Supporting Information

Easy Conversion-Perovskite Fluorides KCo_{1-x}Fe_xF₃ for Efficient Oxygen Evolution Reaction

Yilei Du^{‡a,b}, Genyan Hao^{‡c}, Tao Zhao^{a,b}, Dandan Li^d, Guang Liu^{a,b}, Dazhong

Zhong^{a,b,*}, Jinping Li^{a,b}, Qiang Zhao^{a,b,*}

^a College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P.R. China.

^b Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, P.R. China.

^c Shanxi College of Technology, Shuozhou 036000, Shanxi, P.R. China.

^d Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, Shandong, P.R. China.

‡ These two authors contributed equally to this work.

*Corresponding author

zhongdazhong@tyut.edu.cn(D.Z. Zhong);

zhaoqiang@tyut.edu.cn(Q. Zhao).

Experimental section

Materials

Electrocatalyst Synthesis: $KF \cdot 2H_2O$ (AR 99%), $CoCl_2 \cdot 6H_2O$ (AR 98.00%), $Co(NO_3)_2 \cdot 6H_2O$ (AR 99%), $FeSO_4 \cdot 7H_2O$ (AR 99.0%), KOH (AR 85%), ethylene glycol, ethanol, hydrochloric acid (HCl), NF was purchased from The Source of Power Battery Material Co., Ltd. (Shanxi, China). Before synthesis, NF (4 cm × 3 cm) was sonicated with 2 M HCl, ultrapure water, and ethanol under ultrasound for several minutes, respectively.

Preparation of the catalysts

perovskite fluorides synthesis

By a one-step solvothermal process, perovskite fluorides, KCoF₃, KCo_{0.9}Fe_{0.1}F₃, KCo_{0.8}Fe_{0.2}F₃, KCo_{0.6}Fe_{0.4}F₃, KCo_{0.5}Fe_{0.5}F₃, KCo_{0.4}Fe_{0.6}F₃ and KFeF₃ were synthesized on NF. As an illustration, consider the preparation of KCo_{0.5}Fe_{0.5}F₃@NF as an example. Firstly, 6 mmol CoCl₂·6H₂O, 6 mmol FeSO₄·7H₂O, 36 mmol KF·2H₂O, and 30 mL ethylene glycol were mixed and stirred vigorously until completely dissolved. Subsequently, the above uniform solution and the blank NF was transferred into a 50 mL Teflon vessel, followed by heating to 180 °C for 20 hours to generate the KCo_{0.5}Fe_{0.5}F₃@NF electrocatalyst. After the above operations, NF was washed with ethylene glycol and ultrapure water, and finally dried at 100 °C over the night to produce the KCo_{0.5}Fe_{0.5}F₃@NF. The other samples that the total molar amount of metal ions remains unchanged, the dosage of CoCl₂·6H₂O and FeSO₄·7H₂O were adjusted according to the ratio of Co:Fe, and other operations were the same as above.

CoFeO_x@NF synthesis

Co-Fe LDH@NF was prepared by electrodeposition with NF as the substrate in a mixed solution of Co(NO₃)₂·6H₂O (0.5 mM), Fe(NO₃)₃·9H₂O (0.5 mM) at -1 V (vs. Ag/AgCl) electrodeposition for 1800 s at room temperature (electrode area: 2 cm²), then dried at 60 °C in an oven all night long. The prepared Co-Fe LDH@NF was transferred to a tube furnace and held in the air at a heating rate of 5 °C/min to 500 °C for 2 hours to obtain the CoFeO_x@NF.

Characterization

The phase analysis of the catalysts was analyzed by scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS) (Hitachi, SU8010, Tokyo, Japan), and a transmission electron microscope (TEM) (Japan). X-ray diffraction (XRD) was acquired on a D8 Bruker with Cu-Ka radiation (k = 1.5418 Å). X-ray photoelectron spectroscopy (XPS) was performed with an ESCALAB 220i-XL spectrometer (VG Scientific, UK) with Al-K α radiation (h = 1486.6 eV, 150 W). Inductively coupled plasma optical emission spectrometer (ICP-OES) measurements were performed using an avioTM 200 ICP-OES (TJA, Franklin, USA).

Electrochemical measurements

A Princeton electrochemical workstation (PARSTATMC, Princeton, USA) was used to control a standard three-electrode system in order to measure the electrochemical performance. Electrocatalysts based on NF, Pt rod and Hg/HgO were used as the working electrode, counter electrode and reference electrode, respectively., Linear sweep voltammetry (LSV) was collected at a sweep speed of 2 mV s⁻¹ from 1 V (vs. Hg/HgO) to 0 V in 1.0 M KOH. The Electrochemical Impedance Spectroscopy (EIS) curve was performed at 0.6 V (vs. Hg/HgO) in the frequency range of 10⁵ Hz to 0.05 Hz in 1.0 M KOH. Double-layer capacitance (C_{dl}) was used to define the electrochemically active surface area (ECSA), and Tafel slope was found by fitting an LSV curve. Using the formula $E_{RHE} = E_{Hg/HgO} + 0.098 + 0.059*pH - iR$, all electrochemical data have been calibrated and translated to the reversible hydrogen electrode (RHE). The formula for calculating overpotential (η) is $\eta = E_{RHE} - 1.23$ V. The Tafel slope was obtained according to the formula: $E_{RHE} = a + b*log j$. Faradaic efficiency calculation formula: FE = [4(V/V_{25°C}) *N_A * 1.6 * 10⁻¹⁹]/Q.

In-situ Raman spectroscopy test

This test was conducted in a custom-built electrochemical cell. In order to minimize the effect of bubbles generated during the OER process on spectral collection, the electrolyte was replaced with 0.1 M KOH. Other than this, the

conditions were consistent with the electrochemical performance tests. In the potential range of 1.05 to 1.65 V (vs. RHE), a constant voltage was applied at 0.1 V intervals for 3 min, and then in-situ Raman spectra of the laser intensity of 532 nm were collected.

Fig. S1 TEM image of $KCo_{0.5}Fe_{0.5}F_3@NF$.

Fig. S2. XRD patterns of $KCoF_3@NF$, $KCo_{0.8}Fe_{0.2}F_3@NF$, $KCo_{0.6}Fe_{0.4}F_3@NF$, $KCo_{0.4}Fe_{0.6}F_3@NF$ and $KFeF_3@NF$.

Fig. S3. SEM image of Pure NF.

Fig. S4. SEM image of $KCo_{0.5}Fe_{0.5}F_3@NF$.

Fig. S5. SEM image of $CoFeO_x@NF$.

Fig. S6. XPS spectra of (a) Full XPS pattern, (b) O 1s of $KCoF_3@NF$ and $KCo_{0.5}Fe_{0.5}F_3@NF$.

Fig. S7. The polarization curves for $KCoF_3@NF$, $KCo_{0.8}Fe_{0.2}F_3@NF$, $KCo_{0.6}Fe_{0.4}F_3@NF$, $KCo_{0.5}Fe_{0.5}F_3@NF$, $KCo_{0.4}Fe_{0.6}F_3@NF$ and $KFeF_3@NF$.

Fig. S8. CV curves at various scan rates in the potential range of 0.97 - 1.07 V vs RHE for (a) KCoF₃@NF, (b) KCo_{0.8}Fe_{0.2}F₃@NF, (c) KCo_{0.6}Fe_{0.4}F₃@NF, (d) KCo_{0.5}Fe_{0.5}F₃@NF, (e) KCo_{0.4}Fe_{0.6}F₃@NF and (f) KFeF₃@NF.

Fig. S9 LSV curve based on ECSA normalization.

Fig. S10 Drainage device diagram.

Fig. S11. XPS spectra of (a) Co 2p, (b) Fe 2p (c) O 1s of $KCo_{0.5}Fe_{0.5}O_3$ @NF electrocatalyst after OER.

Fig. S12. XPS spectra of (a) Co 2p, (b) Fe 2p (c) O 1s of CoFeO_x@NF electrocatalyst after OER.

Fig. S13. SEM image of $KCo_{0.5}Fe_{0.5}F_3$ @NF electrocatalyst after OER.

Fig. S14. XRD patterns of $KCo_{0.5}Fe_{0.5}F_3$ @NF electrocatalyst after OER.

Fig. S15 Custom-built electrochemical cell for in-situ Raman spectra collection.

Fig. S16. Ex-situ Raman spectra of (a) $KCoF_3@NF$ and (b) $KCo_{0.5}Fe_{0.5}F_3@NF$ electrocatalysts before and after OER.

samples	Co (Atomic ratio)	Fe (Atomic ratio)
KCo _{0.8} Fe _{0.2} F ₃ @NF	79.36	21.64
KCo _{0.6} Fe _{0.4} F ₃ @NF	62.17	37.83
KCo _{0.5} Fe _{0.5} F ₃ @NF	52.84	47.16
KCo _{0.4} Fe _{0.6} F ₃ @NF	41.35	58.65

Table S1. Atomic concentration of Co:Fe in perovskite fluorides determined via ICP-OES.

Table S2. Atomic concentration of KCo_{0.5}Fe_{0.5}F₃@NF obtained by XPS.

	Atomic (%)
F	44.54
Co	10.2
Fe	9.38
Ο	16.7

Table S3. Atomic concentration of KCo_{0.5}Fe_{0.5}F₃@NF-After OER obtained by XPS.

	Atomic (%)
F	10.99
Co	4.42
Fe	3.61
Ο	41.87

Catalysts	electrolyte	Overpotential [mV]@	Ref.
		Current density [mA cm ⁻²]	
KCo _{0.5} Fe _{0.5} F ₃ @NF		118@10	This work
	1.0 M KOII	150@20	THIS WOLK
$La_{0.7}Sr_{0.3}CoO_{3\text{-}\delta}$	1.0 M KOH	326@10	[1]
$Sr_{0.9}Fe_{0.6}Co_{0.2}Ni_{0.2}O_{3\text{-}\delta}$	1.0 M KOH	340@10	[2]
$La_{1.8}CoMnO_{6-\delta}$	1.0 M KOH	350@10	[3]
$LaCo_{0.8}V_{0.2}O_3$	1.0 M KOH	306@10	[4]
$LaCo_{0.75}Fe_{0.25}O_3$	1.0 M KOH	310@10	[5]
$Sr_{0.95}Ce_{0.05}Fe_{0.9}Ni_{0.1}O_{3-\delta}$	1.0 M KOH	340@10	[6]
$La_{0.6}Sr_{0.4}Co_{0.8}Fe_{0.2}O_{3}$	1.0 M KOH	353@10	[7]
$Pr_{0.5}Ba_{0.5}Fe_{0.975}Ni_{0.025}O_{3\text{-}\delta}$	0.1 M KOH	440@10	[8]
$La_{0.6}Sr_{0.4}Co_{0.8}Ni_{0.2}O_{3\text{-}\delta}$	1.0 M KOH	320@10	[9]
$SrCo_{0.95}Si_{0.05}O_{3-\delta}$	1.0 M KOH	410@10	[10]
$PrBa_{0.5}Sr_{0.5}Co_{1.5}Fe_{0.5}O_{4.7+\delta}Cl_{0.3}$	1.0 M KOH	330@10	[11]
$La_{0.8}Sr_{1.2}Co_{0.2}Fe_{0.8}O_{4+\delta}$	1.0 M KOH	350@10	[12]
$F\text{-}Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3\text{-}\delta}$	1.0 M KOH	280@10	[13]
$Pr_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-\delta}$	1.0 M KOH	320@10	[14]
$Ba_{0.9}Sr_{0.1}Co_{0.8}Fe_{0.2}O_{3-\delta}$	1.0 M KOH	300@10	[15]

Table S4. Comparison of the overpotentials for $KCo_{0.5}Fe_{0.5}F_3$ @NF and the previously reported OER catalysts.

Reference :

[1] Y. Lu, A. Ma, Y. Yu, R. Tan, C. Liu and P. Zhang. ACS Sustain. Chem. Eng., 2019, 7, 2906-2910.

[2] B. Dongyang, W. Yang, Q. Ye, Z. Ma, S. Lai and F. Dong. J. Alloys Compd., 2023, 958, 170368.

- [3] S.-F. Li, J. Zheng and D. Yan. Inorg Chem., 2023, 62, 11009-11015.
- [4] Y. Sun, Z. Zhao, S. Wu, W. Li, B. Wu and G. Liu. ChemSusChem., 2020, 13, 2671-6.
- [5] B. Bao, Y. Liu, M. Sun, B. Huan, Y. Hu and P. Da. Small., 2022, 18, 2201131.
- [6] S. She, Y. Zhu, X. Wu, Z. Hu, A. Shelke and W.-F. Pong. Adv. Funct. Mater., 2022, 32, 2111091.
- [7] L. Zhang, H. Zhu, J. Hao, C. Wang, Y. Wen and H. Li. Electrochim. Acta., 2019, 327, 135033.
- [8] L. Gui, Z. Huang, G. Li, Q. Wang, B. He and L. Zhao. Electrochim. Acta., 2019, 293, 240-246.
- [9] Y. Niu, X. Chang, M. Zhang and J. Mu. Ceram. Int., 2024, 5, 137-146.
- [10] Y. Wang, G. Chen, J. Xie and D. Int. J. Hydrogen Energy., 2022, 47, 39108-39119.
- [11] T. Wang, Y. Wang, Y. Zhao and Y. Bu. Energy & Fuels., 2023, 38, 671-681.
- [12] C. Li, Y. Wang, C. Jin, J. Lu, J. Sun and R. Yang. Int. J. Hydrogen Energy. 2020, 45, 22959-22964.
- [13] J. Xiong, H. Zhong, J. Li, X. Zhang, J. Shi and W. Cai. Appl. Catal. B-Environ., 2019, 256, 117817.
- [14] S. Wu, J. Li, J. Hu, Y. Huang, H.-S. Xu, K. Tang. ACS Appl. Energy Mater., 2023, 6, 6289-6298.
- [15] Q. Luo, D. Lin, W. Zhan, W. Zhang, L. Tang, J. Luo. ACS Appl. Energy Mater. 2020, 3, 7149-7158.