2e (0.24 mmol, 74 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (1.0 mmol, 268 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:49 ethyl acetate/hexane; $R_f = 0.42$; colorless solid; mp 132-133 °C; yield 43% (32 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.85 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 7.6 Hz, 1H), 7.66-7.59 (m, 4H), 7.54-7.50 (m, 1H), 7.43-7.40 (m, 2H), 7.29 (s, 1H), 6.96 (d, J = 7.6 Hz, 1H), 3.94 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 165.8, 133.0, 132.4, 130.8, 130.2, 128.9, 127.9, 127.8, 127.4, 126.9, 126.8, 126.1, 122.5, 121.6, 116.8, 114.0, 108.9, 51.6; FT-IR (neat) 2948, 2924, 1701, 1547, 1504, 1471, 1458, 1337, 1259, 1199, 1088, 1028 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₀H₁₅BrNO₂: 380.0281, found: 380.0279.

3-(4-methoxyphenyl)pyrrolo[2,1-*a*]isoquinoline-1-

carboxylate 4ah. 1,2,3,4-Tetrahydroisoquinoline **1a** (0.2 mmol, 26 mg), cyclopropane **2h** (0.24 mmol, 63 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (1.0 mmol, 268 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:49 ethyl acetate/hexane; $R_f = 0.39$; colorless solid; mp 99-100 °C; yield 46% (30 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.85 (d, *J* = 8.4 Hz, 1H), 7.96 (d, *J* = 7.2 Hz, 1H), 7.63-7.58 (m, 2H), 7.52-7.48 (m, 1H), 7.47-7.43 (m, 2H), 7.23 (s, 1H), 7.06-7.02 (m, 2H), 6.93 (d, *J* = 7.2 Hz, 1H), 3.94 (s, 3H), 3.89 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 166.0, 159.8, 132.4, 130.8, 128.9, 128.0, 127.7, 127.6, 127.3, 126.7, 126.2, 123.6, 122.0, 116.1, 114.6, 113.5, 108.4, 55.5, 51.6; FT-IR (neat) 2949, 2924, 1700, 1564, 1511, 1496, 1458, 1336, 1250, 1200, 1088, 1035 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₁H₁₈NO₃: 332.1281, found: 332.1278.

Methyl 3-(2-bromo-5-fluorophenyl)pyrrolo[2,1-*a***]isoquinoline-1carboxylate 4ar. 1,2,3,4-Tetrahydroisoquinoline 1a (0.2 mmol, 26 mg), cyclopropane 2r (0.24 mmol, 79 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (1.0 mmol, 268 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:49 ethyl acetate/hexane; R_f = 0.43; colorless solid; mp 106-107 °C; yield 49% (39 mg); ¹H NMR (400 MHz, CDCl₃) \delta 9.83 (d, J = 8.4 Hz, 1H), 7.64 (dd, J = 8.8, 5.2 Hz, 1H), 7.59-7.54 (m, 2H), 7.47 (t, J = 7.2 Hz, 1H), 7.39 (d, J = 7.6 Hz, 1H), 7.24 (s, 1H), 7.14 (dd, J = 8.4, 3.2** Hz, 1H), 7.05-7.00 (m, 1H), 6.92 (d, J = 7.6 Hz, 1H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 163.2 ($J_{C-F} = 247.7$ Hz), 134.7 ($J_{C-F} = 8.2$ Hz), 134.2 ($J_{C-F} = 8.6$ Hz), 132.6, 129.0, 127.98, 127.91, 127.5, 126.8, 125.9, 125.3, 122.3, 120.7 ($J_{C-F} = 22.4$ Hz), 120.1 ($J_{C-F} = 3.5$ Hz), 118.1 ($J_{C-F} = 22$ Hz), 117.5, 113.8, 108.5, 51.6; FT-IR (neat) 2949, 2924, 1701, 1575, 1504, 1479, 1458, 1335, 1260, 1198, 1089, 1060, 1024 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₀H₁₄BrFNO₂: 398.0186, found: 398.0198.

Methyl 8,9-dimethoxy-3-phenylpyrrolo[2,1-*a***]isoquinoline-1carboxylate 4ba. Amine 1b (0.2 mmol, 38 mg), cyclopropane 2a (0.24 mmol, 56 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (1.0 mmol, 268 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 3:7 ethyl acetate/hexane; R_f = 0.46; orange solid; mp 111-112 °C; yield 55% (39mg); ¹H NMR (400 MHz, CDCl₃) \delta 9.72 (s, 1H), 7.99 (d, J = 7.6 Hz, 1H), 7.56-7.48 (m, 4H), 7.44-7.40 (m, 1H), 7.28 (s, 1H), 7.02 (s, 1H), 6.88 (d, J = 7.6 Hz, 1H), 4.15 (s, 3H), 4.00 (s, 3H), 3.92 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) \delta 166.1, 149.6, 149.4, 133.3, 131.5, 129.3, 129.1, 128.2, 127.4, 124.0, 120.9, 120.5, 116.7, 113.0, 109.2, 107.0, 106.7, 56.5, 56.0, 51.5; FT-IR (neat) 2950, 2927, 1693, 1604, 1519, 1494, 1479, 1434, 1331, 1251, 1196, 1143, 1090, 1046 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₂H₂₀NO₄: 362.1387, found: 362.1387.**

Methyl 7-bromo-3-phenylpyrrolo[2,1-*a*]isoquinoline-1-carboxylate 4ca. Amine 1c (0.2 mmol, 42 mg), cyclopropane 2a (0.24 mmol, 56 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (1.0 mmol, 268 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:19 ethyl acetate/hexane; R_f = 0.45; colorless solid; mp 120-121 °C; yield 38% (28 mg); ¹H NMR (400 MHz, CDCl₃) δ 9.89 (d, *J* = 8.4 Hz, 1H), 8.10 (d, J = 7.6 Hz, 1H), 7.77 (d, J = 7.6 Hz, 1H), 7.55-7.50 (m, 4H), 7.47-7.41 (m, 3H), 7.34 (s, 1H), 3.95 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.9, 131.7, 131.6, 130.9, 129.3, 129.2, 128.6, 128.4, 128.3, 127.9, 127.8, 126.8, 123.2, 121.5, 117.2, 112.1, 109.4, 51.7; FT-IR (neat) 2955, 2923, 1701, 1544, 1502, 1445, 1338, 1206, 1197, 1152, 1095, 1038 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₀H₁₅BrNO₂: 380.0281, found: 380.0296.

Methyl 7-phenylthieno[2,3-g]indolizine-9-carboxylate 4ea. Amine **1c** (0.2 mmol, 27 mg), cyclopropane **2a** (0.24 mmol, 56 mg) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (1.0 mmol, 268 mg) in MeOH (2 mL) for 12 h at 80 °C according to general procedure. Analytical TLC on silica gel, 1:19 ethyl acetate/hexane; $R_f = 0.42$; thick liquid; yield 42% (25 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.98 (d, *J* = 5.6 Hz, 1H), 8.12 (d, *J* = 7.2 Hz, 1H), 7.55-7.48 (m, 5H), 7.44-7.39 (m, 1H), 7.26-7.25 (m, 1H), 7.13 (d, *J* = 7.6 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 165.4, 134.9, 132.7, 131.5, 129.9, 129.22, 129.21, 128.3, 127.34, 127.32, 125.1, 120.4, 115.6, 108.0, 104.7, 51.2; FT-IR (neat) 2948, 2927, 1695, 1622, 1510, 1474, 1437, 1413, 1320, 1279, 1208, 1196, 1089, 1057, 1018 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₁₈H₁₄NO₂S: 308.0740, found: 308.0737.

Synthesis of Dimethyl 3-phenyl-2,3,6,10b-tetrahydropyrrolo[2,1a]isoquinoline-1,1(5H) dicarboxylate 7. Amine 1a (0.2 mmol), cyclopropane 2a (0.24 mmol) and MgI₂ (20 mol %, 11 mg) were stirred in toluene (2 mL) at 80 °C for 12 h. The reaction was cooled to room temperature and passed through a short pad of celite using ethyl acetate. Evaporation of the solvent gave a residue that was reacted with Mn(OAc)₃·2H₂O (0.2 mmol, 53 mg) in MeOH (2 mL) for 12 h at 80 °C. The progress of the reaction was monitored by TLC using ethyl acetate and hexane. The reaction mixture was diluted with ethyl acetate (2 x 15 mL) and washed with water (2 x 5 mL). Drying (Na₂SO₄) and evaporation of the solvent gave the residue that was purified on silica gel column chromatography using ethyl acetate and hexane as eluent to afford 7. Analytical TLC on silica gel, 1:49 ethyl acetate/hexane; $R_f = 0.36$; thick liquid; yield 83% (60 mg); 1.05:1 mixture of diastereomers; ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.44 (m, 5H), 7.42-7.39 (m, 1H), 7.37-7.32 (m, 4H), 7.31 -7.26 (m, 2H), 7.14-7.04 (m, 6H), 5.60 (s, 1H), 4.66 (dd, *J* = 10.0, 6.0 Hz, 0.95H), 4.31 (s, 0.95H), 3.87 (s, 2.86H), 3.78 (s, 3H), 3.53 (t, *J* = 8.4 Hz, 1H), 3.44 (s, 2.85H), 3.11 (s, 3H), 3.07-3.00 (m, 1H), 2.93-2.86 (m, 3H), 2.82-2.71 (m, 4H), 2.65 (dd, *J* = 12.0, 3.2 Hz, 1H), 2.39-2.35 (m, 1H), 2.33-3.27 (m, 1H), 2.20 (dd, *J* = 13.2, 9.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 172.9, 172.0, 171.0, 170.9, 142.9, 141.4, 137.3, 135.8, 135.5, 134.4, 128.7, 128.66, 128.62, 128.5, 128.25, 128.24, 127.7, 127.5, 127.4, 126.9, 126.5, 126.2, 125.5, 125.0, 70.1, 66.8, 65.8, 65.6, 65.5, 61.8, 52.9, 52.8, 52.2, 51.9, 46.2, 44.5, 43.7, 43.3, 30.2, 24.6; FT-IR (neat) 2953, 1730, 1652, 1604, 1493, 1437, 1266, 1214, 1156, 1065, 1030 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₂H₂₄NO₄: 366.1700, found: 366.1708.

Synthesis of Methyl 3-(4-(benzo[d][1,3]dioxol-5yl)phenyl)-5,6-dihydropyrrolo[2,1-a]isoquinoline-1-carboxylate 8.3 Compound 3ae (38 mg, 0.1 mmol), benzo[d][1,3]dioxol-5-ylboronic acid (0.1 mmol, 16 mg), Pd(PPh₃)₄ (0.002 mmol, 2.3 mg), Na₂CO₃ (0.2 mmol, 22 mg), H₂O (50 μ L) and toluene:EtOH (1:1, 2 mL) were refluxed at 100 °C for 6 h under nitrogen atmosphere. The reaction mixture was cooled to room temperature and passed through a short pad of celite using CH₂Cl₂ (10 ml). Evaporation of the solvent gave a residue that was purified on silica gel column chromatography to give 8. Analytical TLC on silica gel, 1:49 ethyl acetate/hexane; $R_f = 0.40$; colorless solid; mp 64-65 °C; yield 73% (30 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.53 (d, J = 8.0 Hz, 1H), 7.60 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.37-7.33 (m, 1H), 7.25-7.22 (m, 2H), 7.11-7.09 (m, 2H), 6.91 (d, *J* = 8.4 Hz, 1H), 6.83 (s, 1H), 6.02 (s, 2H), 4.10 (t, J = 6.4 Hz, 2H), 3.86 (s, 3H), 2.97 (t, J = 6.4 Hz, 2H); ¹³C NMR (125) MHz, CDCl₃) δ 165.8, 148.4, 147.4, 140.2, 134.9, 133.9, 133.6, 133.2, 130.4, 129.4, 128.6, 128.1, 127.7, 127.3, 127.1, 127.0, 120.7, 112.3, 111.9, 108.8, 107.6, 101.3, 51.3, 42.5, 30.3; FT-IR (neat) 2950, 2924, 1705, 1504, 1479, 1463, 1337, 1263, 1225, 1201, 1177, 1089, 1038 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₇H₂₂NO₄: 424.1543, found: 424.1546.

Synthesis of 8,9-Dimethoxy-3-phenyl-5,6-dihydropyrrolo[2,1-

a]isoquinoline -1-carboxylic acid 9.⁴ Compound 3ba (0.2 mmol, 69 mg), KOH (3.00 mmol, 168 mg), DMSO (3 mL) and H₂O (3 mL) were subjected to stir at 70 °C in an oil bath for 6 h. The progress of the reaction was monitored by TLC using ethyl acetate and hexane. After completion, 3 M HCl was added until the pH = 1. The mixture was then extracted with Et₂O (3 x 15 mL). The combined organic layer was washed with brine (5 mL) and dried (Na₂SO₄). Evaporation of the solvent gave a residue that was purified on silica gel column chromatography to give 9 in 81% yield. Analytical TLC on silica gel, 1:1 ethyl acetate/hexane; R_f = 0.39; colorless solid; mp 203-204 °C; yield 81% (56 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.46-7.35 (m, 5H), 6.86 (s, 1H), 6.74 (s, 1H), 4.06 (t, *J* = 6.4 Hz, 2H), 3.97 (s, 3H), 3.92 (s, 3H), 2.92 (t, *J* = 6.4 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 169.8, 148.7, 147.7, 135.3, 133.3, 131.8, 129.1, 128.7, 127.7, 126.5, 121.2, 112.9, 112.1, 110.4, 109.8, 56.19, 56.13, 42.6, 29.7; FT-IR (neat) 2931, 1675, 1555, 1528, 1494, 1474, 1336, 1292, 1267, 1240, 1212, 1146, 1094, 1055 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₂₁H₂₀NO₄: 350.1387, found: 350.1387.

Synthesis of (R)-2,5,7,8-tetramethyl-2((4R,8R)-

4,8,12-trimethyltridecyl)chroman-6-yl 8,9-dimethoxy-3-phenyl-5,6-dihydropy-rrolo[2,1*a*]isoquinoline-1-carboxylate 10.³ Compound 9 (0.1 mmol, 34 mg), dicyclohexylcarbodiimide (DCC) (0.15 mmol, 30 mg), 4-dimethylaminepyridine (DMAP) (0.015 mmol, 1.8 mg) and tocopherol (0.12 mmol, 43 mg) were stirred in CH₂Cl₂ (1 mL) for 12 h at room temperature. The reaction mixture was then passed through as short pad of celite. The solvent was evaporated and the residue was purified on silica gel chromatography using ethyl acetate/hexane as an eluent to get 10 in 52% yield. Analytical TLC on silica gel, 3:7 ethyl acetate/hexane; R_f = 0.40; thick liquid; yield 52% (39 mg); ¹H NMR (400 MHz, CDCl₃) δ 8.45 (s, 1H), 7.48-7.44 (m, 3H), 7.41-7.36 (m, 1H), 7.03 (s, 1H), 6.73 (s, 1H), 4.10 (t, J = 6.4 Hz, 2H), 3.91 (d, J = 8.0 Hz, 6H), 2.95 (t, J = 6.8 Hz, 2H), 2.62 (t, J = 6.8 Hz, 2H), 2.12 (d, J = 3.6 Hz, 6H), 2.08 (s, 3H), 1.86-1.81 (m, 1H), 1.54-1.49 (m, 3H), 1.43-1.35 (m, 3H), 1.31-1.23 (m, 12H), 1.16-1.07 (m, 7H), 0.87-0.83 (m, 12H); ¹³C NMR (125 MHz, CDCl₃) δ 163.9, 149.3, 148.6, 147.8, 140.8, 135.0, 133.1, 132.0, 129.2, 128.7, 127.7, 127.5, 126.3, 125.7, 123.0, 121.4, 117.4, 112.7, 112.0, 110.4, 110.3, 75.1, 56.4, 56.0, 42.7, 39.5, 37.7, 37.5, 37.4, 32.95, 32.93, 29.7, 28.1, 24.9, 24.6, 23.6, 22.8, 22.7, 21.2, 20.8, 19.9, 19.86, 19.84, 19.79, 19.75, 13.3, 12.4, 12.0; FT-IR (neat) 2947, 2926, 1714, 1527, 1496, 1464, 1377, 1288, 1239, 1193, 1157, 1083, 1050 cm⁻¹; HRMS (ESI) m/z [M+H]⁺ calcd for C₅₀H₆₈NO₅: 762.5092, found: 762.5096.

References

- (*a*) A. F. G. Goldberg, N. R. O'Connor, R. A. Craig II and B. M. Stoltz, *Org. Lett.* 2012, 14, 5314; (*b*) M. Mishra, P. B. De, S. Pradhan and T. Punniyamurthy, *J. Org. Chem.*, 2019, 84, 10901; (c) A. Jacob, P. Barkawitz, P. G. Jones, D. B. Werz, *Org. Lett.* 2022, 24, 3028.
- 2. F. H. Darras, B. Kling, J. Heilmann and M. Decker, ACS Med. Chem. Lett., 2012, 3, 914.
- 3. P. Karjee, M. Mishra, B. Debnath and T. Punniyamurthy, Chem. Commun., 2022, 58, 8670.
- W. Xi, Y. Zhang, H. Wu, J. Li, Y. Wang, J. Yang, Z. Wang and W. Yao, Org. Lett., 2023, 25, 4908.

NMR (¹H and ¹³C) Spectra

3.00 → 3.00 3.00 1.00⊣ 3.00-6.0 5.5 5.0 f1 (ppm) 11.0 10.5 10.0 7.0 6.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.0 9.5 9.0 8.5 8.0 7.5 4.5 0.5

S43

S71

S72

200

