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Experimental

Chemicals: Iron(III) chloride (FeCls), Cobalt(Il) chloride (CoCl,), nickel(IT) chloride
(NiClp), Zinc(II) chloride (ZnCl,) and manganese(Il) chloride(MnCl,) were purchased
from Sigma-Aldrich. Commercial 20% Pt/C was purchased from Johnson Matthey

Chemicals Ltd. All reagents and chemicals were used without further purification.

Synthesis of ordered PtM/C-VD: For PtFe/C-VD, FeCl; and Pt/C were placed in
porcelain boats and placed next to each other in a tube furnace. The porcelain boat
with FeCl; (500mg) is placed in the front, and the porcelain boat with Pt/C(1g) is
placed in the back. The boats were heated under an Ar atmosphere to 700 °C at a rate
of 2 °C min!, then held there for 2 h for sublimation. Subsequently, the above
intermediates were calcined at 700 °C under a flow of 5% H,/Ar for 12 h and resulted

as PtFe/C-VD. Other PtCo/C-VD, PtNi/C-VD and PtMn/C-VD samples also can be
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synthesized through similar vapor deposition-high temperature reduction route.
Similarly, only adjusting the mass of MCl3(M=Zn, Mn, Fe) to 100 mg and 1 g,
ordered Pt;M/C-VD and PtM3/C-VD can be synthesized, respectively.

Physicochemical characterization: X-ray diffractions (XRD) data were measured by
a Rigaku Ultima IV X-ray powder diffractometer with Cu Ka radiation (A = 1.5418 A)
at a scan rate of 20° min-!. Thermogravimetric analysis (TGA) of the samples was
carried out with a Perkin-Elmer thermal analysis system. Measurements were made
by heating from 20 to 800 °C at a heating rate of 10 °C min-! under air atmosphere.
Transmission electron microscopy (TEM) and scanning transmission electron
microscopy (STEM) were performed with a JEOL 2010F TEM/STEM operated at
300 kV. X-ray photoelectron spectroscopy (XPS) characterization was examined
using a K-Alpha. All inductively coupled plasma (ICP) measurements were carried

out on an IRIS Intrepid instrument (Thermo Fisher, USA).

Electrochemical measurements in a  three-electrode configuration:
Electrochemical measurements were carried out with a DH7000 electrochemical
analyzer (Jiangsu, Donghua Co.). A standard three-electrode system was used,
including a glass carbon electrode or a piece of carbon paper as the working
electrodes, a carbon rod as the auxiliary electrode, and a saturated Ag/AgCl electrode
(SCE) as the reference electrode. The catalyst ink was prepared by ultrasonically
dispersing the mixture of 5 mg of catalyst, 950 mL isopropanol and 50 puL of 5 wt.%
Nafion solution. Then the catalyst ink was dripped on a glassy carbon (0.196 cm?)
with a loading amount of 1 mg cm™. 5 uL of the catalyst ink was spread onto the glass
electrode and dried in air at room temperature. The loading of Pt on a glassy carbon
electrode was about 28 ugp, cm™2 for PtFe/C and 26 ugpcm 2 for Pt/C. Before testing,
a 0.5 M H,SO, electrolyte was passed with N,/H, through the solution for at least 20
min to saturate the electrolyte with No/H,.The CV curves of different catalysts were
obtained in the Nj-saturated 0.5 M H,SO, solution by sweeping the potential from

0.05 to 1.20 V (vs RHE) at the scan rate of 50 mV s™'. The electrochemical active



surface areas (ECSAs) were calculated from H,pq adsorption/desorption peak areas in
CV curves collected. The electrochemical stability of three different catalysts, namely
PtFe/C-VD, D-PtFe/C-VD, and Pt/C, was evaluated using the CV test at a scan rate of
50 mVs! for 5000 cycles. For HER measurement, then the catalyst ink was dripped
on a carbon fiber paper (Smmx5 mm) with a loading amount of 1 mg cm=2. All the
electrochemical measurements were performed at room temperature and the
electrochemical cell was used in an open environment. The HER polarization curves
were mainly collected in Hj-saturated 0.5 M H,SO, (between 0.05 and -0.30 V vs.
RHE) solution at a scan rate of 5 mV s-!. All the collected LSV curves were corrected
with the background current of a blank CFP electrode. Durability test was measured at

a constant current density of 100 mA cm= .

Electrochemical measurement of PEMWE: Before the construction of catalysis
coated membrane (CCM), the N115 membrane was successively treated with 5 wt%
H,0,, deionized water, and 0.5 M H,SO, at 80 °C for 1 h. Then the treated N115
membrane was rinsed with deionized water. D-PtFe/C-VD or PtFe/C-VD was used as
a cathode electrocatalyst and commercial [rO, was used as an anode electrocatalyst. In
order to prepare the catalyst ink, the catalyst was dispersed into a mixed solution of
isopropyl alcohol and distilled water (1:1, w/w). Subsequently, Nafion with an
ionomer mass fraction of 10 wt% at the anode or 35 wt% at the cathode was added
into the solution. The suspension was ultrasonically treated in an ice water bath for 1
h to obtain the catalyst ink. The anode catalyst ink and cathode catalyst ink were
sprayed on polytetrafluoroethylene (PTFE) film respectively. Then the PTFE films
supported with catalysts and a N115 membrane were hot pressed under 10 Mpa at 135
°C for 10 min. After cooling, the PTFE films were stripped to obtain CCM. The
loading of the cathode was 0.5 mgp,cm 2 and the loading of the anode was 1 mg;, cm™
for IrO,. In order to construct a PEM electrolyzer, a well-defined pore Ti plate
(provided by mainz Hydrogen Energy Co., Ltd) coated with Pt was used as the porous
transport layer (PTL) of the anode, and a piece of carbon paper was used as the PTL

of the cathode. The active area was 4 cm?. The PEM electrolyzer was operated at 80



°C and the reactant was deionized water, which was circulated through a peristaltic

pump. The stability was tested by chronopotentiometry at 0.25 A cm 2.

Computational details: The spin-polarized density functional theory (DFT)
calculations were performed using the Vienna Ab-initio Simulation Package (VASP)
code.' The generalized gradient approximation (GGA) of the Perdew-Burke-
Ernzerhof (PBE) functional with van der Waals correction was applied to optimize the
geometric structures.* The interactions between the ions and valence electrons were
described by Projector augmented wave (PAW) potentials.> © A Monkhorst-Pack k-
point grid of 4x4x1 was used for the geometric structures optimization and total
energy calcula-tions.” The force on each atom was less than 0.01 eV/A , and the
convergence criteria of the total energy for all the calculations were set as 1 x 10~ eV.

A plane wave cutoff energy of 450 eV was chosen for all of the calculations.

_—

Fig. S1. The photograph of PtFe/C-VD catalyst.
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Fig. S2. XRD patterns of PtFe/C-VD, PtFe/C-OD, D-PtFe/C-VD and Pt/C samples.

Fig. S3. TEM image of Pt/C annealed for 12 h at 700 °C.



Fig. S4. (a) STEM image and (b) FFT pattern of disordered PtFe nanoparticle in D-

PtFe/VD.
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Fig. S5. TGA curves of (a) PtFe/C-VD, (b) PtFe/C-OD, (c) D-PtFe/C-VD and (d)

Pt/C samples.
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Fig. S6. XPS spectra of Pt 4f in (a) commercial Pt/C, (b) D-PtFe/C-VD and (c)

PtFe/C-VD.
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Fig. S7. XRD patterns of PtFe/C samples annealed at different temperature for 12 h.



Fig. S8. TEM image of PtFe/C-VD annealed for 12 h at 800 °C.
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Fig. S9. XRD patterns of PtFe/C samples annealed at different annealing time at 700
°C.
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Fig. S10. XRD patterns of ordered PtCo/C-VD, PtNi/C-VD and PtMn/C-VD samples.
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Fig. S11. TEM images of (a) PtCo/C-VD, (b) PtNi/C-VD and (c) PtMn/C-VD

catalysts.
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Fig. S12. XRD pattern of ordered Pt;Zn/C-VD, Pt;Mn/C-VD, Pt;Fe/C-VD and

PtFe;/C-VD catalysts.
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Fig. S13. Comparison of overpotentials at 10 mA cm?and 100 mA cm2, respectively.
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Fig. S14. HER polarization curves of (a) PtCo/C-VD, (b) PtNi/C-VD and (¢) PtMn/C-

VD in N,-saturated 0.5 M H,SO, solution.
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Fig. S15. CV curves recorded at room temperature in a N,-purged 0.5 M H,SO,

solution with a sweep rate of 50 mV s!.



o
w
o
w
[e]
w

Current Density / mA cm?
Current Density / mA cm™®
Current Density / mA cm™

0

1

2k

3k —PtFe/C-VD 3 — D-PtFe/C-VD

— PUC
—— PtFe/C-after GV test | ——D-PtFe/C-after CV test

—— PUC after CV test |

1
o
1
2
3t
4+
)

L s L L N N L L . L L . L L L L L s
0.0 0.2 04 06 08 1.0 12 0.0 02 04 06 08 10 12 0 02 04 08 08 1.0 12
Potential / V vs. RHE Potential / V vs. RHE Potential / V vs. RHE

Fig. S16. The Comparison of CV curves in N,-saturated 0.5 M H,SO, at a scan rate of

50 mV s before and after CV tests for (a) PtFe/C-VD , (b) D-PtFe/C-VD, and (c)
Pt/C, respectively.
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Fig. S17. The atomic ratios of Mn leaching test at 25 °C in 0.5 M H,SO, solution.

The amount of Fe leaching into the acid electrolyte is determined by inductively
coupled plasma-atomic emission spectroscopy (ICP-AES). After ten days, the Fe
leaching loss for the D-PtFe/C-VD catalyst is 23.5%, much lower than that of the D-
PtFe/C-VD catalyst (45.3%).
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Fig. S18. XRD pattern of PtFe/C-VD after leaching test.

Fig. S19. The elemental mapping distribution of PtFe/C-VD sample after the Fe

leaching test.
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Fig. S20. The chronopotentiometry curves of PtFe/C-VD, D-PtFe/C-VD and Pt/C as

PEMWE cathode catalysts at 0.25 A cm™.
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Fig. S21. (a) Gibbs free energy diagram of the HER on ordered PtFe(111), disordered
PtFe(111) and Pt(111), respectively. (b-d) The charge local function diagram of the
HER on ordered PtFe(111), disordered PtFe(111) and Pt(111). (e-f) TDOS of ordered
PtFe(111), disordered PtFe(111) and Pt(111).



Table S1. Comparison of particle-size of ordered PtFe nanoparticles with recently

reported ordered Pt-based nanoparticles.

Samples Particle-size | Reference

Ordered PtFe 88 + 0.5 nm Nano Lett. 2015, 15, 2468—2473.

Ordered 12 nm Chem. Mater. 2008, 20, 7242—7245.
Ordered Pt;Y/C 5~20 nm J. Am. Chem. Soc. 2017, 139, 5672—-5675
Ordered Pt;Fe 8.6 nm J. Am. Chem. Soc., 2015, 137, 6263-6269
Ordered Pt;Cr/C 7.2 nm Nanoscale, 2014, 6, 10686—10692

Ordered Pt;V/C 6.2 nm J. Am. Chem. Soc. 2014, 136, 10206—10209
Ordered PtCu/C-700 6.0 nm Chem. Mater. 2018, 30, 5987—-5995
Pt;Co0-700/C 7.2 nm Nat. Mater., 2013, 12, 81

Ordered PtCo 6.0 J. Mater. Chem., 2004, 14, 1454-1460
Ordered Pt;Mn 5 nm J. Am. Chem. Soc. 2012, 134, 18455
Ordered Pt;T1/C 6.5 nm J. Am. Chem. Soc. 2014, 136, 10206—10209
Ordered PtSn/C 6.3 nm J. Am. Chem. Soc., 2015, 137, 6263-6269
PtFe/C-VD 2.9 nm This work

PtCo/C-VD <<3.0 nm This work

PtNi/C-VD <3.0 nm This work

PtMn/C-VD <<3.0 nm This work

References

1. Kresse, G.; Furthmiiller, J. J. C. m. s., Efficiency of ab-initio total energy

calculations for metals and semiconductors using a plane-wave basis set. 1996, 6 (1),

15-50.

2. Kresse, G.; Furthmiiller, J. J. P. r. B., Efficient iterative schemes for ab initio

total-energy calculations using a plane-wave basis set. 1996, 54 (16), 11169.




3. Kresse, G.; Hafner, J. J. P. R. B., Ab initio molecular-dynamics simulation of the
liquid-metal-amorphous-semiconductor transition in germanium. 1994, 49 (20),
14251.

4. Perdew, J. P.; Burke, K.; Ernzerhof, M. J. P. r. 1., Generalized gradient
approximation made simple. 1996, 77 (18), 3865.

5. Blochl, P. E. J. P. r. B., Projector augmented-wave method. 1994, 50 (24), 17953.
6. Kresse, G.; Joubert, D. J. P. r. b., From ultrasoft pseudopotentials to the projector
augmented-wave method. 1999, 59 (3), 1758.

7. Kresse, G.; Hafner, J. J. P. R. B. C. M., Ab initio molecular dynamics for liquid
metals. vol. 48, issue 17. 1993, 13115-13118.



