An extremely electron poor $\mathrm{Au}(\mathrm{III})$ trication bearing acetonitrile ligands

Lachlan Barwise, Lachlan J. Moon, Bibidh Dhakal, Conor F. Hogan, Keith F. White, Jason L. Dutton*
Department of Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia j.dutton@latrobe.edu.au

Contents
General Procedures 1
Experimental 1
X-Ray crystallographic data 3
NMR Spectra 5
Computational Details: 10
References 14

General Procedures

All reactions were performed under N_{2} atmosphere in either a glovebox or using Schlenk technique. Glovebox solvents were dried using an Innovative Technologies Solvent Purification System. The dried solvents were stored under N_{2} atmosphere over 3 Å molecular sieves in the glovebox. Deuterated solvents for NMR spectroscopy were purchased from Sigma Aldrich and dried by stirring for three days over CaH_{2}, distilled prior to use, and stored in the glovebox over $3 \AA$ molecular sieves. Synthesis of THT-AuCl from gold powder (obtained from Precious Metals Online) was performed by literature procedure. ${ }^{1}$

All other reagents were purchased from Sigma Aldrich and used as received. Glassware was dried in an oven at $120^{\circ} \mathrm{C}$ overnight and transferred to the glovebox port or Schlenk line where it was subjected to three vacuum cycles over 30 minutes prior to use. NMR spectra for all experiments were recorded using Bruker Ultrashield Plus 500 MHz and Ascend 400 MHz spectrometers.

Experimental

Synthesis of $\left[\mathrm{Au}(\mathrm{Melm})_{2}\right] \mathrm{BF}_{4}$
To a solution of THTAuCl ($200 \mathrm{mg}, 0.63 \mathrm{mmol}$) in MeCN, 2 equivalents of Melm (103 mg , 1.26 mmol) was added followed by 0.95 eq of $\mathrm{AgBF}_{4}(115 \mathrm{mg}, 0.59 \mathrm{mmol})$. The resulting suspension was pelleted by centrifugation and washed with MeCN twice. The supernatant was reduced under vacuum and $\mathrm{Et}_{2} \mathrm{O}$ was added dropwise precipitating a white solid identified as $[\mathrm{Au}(\mathrm{Melm})]_{2} \mathrm{BF}_{4}$ (Yield 71%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta(\mathrm{ppm}): 7.96(\mathrm{~s}, 1 \mathrm{H})$, $7.30(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}) 3.77(\mathrm{~s}, 3 \mathrm{H}),{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta(\mathrm{ppm}):-151.8\left(\mathrm{~s}, \mathrm{BF}_{4}\right)$

Synthesis of $\left[\mathrm{Au}(\mathrm{MelM})_{2} \mathrm{~F}_{2}\right] \mathrm{BF}_{4}$
To a solution of $\left[\mathrm{Au}(\mathrm{MeIM})_{2}\right] \mathrm{BF}_{4}(160 \mathrm{mg}, 0.36 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1$ equivalent of $\mathrm{XeF}_{2}(60 \mathrm{mg}$, 0.36 mmol) was added. The solution turned yellow and a yellow precipitate slowly formed. The solid was pelleted by centrifugation and washed with cold CHCl_{3} three times before being dried under vacuum. (Yield 69\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta(\mathrm{ppm}): 8.17(\mathrm{~s}, 1 \mathrm{H})$, $7.36(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}) 3.86(\mathrm{~s}, 3 \mathrm{H}),{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta(\mathrm{ppm}):-151.5\left(\mathrm{~s}, \mathrm{BF}_{4}\right)$, 284.1 (s, F-Au-F)

Synthesis of $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]\left[\mathrm{BF}_{4}\right]_{3}$
A solution of $\left[\mathrm{Au}(\mathrm{Melm})_{2} \mathrm{~F}_{2}\right] \mathrm{BF}_{4}(14 \mathrm{mg}, 0.028 \mathrm{mmol})$ suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was frozen in a cold well cooled by $\mathrm{N}_{2}(\mathrm{I})$ along with a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of 2 equivalents of BF_{3} etherate (4 mg , $0.056 \mathrm{mmol})$. The solution of BF_{3} was added drop wise to the $\left[\mathrm{Au}(\mathrm{MeIM})_{2} \mathrm{~F}_{2}\right] \mathrm{BF}_{4}$ suspension as they both thawed. Upon thawing MeCN was added (3 drops) dropwise with intermittent shaking. The yellow solid turned orange. The resulting solid was washed once with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ before 2 additional washes with n-hexane. The n-hexane washes were carefully decanted, and the orange/yellow powder was dried under vacuum for a few seconds leaving a yellow powder (Yield 67%). The compound should be stored as a solid at $-30^{\circ} \mathrm{C}$ to avoid decomposition. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta(\mathrm{ppm}): 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$, ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta(\mathrm{ppm}):-150.8\left(\mathrm{~s}, \mathrm{BF}_{4}\right),{ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta(\mathrm{ppm}):$ 140.2 (s), 127.5 (s), 125.0 (s), 37.1 (s). A single crystal suitable for x-ray diffraction was grown by vapour diffusion at $-40^{\circ} \mathrm{C}$ in a $1: 1 \mathrm{CD}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}$ solution with n-hexane as the antisolvent.

In-situ generation of $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]\left[\mathrm{BF}_{4}\right]_{3}$
A solution of $\left[\mathrm{Au}(\mathrm{MeIM})_{2} \mathrm{~F}_{2}\right] \mathrm{BF}_{4}(14 \mathrm{mg}, 0.028 \mathrm{mmol})$ dissolved in $\mathrm{CD}_{3} \mathrm{CN}$ was frozen in a cold well, cooled by $\mathrm{N}_{2}(\mathrm{I})$ along with a $\mathrm{CD}_{3} \mathrm{CN}$ solution of 2 equivalents of BF_{3} etherate (4 mg ,
$0.056 \mathrm{mmol})$. The solution of BF_{3} was added drop wise to the $\left[\mathrm{Au}(\mathrm{MeIM})_{2} \mathrm{~F}_{2}\right] \mathrm{BF}_{4}$ solution as they both thawed. ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR match as reported earlier.

Generation of $\left[\mathrm{Au}(\mathrm{MeCN})(\mathrm{MelM})_{2}(\mathrm{Mes})\right]\left[\mathrm{BF}_{4}\right]_{2}$
To a solution of $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]\left[\mathrm{BF}_{4}\right]_{3}(30 \mathrm{mg}, 0.062 \mathrm{mmol})$ in $\mathrm{CD}_{3} \mathrm{CN}$, mesitylene (15 $\mathrm{mg}, 0.123 \mathrm{mmol}$) was added. The solution turned from a rich orange to yellow over 4 days. The product was identified by NMR and single crystal x-ray diffraction. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta(\mathrm{ppm}): 7.95(\mathrm{~s}, 2 \mathrm{H}), 7.30(\mathrm{t}, 2 \mathrm{H}), 6.95(\mathrm{t}, 2 \mathrm{H}), 6.79(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 2.45(\mathrm{~s}, 6 \mathrm{H})$, 2.28 (s,3H), 13C\{1H\} NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta(\mathrm{ppm}): 141.0$ (s), 136.3 (s), 131.7 (s), 128.0 (s), 124.4 (q), 36.5 (s), 23.5 (s), 21.3 (s). Yield determined by relative normalisation of the integration from the Melm CH_{3} moiety observed in ${ }^{1} \mathrm{H}$ NMR to be 62.7%. A single crystal of x-ray diffraction quality was grown in a $1: 1 \mathrm{CD}_{3} \mathrm{CN} / \mathrm{CHCl}_{3}$ solution with n -hexane as the antisolvent.

Reaction of $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]\left[\mathrm{BF}_{4}\right]_{3}$ with cyclohexene
To a solution of $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]\left[\mathrm{BF}_{4}\right]_{3}(13 \mathrm{mg}, 0.027 \mathrm{mmol})$ in $\mathrm{CD}_{3} \mathrm{CN}$, cyclohexene (4.5 $\mathrm{mg}, 0.054 \mathrm{mmol}$) was added, the reaction turned grey and benzene was identified as the major product of the reaction by ${ }^{1} \mathrm{H}$ NMR at 7.36 ppm in $\mathrm{CD}_{3} \mathrm{CN}$.

Reaction of $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]\left[\mathrm{BF}_{4}\right]_{3}$ with Ferrocene

To a solution of $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MelM})_{2}\right]\left[\mathrm{BF}_{4}\right]_{3}(20 \mathrm{mg}, 0.041 \mathrm{mmol})$ generated in-situ in 0.5 mL $\mathrm{CD}_{3} \mathrm{CN}$, 2 equivalent of ferrocene ($15.25 \mathrm{mg}, 0.082 \mathrm{~mol}$) was added. The reaction mixture instantly turned blue indicative of ferrocenium and $\left[\mathrm{Au}(\mathrm{MeIM})_{2}\right] \mathrm{BF}_{4}$ was identified as the major product by ${ }^{1} \mathrm{H}$ NMR, matching spectral data reported for the synthesis of $\left[\mathrm{Au}(\mathrm{MeIM})_{2}\right] \mathrm{BF}_{4}$ above.

Reaction of $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]\left[\mathrm{BF}_{4}\right] 3$ with $[$ Ruthenium(II)trisbipyridine $]\left[\mathrm{PF}_{6}\right]_{2}$
Using $20 \mathrm{mg}(0.041 \mathrm{mmol})$ of $\left[\mathrm{Au}(\mathrm{MeIM})_{2} \mathrm{~F}_{2}\right] \mathrm{BF}_{4}$, a sample of $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right] 3 \mathrm{BF}_{4}$ was generated in-situ in $0.5 \mathrm{mLCD} 3 \mathrm{CN}, 1$ eq of $\left[\mathrm{Ru}(\text { bipy })_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}(24 \mathrm{mg}, 0.041 \mathrm{~mol})$ was added. The reaction mixture instantly turned green indicative of ruthenium(III)trisbipyridine and $\left[\mathrm{Au}(\mathrm{MeIm})_{2}\right] \mathrm{BF}_{4}$ was identified as the major product by ${ }^{1} \mathrm{H}$ NMR.

X-Ray crystallographic data

Single crystals were selected under n-paratone oil, mounted on a nylon loop, and held under a stream of N_{2} at 158 K for $\left[\mathrm{Au}(\mathrm{MeCN})_{2}\left(\mathrm{MeIM}_{2}\right)\right]\left[\mathrm{BF}_{4}\right]_{3}$ and 150 K for $\left[\mathrm{Au}(\mathrm{MeIM})_{2}(\mathrm{MeCN})(\mathrm{Mes})\right]\left[\mathrm{BF}_{4}\right]_{2}$ on a Rigaku SuperNova CCD diffractometer using Cu Ka radiation. Crystallographic analyses were conducted within OLEX2. The structures were solved with SHELXT (intrinsic phasing) and were refined using a full-matrix least-squares procedure based on F^{2} within the program SHELXL. For both crystals, all non-hydrogen atoms were refined with anisotropic displacement parameters. All hydrogen atoms were placed at
geometrically estimated positions. For $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]\left[\mathrm{BF}_{4}\right]_{3}$ minor disorder within one of the MelM ligands was apparent and the atoms were modelled over two sites with reciprocal occupancies. Crystallographic data and structural refinement parameters are presented in Tables S1 and S2 below. Full details of crystal structure refinements in CIF.

Figure S1: Thermal ellipsoid plot of $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]\left[B F_{4}\right]_{3}$, thermal ellipsoids are drawn at the 50% probability level.

Table S1: Crystallographic information of $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]\left[B F_{4}\right]_{3}$

Compound	$\left[\mathrm{Au}(\mathrm{MeCN})_{2}\left(\mathrm{MeIM}_{\mathbf{2}}\right]\left[\mathrm{BF}_{4}\right]_{3}\right.$
Empirical Formula	$\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{AuB} \mathrm{B}_{3} \mathrm{~F}_{12} \mathrm{~N}_{8}$
FW (g/mol)	703.70
Crystal System	Monoclinic
Space Group	$\mathrm{C} 2 / \mathrm{C}$
$\alpha(\AA)$	$15.3073(3)$
$b(\AA)$	$15.7110(2)$
$c(\AA)$	$22.0225(4)$
$\alpha(\mathrm{Aeg})$	90
$B(\mathrm{deg})$	$99.885(2)$
$V(\mathrm{deg})$	90
$V\left(\AA^{3}\right)$	$5217.63(16)$
Z	8

R1[l>2бI]	0.0337
wR2 $\left(\mathrm{F}^{2}\right)$	0.0856
GOF (S)	1.067

Figure S2: Thermal ellipsoid plot of $\left[\mathrm{Au}(\mathrm{MeIM})_{2}(\mathrm{MeCN})(\mathrm{Mes})\right]\left[B F_{4}\right]_{2}$, thermal ellipsoids are drawn at the 50% probability level.

Table S2: Crystallographic information of $\left[\mathrm{Au}(\mathrm{MeIM})_{2}(\mathrm{MeCN})\left(\mathrm{Mes}^{2}\right)\right]\left[B F_{4}\right]_{2}$

Compound	$\left[\mathrm{Au}(\mathrm{MeIM})_{2}\left(\mathbf{M e C N}^{2}(\mathrm{Mes})\right]\left[\mathrm{BF}_{4}\right]_{2}\right.$
Empirical Formula	$\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{AuB}_{2} \mathrm{~F}_{8} \mathrm{~N}_{6}$
FW (g/mol)	695.03
Crystal System	Monoclinic
Space Group	$\mathrm{P} 2(1)$
$\alpha(\AA)$	$9.4083(1)$
$b(\AA ̊)$	$19.4220(2)$
$c(\AA)$	$15.7483(2)$
$\alpha(\mathrm{Aeg})$	90
$B(\mathrm{deg})$	$103.473(1)$
$\gamma(\mathrm{deg})$	90
$V\left(\AA^{3}\right)$	$2798.46(6)$

Z	4
R1[I>2 $\sigma \mid]$	0.0374
wR2 $\left(\mathrm{F}^{2}\right)$	0.0988
GOF (S)	1.042

NMR Spectra

Figure S3: ${ }^{1} \mathrm{H} N \mathrm{NR}$ of $\left[\mathrm{Au}(\mathrm{MeIM})_{2}\right] B F_{4}$ starting material

Figure S4: ${ }^{19} \mathrm{~F}$ NMR of $\left[\mathrm{Au}(\mathrm{MeIM})_{2}\right] B F_{4}$ starting material

Figure $\mathrm{S} 5:{ }^{1} \mathrm{H} \mathrm{NMR}$ of $\left[\mathrm{Au}(\mathrm{MeIM}){ }_{2} \mathrm{~F}_{2}\right] B F_{4}$

Figure S6: ${ }^{19} \mathrm{~F} N M R$ of $\left[\mathrm{Au}(\mathrm{MeIM}){ }_{2} \mathrm{~F}_{2}\right] B F_{4}$

Figure S7: ${ }^{1} \mathrm{H} \mathrm{NMR}$ of $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]\left[\mathrm{BF}_{4}\right]_{3}$

Figure S8: ${ }^{19} \mathrm{~F}$ NMR of $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]\left[B F_{4}\right]_{3}$

Figure S9: ${ }^{1} \mathrm{H}$ NMR of in-situ generation of $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]\left[B F_{4}\right]_{3}$, multiplets at 3.85 and 1.25 ppm are remaining diethyl ether from $B F_{3}$-etherate

Figure S10: ${ }^{13} \mathrm{C} \mathrm{NMR}$ of $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]\left[\mathrm{BF}_{4}\right]_{3}$

Figure S11: ${ }^{1} \mathrm{H} \mathrm{NMR}$ of reaction between $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]\left[\mathrm{BF}_{4}\right]_{3}$ and mesitylene, integration of peaks at 6.792 ppm is high due to overlapping of unreacted mesitylene, peak at 2.237 ppm identified as unreacted mesitylene.

Figure S12: ${ }^{13} \mathrm{C} N M R$ of reaction between $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]\left[B F_{4}\right]_{3}$ and mesitylene, peaks at 127.74, 138.70, and 20.28 ppm were identified as unreacted mesitylene, while peaks at 67.41 and 15.23 ppm were identified as diethyl ether.

Figure S13: Close-up of methylimidazole methyl resonances with integration normalised to 1 , showing NMR conversion of 63\%.

Figure S14: ${ }^{1} \mathrm{H} N M$ of reaction between $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]\left[B F_{4}\right]_{3}$ and cyclohexene

Figure S16: ${ }^{1} \mathrm{H} \mathrm{NMR}$ of reaction between $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]\left[\mathrm{BF}_{4}\right]_{3}$ and $\left[\mathrm{Ru}(\mathrm{bipy})_{3}\right]\left[\mathrm{PF} F_{6}\right]_{2}$

Figure S17: Photo of reaction between $\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]\left[B F_{4}\right]_{3}$ and $\left[\mathrm{Ru}(\mathrm{bipy})_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$, top containing $\left[\mathrm{Ru}(\mathrm{bipy})_{3}\right]\left[\mathrm{PF}_{6}\right]_{2}$ only, bottom containing reaction mixture.

Computational Details:

All geometry optimisation, vibrational frequency were performed using ω PBE/def2-TZVP within Gaussian 16 using the WebMO platform. ${ }^{5-7}$ Molecular orbital calculations were performed on the optimized geometries using B3LYP/def2-TZVP. ${ }^{8,9}$ Cartesian coordinates are in \AA and energies are given in Hartree.

Cartesian Coordinates for optimised compound geometries:

$\left[\mathrm{Au}(\mathrm{MeIM})_{4}\right]^{3+}$
Electronic Energy: -1196.7017643 Hartree
Au 0.000000000 .000000000 .00000000
N 1.39016500-1.42645400-0.20105300

C 1.35835300-2.44716100-1.12621900
C 2.46405500-3.19883000-0.94358400

H 2.81047000-4.07917000-1.46261300

N 3.16236700-2.63969100 0.09331300

C 2.49970900-1.57772000 0.51815800

H 2.82471400-0.94559500 1.33022200

C 4.42472900-3.14527700 0.63250500

H 5.17987300-3.13869500-0.15080300

H 4.74509300-2.50749200 1.45229100

H 4.27984800-4.15960000 0.99856300
H $0.56472500-2.56479100-1.84536300$

N -1.39262100-1.42407100 0.20093800

C - $1.36264600-2.444890001 .12603500$

C -2.46943300-3.19486400 0.94299800

H -2.81732500-4.07473300 1.46184000

N -3.16669400-2.63445100-0.09391700

C $-2.50225500-1.57349700-0.51852300$

H -2.82615800 -0.94070800-1.33050700

C - $4.42969400-3.13804300-0.63346200$

H -4.28642700-4.15275800-0.99907200

H -5.18519100-3.12983100 0.14950000
H -4.74857100-2.49997600-1.45359900

H -0.56940600-2.56379400 1.84539800

N $1.414090001 .40627000-0.19319600$

C 2.32807100 1.49072300-1.22149300

H 2.35194100 0.79524500-2.04468200

C $3.113318002 .56253500-0.98317600$

N 2.681483003 .123864000 .18929900

C 1.660929002 .414372000 .64058400

H 1.126039002 .632261001 .55279300

C 3.263767004 .304891000 .82713100

H 4.308435004 .110612001 .06116600

H 3.188841005 .154237000 .15121400

H 2.721955004 .520408001 .74451500
H 3.93672800 2.97149300-1.54830200

N -1.41166000 1.408696000 .19323900

C - 1.65654600 2.41714500 -0.64071300

N -2.67608200 $3.12835100-0.18983600$

C $-3.256323004 .31019100-0.82800500$

H -2.71391800 4.52469800-1.74527200

H -4.30124700 4.11754800-1.06224200

H -3.18018200 5.15954800-0.15222800

C -3.10931600 2.567760000 .98247800

C -2.32594700 1.494653001 .22113000

H -2.35125200 0.799279002 .04436300
H -3.93223200 2.978122001 .54730800

H -1.12086600 2.63419600-1.55265600
$\left[\mathrm{Au}(\mathrm{MeCN})_{2}(\mathrm{MeIM})_{2}\right]^{3+}$

Electronic Energy: -931.121645579 Hartree
Au 0.000000000 .000000000 .00000000

N 0.000082001 .961915000 .00009400

C -0.000156003 .103337000 .00027900

C -0.00160400 $4.54028500-0.00000900$

H 1.022432004 .903678000 .11002600

H -0.42078500 $4.89943700-0.94290900$

H -0.60974300 4.899868000 .83336100
N 1.98907800-0.00012200 0.23295400

C 2.64214100-0.00021100 1.44726400

C $3.96674700-0.000190001 .18875000$

H 4.81203100-0.00025800 1.86014200
N 4.11392900-0.00006300-0.17294600

C 2.91455200-0.00001200-0.72611300
H 2.73547200 0.00001800-1.79127500

C $5.39417800-0.00006600-0.88524300$
H 5.20820700 0.00027300-1.95622700

H $5.956229000 .89079500-0.61262600$

H $5.95595500-0.89125500-0.61313200$
H 2.13099900-0.00026900 2.39693300

N -1.98897200 $0.00009800-0.23371500$
C -2.64106100 0.00006400-1.44853300

C -3.96587900 0.00007700-1.19112900
H -4.81062800 0.00006100-1.86319000

N -4.11416700 0.000068000 .17040500

C -2.91524000 0.000089000 .72455500

H -2.73704500 0.000141001 .78985800

C -5.395038000 .000149000 .88157100

H -5.95694400-0.89060600 0.60830700
H -5.21001500-0.00039600 1.95271800

H -5.95641100 0.891486000 .60910100

H -2.12913900 0.00003600-2.39777700
N -0.00020800-1.96191400 0.00017300
C - $0.00056100-3.103334000 .00030200$
C $-0.00209900-4.54027900-0.00011000$

H 1.02071000-4.90374800 0.12059900
H -0.61896800-4.89991300 0.82679000
H -0.41141000-4.89930100-0.94739300

References

1 R. Corbo, G. F. Ryan, M. A. Haghighatbin, C. F. Hogan, D. J. D. Wilson, M. D. Hulett, P. J. Barnard, J. L. Dutton, Inorg. Chem. 2016, 55 (6), 2830-2839

2 G. Sheldrick, Acta Crystallogr., Sect. A: Found. Adv., 2015, 71, 3-8
3 G. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 3-8
4 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341
5 J. Heyd, G. E. Scuseria, J Phys. Chem. 2003, 118, 8207.
6 J. Heyd, G. E. Scuseria, J Phys. Chem. 2004, 120, 7274.
7 F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
8 A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
9 F. Weigend, Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.

