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Experimental section

Materials
Electrocatalyst Synthesis: KF-2H,0 (AR 99%), CoCl,-6H,0 (AR 98.00%), Co(NO3), 6H,0
(AR 99%), FeSO4 7H,O (AR 99.0%), KOH (AR 85%), ethylene glycol, ethanol, hydrochloric
acid (HCI), NF was purchased from The Source of Power Battery Material Co., Ltd. (Shanxi,
China). Before synthesis, NF (4 cm x 3 cm) was sonicated with 2 M HCI, ultrapure water, and
ethanol under ultrasound for several minutes, respectively.
Preparation of the catalysts
perovskite fluorides synthesis
By a one-step solvothermal process, perovskite fluorides, KCoF3;, KCogoFey Fs,
KCoggFegoF;, KCoggFepsFs, KCogsFegsF;, KCogsFepsFs and KFeF; were
synthesized on NF. As an illustration, consider the preparation of KCosFe sF3;@NF
as an example. Firstly, 6 mmol CoCl,-6H,O, 6 mmol FeSO, 7H,O, 36 mmol
KF-2H,0, and 30 mL ethylene glycol were mixed and stirred vigorously until
completely dissolved. Subsequently, the above uniform solution and the blank NF was
transferred into a 50 mL Teflon vessel, followed by heating to 180 °C for 20 hours to
generate the KCosFey sF3@NF electrocatalyst. After the above operations, NF was
washed with ethylene glycol and ultrapure water, and finally dried at 100 °C over the
night to produce the KCogsFeysF3@NF. The other samples that the total molar
amount of metal ions remains unchanged, the dosage of CoCl,-6H,O and
FeSO,4-7H,0 were adjusted according to the ratio of Co:Fe, and other operations were
the same as above.
CoFeO@NF synthesis

Co-Fe LDH@NF was prepared by electrodeposition with NF as the substrate in a
mixed solution of Co(NOs3),-6H,0 (0.5 mM), Fe(NO;);-9H,0 (0.5 mM) at -1 V (vs.
Ag/AgCl) electrodeposition for 1800 s at room temperature (electrode area: 2 cm?),
then dried at 60 °C in an oven all night long. The prepared Co-Fe LDH@NF was
transferred to a tube furnace and held in the air at a heating rate of 5 °C/min to 500 °C

for 2 hours to obtain the CoFeO,@NF.



Characterization

The phase analysis of the catalysts was analyzed by scanning -electron
microscope (SEM), energy-dispersive X-ray spectrometry (EDS) (Hitachi, SU8010,
Tokyo, Japan), and a transmission electron microscope (TEM) (Japan). X-ray
diffraction (XRD) was acquired on a D8 Bruker with Cu-Ka radiation (k = 1.5418 A).
X-ray photoelectron spectroscopy (XPS) was performed with an ESCALAB 220i-XL
spectrometer (VG Scientific, UK) with Al-Ka radiation (h = 1486.6 eV, 150 W).
Inductively coupled plasma optical emission spectrometer (ICP-OES) measurements

were performed using an avio™ 200 ICP-OES (TJA, Franklin, USA).

Electrochemical measurements

A Princeton electrochemical workstation (PARSTATMC, Princeton, USA) was
used to control a standard three-electrode system in order to measure the
electrochemical performance. Electrocatalysts based on NF, Pt rod and Hg/HgO were
used as the working electrode, counter electrode and reference electrode, respectively.,
Linear sweep voltammetry (LSV) was collected at a sweep speed of 2 mV s! from 1
V (vs. Hg/HgO) to 0 V in 1.0 M KOH. The Electrochemical Impedance Spectroscopy
(EIS) curve was performed at 0.6 V (vs. Hg/HgO) in the frequency range of 10° Hz to
0.05 Hz in 1.0 M KOH. Double-layer capacitance (Cqy) was used to define the
electrochemically active surface area (ECSA), and Tafel slope was found by fitting an
LSV curve. Using the formula Erpg = Epgneo + 0.098 + 0.059*pH — iR, all
electrochemical data have been calibrated and translated to the reversible hydrogen
electrode (RHE). The formula for calculating overpotential (1) is | = Egpgg - 1.23 V.

The Tafel slope was obtained according to the formula: Egyg = a + b*log j. Faradaic

efficiency calculation formula: FE = [4(V/Vas¢) *Ny * 1.6 * 10-19]/Q.
In-situ Raman spectroscopy test
This test was conducted in a custom-built electrochemical cell. In order to

minimize the effect of bubbles generated during the OER process on spectral

collection, the electrolyte was replaced with 0.1 M KOH. Other than this, the



conditions were consistent with the electrochemical performance tests. In the potential
range of 1.05 to 1.65 V (vs. RHE), a constant voltage was applied at 0.1 V intervals
for 3 min, and then in-situ Raman spectra of the laser intensity of 532 nm were

collected.



Fig. S1 TEM image of KC00_5F60_5F3@NF.
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Fig. S2. XRD patterns of KCoF;@NF, KCoggFeo Fs@NF, KCogg¢FeqsF3@NF,

KCOOV4FCO.6F3@NF and KFCF3@NF



Fig. S3. SEM image of Pure NF.



Fig. S4. SEM image of KCogsFe(sF3;@NF.



Fig. S5. SEM image of CoFeO,@NF.
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Fig. S6. XPS spectra of (a) Full XPS pattern, (b) O 1s of KCoF3;@NF and KCoy sFeq sF3@NF.
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Fig. S7. The polarization curves for KCoF;@NF, KCoggFeg F3@NF, KCogg¢FeqsF3@NF,
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Fig. S8. CV curves at various scan rates in the potential range of 0.97 — 1.07 V vs RHE for (a)

KCoF3@NF, (b) KCosFeg,F3@NF, (c) KCoggsFeosF3@NF, (d) KCogsFeysF3@NF, (e)

KC00.4F6046F3@NF and (f) KFGF3@NF
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Fig. S10 Drainage device diagram.
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Fig. S11. XPS spectra of (a) Co 2p, (b) Fe 2p (c) O 1s of KCogsFeysO;@NF electrocatalyst after

OER.
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Fig. S12. XPS spectra of (a) Co 2p, (b) Fe 2p (c) O 1s of CoFeO,@NF electrocatalyst after OER.



Fig. S13. SEM image of KCo sFe(sF;@NF electrocatalyst after OER.
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Fig. S14. XRD patterns of KCoq sFeq sF3@NF electrocatalyst after OER.



Fig. S15 Custom-built electrochemical cell for in-situ Raman spectra collection.
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Fig. S16. Ex-situ Raman spectra of (a) KCoF;@NF and (b) KCoqsFeysF3@NF electrocatalysts
before and after OER.



Table S1. Atomic concentration of Co:Fe in perovskite fluorides determined via ICP-OES.

samples Co (Atomic ratio) Fe (Atomic ratio)
KCoysFep,F3@NF 79.36 21.64
KCoysFepsF3@NF 62.17 37.83
KCoysFeysF3@NF 52.84 47.16
KCog4Fe sF3@NF 41.35 58.65

Table S2. Atomic concentration of KCog sFeg sF3@NF obtained by XPS.
Atomic (%)

F 44.54
Co 10.2
Fe 9.38
O 16.7

Table S3. Atomic concentration of KCoy sFeg sF;@NF-After OER obtained by XPS.
Atomic (%)

F 10.99
Co 442
Fe 3.61

O 41.87




Table S4. Comparison of the overpotentials for KCo sFeg sF3@NF and the previously reported

OER catalysts.
Catalysts electrolyte Overpotential [mV]@ Ref.
Current density [mA cm2]
KCoysFegsF3@NF 1.0 M KOH H18@10 This work
150@20
Lag7S193C005.5 1.0 M KOH 326@10 [1]
Sro9Fep6C002Nip205.5 1.0 M KOH 340@10 [2]
La; sCoMnOg_; 1.0 M KOH 350@10 [3]
LaCogsV(.0; 1.0 M KOH 306@10 [4]
LaCoyg75Fe 2503 1.0 M KOH 310@10 [5]
Sro.95Ceo.05F€0.9Nip 1055 1.0 M KOH 340@10 [6]
Lag ¢St 4Cog gFeg 203 1.0 M KOH 353@10 [7]
Pro.sBag sFeq.975Nig.02503-5 0.1 M KOH 440@10 [8]
Lag ¢Sr94C00 gNig 2055 1.0 M KOH 320@10 [9]
SrCo0.95510.0503-5 1.0 M KOH 410@10 [10]
PrBay 5Sry5Co; sFep504.7:5Clo 3 1.0 M KOH 330@10 [11]
Lag Sty 2Cog2Feq §0a4s 1.0 M KOH 350@10 [12]
F-Bay 5819 5C0og sFe 2055 1.0 M KOH 280@10 [13]
Pry.5S19.5C00 sFe0205-5 1.0 M KOH 320@10 [14]
Bay ¢Sy 1Cop sFep 2035 1.0 M KOH 300@10 [15]
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