Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information

Table of Contents

Table 1. Determined equation of state for the TMA-I₂ and TMA-ICl complexes.

Table 2. Correlation coefficients of TMA-ICI

Figure 1. Third-order Birch-Murnaghan fits for TMA-I₂ and TMA-ICl

Figure 2. Rietveld refinements for TMA-ICl and TNA-I₂

Table 3. Rietveld refinement statistics for TMA-I₂

 Table 4. Rietveld refinement statistics for TMA-ICI

Experiment procedure

Calculation of partial charges

Table 1. Determined equation of state for the TMA-I2 and TMA-ICI complexes. The compressibilities of each unit-cell axis are also shown.

Parameter	TMA-I ₂	TMA-ICI
V _o (Å)	800.2(10)	1409(3)
<i>B</i> ₀ (GPa)	5.83(15)	5.8(3)
B'	9.4(2)	10.1(4)
X ₁ (TPa ⁻¹) / <i>b</i>	26.9(2)	18.03(3)
X ₂ (TPa ⁻¹) / a	21.1(3)	15.2(2)
X ₃ (TPa ⁻¹) / <i>c</i>	10.7(1)	17.3(3)

Table 2. Correlation coefficients of TMA-ICI, including pressure, I-Cl distance, N-I distance and N-I-Cl angle

		Pressure	I-Cl	N-I	N-I-Cl
Pressure	Pearson Correlation	1	0.854**	-0.796*	-0.893**
	Sig. (2-tailed)		0.007	0.018	0.003
	Ν	8	8	8	8
ICI	Pearson Correlation	0.854**	1	-0.960**	-0.733*
	Sig. (2-tailed)	0.007		0.000	0.038
	Ν	8	8	8	8
NI	Pearson Correlation	-0.796*	-0.960**	1	0.583
	Sig. (2-tailed)	0.018	0.000		0.129
	Ν	8	8	8	8
NICL	Pearson Correlation	-0.893**	-0.733*	0.583	1
	Sig. (2-tailed)	0.003	0.038	0.129	
	Ν	8	8	8	8

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

Figure 1. Third-order Birch-Murnaghan fits to unit cell volume data for TMA-I₂ (top) and TMA-ICI (bottom)

Figure 2. Rietveld refinements of TMA-ICl and TMA-I₂

The raw data are shown by black crosses, the Rietveld fit by the red line, and the residual by the blue line. The vertical tickmarks show the refined peak positions of each phase included in the refinement; pink - TMA sample; light blue – lead (pressure marker); black – alumina (anvil); and brown – zirconia (anvil). All plots are shown with subtracted backgrounds, determined via fitting.

TMA-ICI. Pressure: 0.136 GPa

TMA-ICI. Pressure: 0.575 GPa

TMA-ICI. Pressure: 1.23 GPa

TMA-ICI. Pressure: 1.849 GPa

TMA-ICI. Pressure: 2.515 GPa

TMA-ICI. Pressure: 3.219 GPa

TMA-ICI. Pressure: 4.342 GPa

TMA-ICI. Pressure: 5.742 GPa

TMA-I₂. Pressure: 0.0160 GPa

TMA-I₂. Pressure: 0.751 GPa

TMA-I₂. Pressure: 1.533 GPa

TMA-I₂. Pressure: 2.829 GPa

TMA-I₂. Pressure: 3.924 GPa

TMA-I₂. Pressure: 4.960 GPa

Table 3. Rietveld refinement	statistics for TMA-I $_{\rm 2}$
------------------------------	---------------------------------

Pressure (GPa)	<i>a</i> -axis (Å)	<i>b</i> -axis (Å)	<i>c</i> -axis (Å)	Unit cell volume (Å ³)	χ²	wRp
----------------	--------------------	--------------------	--------------------	------------------------------------	----	-----

0.016(9)	11.296(2)	8.3957(15)	8.4088(17)	797.472(3)	1.3	3.5
0.75(1)	10.9778(17)	8.0780(9)	8.2783(11)	734.109(2)	1.5	3.0
1.53(1)	10.7590(17)	7.8757(9)	8.1976(11)	694.621(2)	1.4	3.2
2.83(1)	10.5269(18)	7.6535(9)	8.1036(11)	652.888(2)	1.3	3.2
3.92(1)	10.3764(16)	7.5241(8)	8.0464(10)	628.207(2)	1.3	3.2
4.96(2)	10.2662(16)	7.4188(8)	8.0017(10)	609.433(2)	1.3	3.4

Table 4. Rietveld refinement statistics for TMA-ICI

Pressure (GPa)	<i>a</i> -axis (Å)	<i>b</i> -axis (Å)	<i>c</i> -axis (Å)	Unit cell volume (Å ³)	χ²	wRp
0	11.6168(4)	11.1573(4)	10.8342(3)	1404.2437(6)	1.2	3.1
0.14(11)	11.560(4)	11.081(3)	10.784(4)	1381.391(6)	1.1	3.2
0.58(11)	11.403(4)	10.893(3)	10.580(4)	1314.172(6)	1.1	3.9
1.23(12)	11.249(3)	10.710(3)	10.388(3)	1251.513(5)	1.1	3.9
1.85(14)	11.125(3)	10.561(3)	10.262(3)	1205.694(5)	1.2	4.1
2.52(14)	11.021(3)	10.461(3)	10.159(3)	1171.238(5)	1.1	4.1
3.22(17)	10.916(3)	10.360(3)	10.073(3)	1139.153(5)	1.1	4.2
4.34(15)	10.799(3)	10.219(3)	9.956(3)	1098.694(5)	1.1	4.3
5.74(14)	10.672(3)	10.095(3)	9.846(3)	1060.747(5)	1.4	3.7

Experiment procedure

The complexes of trimethylamine with diiodide and iodine monochloride were made by condensing perdeuterated trimethylamine (acetone/carbon dioxide bath) and adding a

stoichiometric quantity of either iodine monochloride or iodine solution. The resulting precipitate was extracted via filtration.

High-pressure time-of-flight neutron powder diffraction data were collected using the PEARL diffractometer at the ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory, UK¹ which optimised to collect powder data from a Paris–Edinburgh (P-E) press². In sequential preparations of the press, the TMA-ICI and TMA-I₂ samples were gently ground and placed in the P-E press with a small lead pellet which acted as a pressure calibrant (via Rietveld fitting and using its known equation of state). Hydrostatic conditions were maintained using a 1:1 (v/v) mixture of perdeuterated pentane and methylbutane³. The loaded gasket was then sealed within the P-E press with an applied load of 6 tonnes. In the case of TMA-I₂ diffraction data were collected up to a maximum applied load of 71 tonnes. For TMA-ICI, diffraction patterns were collected up to 60 tonnes. Rietveld refinement was performed using the GSAS suite of programmes⁴. The equation of state and compressibilities were determined using the PASCal programme⁵.

References

- 1. C. L. Bull, N. P. Funnell, M. G. Tucker, S. Hull, D. J. Francis and W. G. Marshall, *High Pressure Res.*, (2016), **36**, 493–511.
- 2. J. M. Besson, R. J. Nelmes, G. Hamel, J. S. Loveday, G. Weill and S. Hull, *Physica B*, (1992), **180**, 907–910
- 3. S. Klotz, J. C. Chervin, P. Munsch and G. L. Marchand, *J. Phys. D: Appl. Phys.*, (2009), **42**, 075413.
- 4. B. H. Toby, J. Appl. Crystallogr., (2001), **34**, 210–213.
- 5. M. J. Cliffe and A. L. Goodwin, J. Appl. Crystallogr., (2012), 45, 1321–1329

Calculation of partial charges

Calculation of partial charges on the N, I, and X (X=Cl/I) atoms, as well as the partial charges were calculated using population analysis in Gaussian03. In all cases, the molecular geometry was held fixed to the refined crystallographic coordinates. A representative input file is shown below – coordinates (obtained from the relevant Crystallographic Information File) are supplied in .xyz format.

%chk=checkpoint.chk # lsda/lanl2dz pop=nbo rsvwn

6tons DFT

01			
Ν	1.87036655	0.02024686	-0.02227997
С	2.33906326	-0.56414506	1.25047288
С	2.39697932	1.40033137	-0.16063485
С	2.35528255	-0.87517619	-1.08995752
Н	2.05839676	0.10673344	2.03048411
Н	1.96065169	-1.47561969	1.42886803
Н	3.46413059	-0.61888759	1.29252002
Н	2.10069556	1.99364253	0.59043835
Н	2.01174196	1.81243111	-1.14892335
Н	3.52690936	1.28514969	-0.16402408
Н	3.36554014	-0.89059030	-1.08062123
Н	2.00292092	-1.87845999	-0.90998786
Н	2.01280766	-0.48883058	-2.03723266
I	-0.49562623	0.00610909	0.00501825
Cl	-3.05153655	-0.00453759	-0.00651834