Supporting Information

Iodine-mediated oxidative triple functionalization of indolines

with azoles and diazonium salts

Yifeng Liu, Xiaoting Gu, Xiaoxiang Zhang, Meilan Xu, Zhuan Zhang, Taoyuan Liang*

Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.

E-mail addresses: taoyuanliang@gxu.edu.cn

Table of Contents

1.	General Information	S2
2.	Procedure for the synthesis starting materials	S2-S3
3.	Typical procedure for the synthesis of 4aaa	S 3
4.	Control experiments	S3-S4
5.	GC-MS analysis experiment (EI)	S4-S5
6.	Scale-up experiment and synthetic transformations	S5-S6
7.	Characterization data for the products	S6-S18
8.	Copies of NMR spectra	S18-S54
9.	References	S55

1. General Information

All the reagents were purchased from commercial sources, and used without further purification. All the obtained products were characterized by melting points, ¹H NMR, ¹³C NMR, ¹⁹F NMR, high resolution mass spectra (HRMS). Melting points were measured on an Electrothemal SGW-X4 microscopy digital melting point apparatus. GC-MS was obtained on ANYEEP TQ1978. ¹H NMR spectra, recorded at 600 MHz. ¹³C NMR spectra, recorded at 151 MHz. ¹⁹F NMR spectra, recorded at 565 MHz. The chemical shifts are reported relative to CDCl₃ (δ = 7.26 for ¹H NMR and δ = 77.16 for ¹³C NMR).

2. Procedure for the synthesis starting materials

2.1 Synthesis of indolines:¹

To a solution of indole (40 mmol, 1.0 equiv) in acetic acid (1.5 M, 27.0 mL) was added in portions sodium cyanoborohydride (80 mmol, 2.0 equiv) at 0 °C, and the mixture was stirred at room temperature. After 2 h, water (50.0 mL) was added at 0 °C and the mixture was basified with NaOH (5 N aqueous solution). The organic material was extracted with CH_2Cl_2 (100.0 mL × 3), washed with brine, dried over anhydrous MgSO₄ and concentrated using a rotary evaporator to give crude reaction mixture. The column chromatography gives the pure product.

2.2 Synthesis of diazonium tetrafluoroborate:²

Appropriate arylamine (10 mmol) was dissolved in EtOH (3.0 mL) and hydrofluoroboric acid (48% w/w in water, 2.5 mL). The reaction mixture was cooled to 0 °C, tert-Butyl nitrite (2.7 mL) was added dropwise. The reaction mixture was stirred at room temperature for 1 hour. The resulting precipitate was collected by filtration. The crude product was dissolved into acetone (about 20.0 mL, for some low solubility product, more acetone was used), and the solution was gently heated, and then diethyl ether was added until the recrystallized product precipitated completely. The diazonium salt was collected by filtration, washed several times by cold diethyl ether and dried

under vacuum.

3. Typical procedure for the synthesis of 4aaa

Under air atmosphere, 1-methylindoline **1a** (40.0 mg, 0.30 mmol), aryldiazonium salts **2a** (38.4 mg, 0.2 mmol), azole **3a** (40.8 mg, 0.6 mmol), solvent (2.0 mL, DCE: DMSO = 10:1) were added to a Schlenk tube (50.0 mL) along with a magnetic stirrer bar, and the reaction mixture was heated at 80 °C for 1 h. Then, **I**₂ (50.8 mg, 0.2 mmol) was added in and heated at 80 °C for another 12 h to complete the transformation. After cooling to room temperature, the resulting mixture was concentrated by removing the solvent under vacuum. The residue was purified by preparative TLC on silica gel by using petroleum ether/ethyl acetate (9:1) as the eluent to give **4aaa**.

4. Control experiments

(4a) Under air atmosphere, 1-methylindoline 1a (40.0 mg, 0.30 mmol), aryl diazonium salts 2a (38.4 mg, 0.2 mmol), azole 3a (40.8 mg, 0.6 mmol), solvent (2.0 mL, DCE: DMSO = 10:1) were added to a Schlenk tube (50.0 mL) along with a magnetic stirrer bar, and the reaction mixture was heated at 80 °C for 1 h. After cooling to room temperature, the resulting mixture was concentrated by removing the solvent under vacuum. The residue was purified by preparative TLC on silica gel by using petroleum ether/ethyl acetate (10:1) as the eluent to give 1a–1 (42.7 mg, 90% yield). When the 3.0 equiv of TEMPO was added, 1a–1 was isolated in 83% yield.

(4b) A mixture of 1a-1 (47.4 mg, 0.2 mmol), 3a (40.8 mg, 0.3 mmol) and I_2 (50.8 mg, 0.2 mmol) in solvent (2.0 mL, DCE: DMSO = 10:1) was stirred at 80 °C in a Schlenk tube (50.0 mL) for 12 h under air. After the transformation completed, the desired product 4aaa was isolated in 76% yield. When the 3.0 equiv of TEMPO was added, 4aaa was not detected.

(4c) A mixture of 1e (44.1 mg, 0.3 mmol), 2a (38.4 mg, 0.2 mmol), 3a (40.8 mg, 0.3 mmol) and I_2 (10.2 mg, 0.04 mmol) in solvent (2.0 mL, DCE: DMSO = 10:1) was stirred at 80 °C in a Schlenk tube (50.0 mL) for 12 h under air. After the transformation completed, 4kaa was isolated in 72% yield.

(4d) A mixture of 1e (44.1 mg, 0.3 mmol), 2a (38.4 mg, 0.2 mmol), 3a (40.8 mg, 0.3 mmol) and I₂ (10.2 mg, 0.04 mmol) in DCE (2.0 mL) was stirred at 80 °C in a Schlenk tube (50.0 mL) for 12 h under air. After the transformation was completed, 4kaa was isolated in trace.

(4e) A mixture of $1a-2^3$ (39.4 mg, 0.2 mmol) and I_2 (50.8 mg, 0.2 mmol) in solvent (2.0 mL, DCE: DMSO = 10:1) was stirred at 80 °C in a Schlenk tube (50.0 mL) for 12 h under air. After the transformation was completed, 1a-3 was isolated in 80% yield.

5. GC-MS analysis experiment (EI)

Under the optimized reaction conditions, the model reaction was carried, then the reaction mixture was analyzed by GC-MS (EI), and DMS (Me₂S) could be observed.

DMSO + 2 HI → DMS + I₂

Figure S1. GC-MS analysis experiment report of the reaction mixture

6. Scale-up experiment and synthetic transformations

(5a) A mixture of 4aaa (42.7 mg, 0.1 mmol), PhSShP (21.8 mg, 0.1 mmol), I_2 (25.4 mg, 0.1 mmol), CuI (3.8 mg, 0.02 mmol) in 3.0 mL solvent (DMSO: Dioxane = 1: 2) was stirred at 80 °C in a 50 mL Schlenk tube for 8 h under O₂. Then the resulting mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica gel by using petroleum ether /dichloromethane (1:1) as the eluent to give **5aaa** as an orange solid (35.6 mg, 87% yield).

(5b) A mixture of 4aaa (42.7 mg, 0.1 mmol), tert-butylacrylate (38 mg, 0.3 mmol), K_2CO_3 (27.6 mg, 0.2 mmol), Pd(PPh₃)₄ (5.8 mg, 0.005 mmol) in DMA (2.0 mL) was stirred at 100 °C in a 50

mL Schlenk tube for 12 h under Ar. Then the resulting mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica gel by using petroleum ether /dichloromethane (1:2) as the eluent to give **6aaa** as an orange solid (29.8 mg, 70% yield).

7. Characterization data for the products

(1) (E)-1-methyl-5-(phenyldiazenyl)indoline (1a-1)

Orange solid, m.p.: 123-125 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.6 Hz, 1H), 7.73 (s, 1H), 7.51 – 7.46 (m, 2H), 7.38 (t, J = 8.0 Hz, 1H), 6.47 (d, J = 8.3 Hz, 1H), 3.51 (t, J = 8.3 Hz, 2H), 3.05 (t, J = 8.3 Hz, 2H), 2.87 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 155.89, 153.32, 145.37, 131.13, 129.30, 129.10, 129.03, 122.24, 116.20, 105.06, 55.40, 34.76, 27.90. HRMS (ESI): Calcd. for C₁₅H₁₅N₃ [M+H]⁺: 238.1338; found: 238.1338.

(2) (E)-3-iodo-1-methyl-5-(phenyldiazenyl)-2-(1H-pyrazol-1-yl)-1H-indole (4aaa)

Orange solid, (63.9 mg, 75% yield), m.p.: 183-184 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.14 (d, J = 1.9 Hz, 1H), 8.02 (dd, J = 8.8, 1.9 Hz, 1H), 7.96 (d, J = 7.1 Hz, 2H), 7.90 (d, J = 1.9 Hz, 1H), 7.85 (d, J = 2.5 Hz, 1H), 7.53 (t, J = 7.6 Hz, 2H), 7.46 (t, J = 7.3 Hz, 1H), 7.39 (d, J = 8.8 Hz, 1H), 6.57 (t, J = 2.2 Hz, 1H), 3.66 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 152.88, 148.05, 142.62, 137.52, 137.40, 133.44, 130.58, 129.18, 128.93, 122.78, 120.17, 117.74, 110.81, 107.32, 56.28, 30.94. HRMS (ESI): Calcd. for C₁₈H₁₄IN₅ [M+H]⁺: 428.0366; found: 428.0364.

(3) (E)-1-ethyl-3-iodo-5-(phenyldiazenyl)-2-(1H-pyrazol-1-yl)-1H-indole (4baa)

Orange solid, (53.8 mg, 61% yield), m.p.: 187-188 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, *J* = 1.7 Hz, 1H), 8.02 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.97 (d, *J* = 7.6 Hz, 2H), 7.89 (d, *J* = 1.9 Hz, 1H), 7.84

(d, J = 2.4 Hz, 1H), 7.54 (t, J = 7.6 Hz, 2H), 7.47 (t, J = 7.3 Hz, 1H), 7.43 (d, J = 8.9 Hz, 1H), 6.57 (t, J = 2.2 Hz, 1H), 4.12 (q, J = 7.2 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 152.91, 148.02, 142.56, 137.00, 136.40, 133.44, 130.57, 129.19, 129.08, 122.79, 120.45, 117.60, 110.87, 107.29, 56.86, 39.68, 15.57. HRMS (ESI): Calcd. for C₁₉H₁₆IN₅ [M+H]⁺: 442.0523; found: 442.0522.

(4) (E)-1-(3-chloropropyl)-3-iodo-5-(phenyldiazenyl)-2-(1H-pyrazol-1-yl)-1H-indole (4daa)

Orange solid, (63.1 mg, 65% yield), m.p.: 189-190 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.15 (d, J = 1.8 Hz, 1H), 8.04 (dd, J = 8.9, 1.9 Hz, 1H), 7.97 (d, J = 7.1 Hz, 2H), 7.88 (d, J = 1.9 Hz, 1H), 7.85 (d, J = 2.4 Hz, 1H), 7.56 – 7.51 (m, 3H), 7.47 (t, J = 7.3 Hz, 1H), 6.57 (t, J = 2.2 Hz, 1H), 4.27 (t, J = 7.0 Hz, 2H), 3.46 (t, J = 6.0 Hz, 2H), 2.16 (p, J = 6.4 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃) δ 152.85, 148.15, 142.67, 137.06, 136.88, 133.49, 130.65, 129.19, 128.99, 122.81, 120.25, 117.97, 110.93, 107.48, 57.31, 42.00, 41.91, 32.84. HRMS (ESI): Calcd. for C₂₀H₁₇ClIN₅ [M+H]⁺: 490.0289; found: 490.0287.

(5) (E)-3-iodo-5-(phenyldiazenyl)-1-(1-phenylethyl)-2-(1H-pyrazol-1-yl)-1H-indole (4eaa)

Orange solid, (53.7 mg, 52% yield), m.p.: 189-190 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.15 (d, J = 1.9 Hz, 1H), 7.94 – 7.91 (m, 2H), 7.88 (d, J = 1.9 Hz, 1H), 7.79 (dd, J = 9.0, 2.0 Hz, 1H), 7.74 (d, J = 2.5 Hz, 1H), 7.52 (dd, J = 8.4, 6.9 Hz, 2H), 7.45 (t, J = 7.2 Hz, 1H), 7.34 – 7.26 (m, 5H), 7.08 (d, J = 9.0 Hz, 1H), 6.53 (t, J = 2.2 Hz, 1H), 5.48 (q, J = 7.1 Hz, 1H), 1.94 (d, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 152.90, 147.84, 142.70, 139.86, 137.52, 135.51, 133.73, 130.58, 129.52, 129.17, 128.84, 127.78, 126.54, 122.77, 120.51, 117.22, 113.21, 107.52, 58.79, 54.23, 18.55. HRMS (ESI): Calcd. for C₂₅H₂₀IN₅ [M+H]⁺: 518.0836; found: 518.0835.

(6) (E)-3-iodo-1,6-dimethyl-5-(phenyldiazenyl)-2-(1H-pyrazol-1-yl)-1H-indole (4gaa)

Orange solid, (50.2 mg, 57% yield), m.p.: 187-188 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.98 (d, J = 7.4 Hz, 2H), 7.88 (d, J = 1.8 Hz, 1H), 7.83 (d, J = 5.1 Hz, 2H), 7.53 (t, J = 7.6 Hz, 2H), 7.46 (t, J = 7.3 Hz, 1H), 7.24 (s, 1H), 6.55 (t, J = 2.1 Hz, 1H), 3.62 (s, 3H), 2.89 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 153.25, 146.60, 142.48, 137.76, 137.14, 135.52, 133.43, 130.44, 129.13, 127.23, 122.98, 111.42, 108.57, 107.17, 56.22, 30.73, 18.89. HRMS (ESI): Calcd. for C₁₉H₁₆IN₅ [M+H]⁺: 442.0523; found: 442.0521.

(7) (E)-6-chloro-3-iodo-1-methyl-5-(phenyldiazenyl)-2-(1H-pyrazol-1-yl)-1H-indole (4haa)

Orange solid, (64.4 mg, 70% yield), m.p.: 209-210 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.02 (d, J = 7.1 Hz, 2H), 7.89 (d, J = 3.6 Hz, 2H), 7.85 (d, J = 2.4 Hz, 1H), 7.56 – 7.52 (m, 3H), 7.49 (t, J = 7.3 Hz, 1H), 6.58 – 6.55 (m, 1H), 3.64 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 153.07, 143.98, 142.78, 138.30, 137.39, 133.40, 132.20, 131.16, 129.25, 127.76, 123.37, 111.56, 110.56, 107.47, 77.37, 77.16, 76.95, 56.30, 31.09. HRMS (ESI): Calcd. for C₁₈H₁₃ClIN₅ [M+H]⁺: 461.9976; found: 461.9974.

(8) (E)-3-iodo-1,7-dimethyl-5-(phenyldiazenyl)-2-(1H-pyrazol-1-yl)-1H-indole (4iaa)

Orange solid, (59.1 mg, 67% yield), m.p.: 208-209 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.99 (s, 1H), 7.95 (d, *J* = 7.1 Hz, 2H), 7.89 (d, *J* = 1.8 Hz, 1H), 7.80 (d, *J* = 2.4 Hz, 1H), 7.72 (s, 1H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.48 – 7.44 (m, 1H), 6.56 (t, *J* = 2.1 Hz, 1H), 3.78 (s, 3H), 2.82 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 152.91, 147.59, 142.65, 138.00, 136.50, 133.62, 130.51, 129.60, 129.16, 123.08, 122.73, 119.37, 119.25, 107.33, 57.94, 33.64, 20.07. HRMS (ESI): Calcd. for C₁₉H₁₆IN₅ [M+H]⁺: 442.0523; found: 442.0522. (9) (E)-7-bromo-3-iodo-1-methyl-5-(phenyldiazenyl)-2-(1H-pyrazol-1-yl)-1H-indole (4jaa)

Orange solid, (52.6 mg, 52% yield), m.p.: 199-200 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.18 (d, J = 1.8 Hz, 1H), 8.11 (d, J = 1.8 Hz, 1H), 7.95 (d, J = 7.1 Hz, 2H), 7.91 (d, J = 1.9 Hz, 1H), 7.81 (d, J = 2.5 Hz, 1H), 7.53 (t, J = 7.5 Hz, 2H), 7.48 (t, J = 7.3 Hz, 1H), 6.58 (t, J = 2.2 Hz, 1H), 3.93 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 152.60, 147.85, 142.95, 139.08, 133.75, 133.61, 131.15, 131.05, 129.26, 122.96, 121.65, 120.91, 107.64, 105.36, 58.17, 33.80. HRMS (ESI): Calcd. for C₁₈H₁₃BrIN₅ [M+H]⁺: 505.9471; found: 505.9471.

(10) (E)-1,3-dimethyl-5-(phenyldiazenyl)-2-(1H-pyrazol-1-yl)-1H-indole (4kaa)

Orange solid, (45.6 mg, 72% yield), m.p.: 146-147 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.27 (d, J = 1.9 Hz, 1H), 8.00 (dd, J = 8.8, 1.9 Hz, 1H), 7.95 (d, J = 7.0 Hz, 2H), 7.87 (d, J = 1.9 Hz, 1H), 7.69 (d, J = 2.2 Hz, 1H), 7.53 (t, J = 7.7 Hz, 2H), 7.45 (t, J = 7.3 Hz, 1H), 7.38 (d, J = 8.8 Hz, 1H), 6.54 (t, J = 2.2 Hz, 1H), 3.55 (s, 3H), 2.29 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 153.02, 147.05, 142.05, 136.58, 133.29, 133.06, 130.22, 129.14, 126.76, 122.62, 117.78, 117.05, 109.99, 107.81, 106.93, 29.82, 8.24. HRMS (ESI): Calcd. for C₁₉H₁₇IN₅ [M+H]⁺: 316.1556; found: 316.1555.

(11)(E)-3-methyl-5-(phenyldiazenyl)-2-(1H-pyrazol-1-yl)-1H-indole (4laa)

Orange solid, (33.1 mg, 55% yield), m.p.: 141-143 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.57 (s, 1H), 8.21 (d, *J* = 1.8 Hz, 1H), 7.98 (d, *J* = 2.5 Hz, 1H), 7.94 (d, *J* = 7.1 Hz, 2H), 7.89 (dd, *J* = 8.7, 1.9 Hz, 1H), 7.78 (d, *J* = 1.8 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 2H), 7.45 (t, *J* = 7.3 Hz, 1H), 7.38 (d, *J* = 8.6 Hz, 1H), 6.55 (t, *J* = 2.1 Hz, 1H), 2.51 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 153.05, 147.40, 140.92, 134.83, 132.65, 130.26, 129.38, 129.19, 129.17, 122.65, 117.21, 116.31, 111.39, 107.90, 99.64, 9.00. HRMS (ESI): Calcd. for C₁₈H₁₅IN₅ [M+H]⁺: 302.1400; found: 302.1399.

Orange solid, (56.2 mg, 55% yield), m.p.: 195-196 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.11 (s, 1H), 8.01 (d, *J* = 8.9 Hz, 1H), 7.96 (d, *J* = 7.6 Hz, 2H), 7.85 (d, *J* = 13.3 Hz, 2H), 7.53 (t, *J* = 7.6 Hz, 2H), 7.49 – 7.45 (m, 1H), 7.37 (d, *J* = 8.8 Hz, 1H), 3.64 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 152.80, 148.10, 143.28, 137.29, 136.56, 133.17, 130.67, 129.19, 128.75, 122.80, 120.25, 118.00, 110.88, 95.51, 56.76, 30.96. HRMS (ESI): Calcd. for C₁₈H₁₃BrIN₅ [M+H]⁺: 505.9471; found: 505.9469.

(13) (E)-3-iodo-2-(4-iodo-1H-pyrazol-1-yl)-1-methyl-5-(phenyldiazenyl)-1H-indole (4aac)

Orange solid, (70.1 mg, 70% yield), m.p.: 199-200 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.14 (d, J = 1.8 Hz, 1H), 8.04 (dd, J = 8.8, 1.9 Hz, 1H), 7.98 (d, J = 7.0 Hz, 2H), 7.91 (d, J = 3.1 Hz, 2H), 7.56 (t, J = 7.7 Hz, 2H), 7.49 (t, J = 7.3 Hz, 1H), 7.40 (d, J = 8.8 Hz, 1H), 3.67 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 152.82, 148.11, 147.59, 137.44, 137.32, 136.42, 130.67, 129.20, 128.79, 122.81, 120.25, 118.03, 110.88, 58.84, 56.78, 30.99. HRMS (ESI): Calcd. for C₁₈H₁₃I₂N₅ [M+H]⁺: 553.9333; found: 553.9330.

(14)ethyl*(E)*-1-(3-iodo-1-methyl-5-(phenyldiazenyl)-1*H*-indol-2-yl)-1*H*-pyrazole-4carboxylate (4aad)

Orange solid, (64.5 mg, 65% yield), m.p.: 203-204 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.34 (s, 1H), 8.26 (s, 1H), 8.14 (d, J = 1.9 Hz, 1H), 8.04 (dd, J = 8.8, 1.9 Hz, 1H), 7.96 (d, J = 7.1 Hz, 2H), 7.53 (t, J = 7.6 Hz, 2H), 7.47 (t, J = 7.3 Hz, 1H), 7.41 (d, J = 8.9 Hz, 1H), 4.39 (q, J = 7.2 Hz, 2H), 3.69 (s, 3H), 1.41 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.50, 152.85, 148.23, 143.50, 137.42, 136.81, 136.47, 130.71, 129.21, 128.81, 122.83, 120.35, 118.22, 117.01, 110.94, 60.88, 56.95, 31.09, 14.53. HRMS (ESI): Calcd. for C₂₁H₁₈IN₅O₂ [M+H]⁺: 500.0577; found: 500.0576.

(15)(*E*)-3-iodo-2-(4-iodo-3-methyl-1*H*-pyrazol-1-yl)-1-methyl-5-(phenyldiazenyl)-1*H*-indole (4aae)

Orange solid, (64.6 mg, 57% yield), m.p.: 201-202 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.12 (d, J = 1.8 Hz, 1H), 8.01 (dd, J = 8.8, 1.8 Hz, 1H), 7.95 (d, J = 7.0 Hz, 2H), 7.80 (s, 1H), 7.53 (t, J = 7.7 Hz, 2H), 7.46 (t, J = 7.4 Hz, 1H), 7.37 (d, J = 8.8 Hz, 1H), 3.67 (s, 3H), 2.40 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 154.22, 152.87, 148.08, 138.04, 137.36, 136.86, 130.62, 129.20, 128.85, 122.80, 120.18, 117.92, 110.80, 77.16, 62.65, 56.55, 31.00, 14.03. HRMS (ESI): Calcd. for C₁₉H₁₅I₂N₅ [M+H]⁺: 567.9489; found: 567.9487.

(16)(*E*)-3-iodo-2-(4-iodo-3,5-dimethyl-1*H*-pyrazol-1-yl)-1-methyl-5-(phenyldiazenyl)-1*H* indole (4aaf)

Orange solid, (51.5 mg, 44% yield), m.p.: 209-210 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.15 (s, 1H), 8.04 (dd, J = 8.8, 1.9 Hz, 1H), 7.96 (d, J = 7.8 Hz, 2H), 7.53 (t, J = 7.7 Hz, 2H), 7.47 (t, J = 7.3 Hz, 1H), 7.39 (d, J = 8.8 Hz, 1H), 3.55 (s, 3H), 2.36 (s, 3H), 2.26 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 153.22, 152.86, 148.03, 144.90, 137.31, 136.16, 130.62, 129.18, 128.78, 122.79, 120.27, 117.95, 110.85, 65.20, 59.66, 30.59, 14.56, 12.76. HRMS (ESI): Calcd. for C₂₀H₁₇I₂N₅ [M+H]⁺: 581.9646; found: 581.9643.

(17) (E)-1-(3-iodo-1-methyl-5-(phenyldiazenyl)-1H-indol-2-yl)-1H-indazole (4aag)

Orange solid, (50.1 mg, 53% yield), m.p.: 225-226 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.37 (s, 1H), 8.22 (d, *J* = 1.8 Hz, 1H), 8.07 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.98 (d, *J* = 7.2 Hz, 2H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.55 (t, *J* = 7.7 Hz, 2H), 7.51 – 7.44 (m, 3H), 7.35 – 7.31 (m, 2H), 3.59 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 152.95, 148.07, 141.35, 137.74, 137.68, 136.23, 130.61, 129.23, 129.22, 128.06, 124.36, 122.83, 122.43, 121.52, 120.27, 117.78, 111.02, 110.87, 58.50, 30.79. HRMS (ESI): Calcd. for C₂₂H₁₆IN₅ [M+H]⁺: 478.0523; found: 478.0522.

(18) (E)-1-(3-iodo-1-methyl-5-(phenyldiazenyl)-1H-indol-2-yl)-1H-benzo[d][1,2,3]triazole (4aah)

Orange solid, (51.7 mg, 54% yield), m.p.: 221-223 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.30 – 8.20 (m, 2H), 8.11 (dd, J = 8.8, 1.8 Hz, 1H), 8.04 – 7.94 (m, 2H), 7.62 (ddd, J = 8.1, 6.9, 1.0 Hz, 1H), 7.58 – 7.45 (m, 6H), 3.62 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 152.86, 148.29, 145.54, 137.86, 134.17, 132.97, 130.79, 129.31, 129.25, 129.21, 125.07, 122.88, 120.74, 120.46, 118.40, 111.15, 110.85, 59.07, 30.96. HRMS (ESI): Calcd. for C₂₁H₁₅IN₆ [M+H]⁺: 479.0475; found: 479.0473.

(19) (E)-3-iodo-1-methyl-2-(1H-pyrazol-1-yl)-5-(p-tolyldiazenyl)-1H-indole (4aba)

Orange solid, (57.1 mg, 65% yield), m.p.: 203-204 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.12 (d, J = 1.8 Hz, 1H), 8.01 (dd, J = 8.8, 1.9 Hz, 1H), 7.90 – 7.85 (m, 4H), 7.40 (d, J = 8.8 Hz, 1H), 7.33 (d, J = 7.9 Hz, 2H), 6.57 (t, J = 2.2 Hz, 1H), 3.67 (s, 3H), 2.45 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.98, 148.13, 142.61, 141.07, 137.48, 137.28, 133.45, 129.86, 128.96, 122.79, 119.88, 117.75, 110.78, 107.30, 56.23, 30.94, 21.63. HRMS (ESI): Calcd. for C₁₉H₁₆IN₅ [M+H]⁺: 442.0523; found: 442.0521.

(20)(*E*)-3-iodo-5-((4-methoxyphenyl)diazenyl)-1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*-indole (4aca)

Orange solid, (73.1 mg, 80% yield), m.p.: 209-210 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.08 (d, *J* = 1.8 Hz, 1H), 7.98 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.97 – 7.94 (m, 2H), 7.89 (d, *J* = 1.9 Hz, 1H), 7.84 (d, *J* = 2.4 Hz, 1H), 7.37 (d, *J* = 8.9 Hz, 1H), 7.04 – 7.01 (m, 2H), 6.56 (t, *J* = 2.2 Hz, 1H), 3.89 (s, 3H), 3.64 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 161.74, 148.11, 147.18, 142.55, 137.37, 137.05,

133.43, 128.91, 124.56, 119.35, 117.72, 114.30, 110.73, 107.25, 56.12, 55.68, 30.89. HRMS (ESI): Calcd. for C₁₉H₁₆IN₅O [M+H]⁺: 458.0472; found: 458.0469.

(21) (E)-5-((4-fluorophenyl)diazenyl)-3-iodo-1-methyl-2-(1H-pyrazol-1-yl)-1H-indole (4ada)

Orange solid, (55 mg, 62% yield), m.p.: 208-209 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.11 (d, J = 1.8 Hz, 1H), 8.00 - 7.95 (m, 3H), 7.90 (d, J = 1.9 Hz, 1H), 7.85 (d, J = 2.5 Hz, 1H), 7.39 (d, J = 8.8 Hz, 1H), 7.20 (t, J = 8.6 Hz, 2H), 6.57 (t, J = 2.2 Hz, 1H), 3.66 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 164.15 (d, *J* = 251.2 Hz), 149.39 (d, *J* = 3.0 Hz), 147.87, 142.64, 137.58, 137.41, 133.42, 128.95, 124.70 (d, J = 8.8 Hz), 120.09, 117.71, 116.09 (d, J = 23.0 Hz), 110.83, 107.33, 56.24, 30.96. ¹⁹F NMR (565 MHz, CDCl₃) δ -110.25. HRMS (ESI): Calcd. for C₁₈H₁₃FIN₅ [M+H]⁺: 446.0272; found: 446.0270.

(22) ethyl(*E*)-3-((3-iodo-1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*-indol-5-yl)diazenyl)benzoate (4aea)

Orange solid, (56.8 mg, 57% yield), m.p.: 205-207 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.60 (s, 1H), 8.16 (d, *J* = 1.9 Hz, 1H), 8.15 – 8.11 (m, 2H), 8.03 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.89 (d, *J* = 1.9 Hz, 1H), 7.86 (d, J = 2.5 Hz, 1H), 7.59 (t, J = 7.8 Hz, 1H), 7.40 (d, J = 8.8 Hz, 1H), 6.57 (t, J = 2.2 Hz, 1H), 4.45 (q, J = 7.1 Hz, 2H), 3.67 (s, 3H), 1.45 (t, J = 7.1 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 166.30, 152.84, 147.91, 142.66, 137.66, 137.63, 133.43, 131.74, 131.28, 129.22, 128.98, 126.52, 124.18, 120.59, 117.77, 110.88, 107.35, 61.39, 56.35, 30.98, 14.52. HRMS (ESI): Calcd. for C₂₁H₁₈IN₅O₂ [M+H]⁺: 500.0577; found: 500.0575.

(23)(E)-3-iodo-5-((3-iodophenyl)diazenyl)-1-methyl-2-(1H-pyrazol-1-yl)-1H-indole (4afa)

Orange solid, (55.2 mg, 50% yield), m.p.: 209-210 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.27 (t, J = 1.8 Hz, 1H), 8.11 (d, J = 1.8 Hz, 1H), 7.98 (dd, J = 8.8, 1.9 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 1.9 Hz, 1H), 7.84 (d, J = 2.5 Hz, 1H), 7.75 (d, J = 7.8 Hz, 1H), 7.38 (d, J = 8.8 Hz, 1H), 7.25 - 7.23 (m, 1H), 6.55 (t, J = 2.2 Hz, 1H), 3.66 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 153.66, 147.76, 142.67, 139.07, 137.67, 137.66, 133.43, 130.73, 130.54, 128.96, 123.49, 120.70, 117.72, 110.88, 107.36, 94.74, 56.38, 31.00. HRMS (ESI): Calcd. for C₁₈H₁₃I₂N₅ [M+H]⁺: 553.9333; found: 553.9330.

(24) (E)-5-((2-bromophenyl)diazenyl)-3-iodo-1-methyl-2-(1H-pyrazol-1-yl)-1H-indole (4aga)

Orange solid, (52.6 mg, 52% yield), m.p.: 209-210 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.19 (d, J = 1.8 Hz, 1H), 8.07 (dd, J = 8.9, 1.9 Hz, 1H), 7.90 (d, J = 1.9 Hz, 1H), 7.86 (d, J = 2.4 Hz, 1H), 7.75 (ddd, J = 9.5, 8.0, 1.5 Hz, 2H), 7.43 – 7.39 (m, 2H), 7.32 – 7.28 (m, 1H), 6.57 (t, J = 2.1 Hz, 1H), 3.68 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 149.88, 148.25, 142.69, 137.71, 137.64, 133.81, 133.45, 131.47, 128.96, 128.13, 125.47, 122.27, 118.00, 117.18, 110.99, 107.37, 56.45, 31.01. HRMS (ESI): Calcd. for C₁₈H₁₃BrIN₅ [M+H]⁺: 505.9471; found: 505.9468.

(25) (*E*)-5-((3-chloro-4-fluorophenyl)diazenyl)-3-iodo-1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*-indole (4aha)

Orange solid, (61.3 mg, 64% yield), m.p.: 205-206 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.11 (d, J = 1.9 Hz, 1H), 8.03 (dd, J = 7.0, 2.4 Hz, 1H), 7.98 (dd, J = 8.9, 1.9 Hz, 1H), 7.91 – 7.86 (m, 3H), 7.40 (d, J = 8.8 Hz, 1H), 7.29 (t, J = 8.6 Hz, 1H), 6.58 (t, J = 2.2 Hz, 1H), 3.68 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 159.28 (d, J = 253.7 Hz), 149.47 (d, J = 3.4 Hz), 147.67, 142.71, 137.74, 137.68, 133.43, 129.01, 123.98 (d, J = 7.7 Hz), 123.90, 122.17 (d, J = 19.3 Hz), 120.61, 117.74, 116.97 (d, J = 22.5 Hz), 110.93, 107.40, 56.37, 31.01. ¹⁹F NMR (565 MHz, CDCl₃) δ -112.71. HRMS (ESI): Calcd. for C₁₈H₁₂ClFIN₅ [M+H]⁺: 479.9882; found: 479.9881.

(26) (*E*)-5-((2,3-dihydrobenzo[*b*][1,4]dioxin-6-yl)diazenyl)-3-iodo-1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*-indole (4aia)

Orange solid, (68.8 mg, 71% yield), m.p.: 208-210 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.07 (d, J = 1.9 Hz, 1H), 7.97 (dd, J = 8.8, 1.9 Hz, 1H), 7.89 (d, J = 1.9 Hz, 1H), 7.85 (d, J = 2.4 Hz, 1H), 7.57 – 7.53 (m, 2H), 7.37 (d, J = 8.8 Hz, 1H), 7.00 (d, J = 8.4 Hz, 1H), 6.56 (t, J = 2.2 Hz, 1H), 4.33 (t, J = 4.9 Hz, 4H), 3.65 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 148.00, 147.65, 146.09, 143.97, 142.57, 137.41, 137.13, 133.44, 128.91, 119.54, 117.99, 117.75, 117.48, 110.77, 110.73, 107.27, 64.71, 64.34, 56.14, 30.91. HRMS (ESI): Calcd. for C₂₀H₁₆IN₅O₂ [M+H]⁺: 486.0421; found: 486.0420.

(27) (E)-3-iodo-1-methyl-2-(1H-pyrazol-1-yl)-5-((3,4,5-trimethoxyphenyl)diazenyl)-1H-indole (4aja)

Orange solid, (52.7 mg, 51% yield), m.p.: 214-215 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.11 (d, J = 1.8 Hz, 1H), 7.99 (dd, J = 8.8, 1.8 Hz, 1H), 7.90 – 7.88 (m, 1H), 7.86 – 7.84 (m, 1H), 7.40 (d, J = 8.8 Hz, 1H), 7.30 (s, 2H), 6.58 – 6.56 (m, 1H), 3.99 (s, 6H), 3.94 (s, 3H), 3.67 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 153.63, 148.75, 147.89, 142.63, 140.31, 137.55, 137.32, 133.42, 128.97, 119.86, 117.74, 110.84, 107.32, 100.30, 61.16, 56.33, 56.22, 30.94. HRMS (ESI): Calcd. for C₂₁H₂₀IN₅O₃ [M+H]⁺: 518.0683; found: 518.0679.

(28)(E)-3-iodo-1-methyl-5-(naphthalen-2-yldiazenyl)-2-(1H-pyrazol-1-yl)-1H-indole (4aka)

Orange solid, (54 mg, 56% yield), m.p.: 211-213 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.49 (s, 1H), 8.20 (d, *J* = 1.8 Hz, 1H), 8.14 (dd, *J* = 8.8, 1.9 Hz, 1H), 8.09 (dd, *J* = 8.8, 1.9 Hz, 1H), 8.04 – 8.01 (m, 1H), 7.94 (d, *J* = 8.8 Hz, 1H), 7.90 (q, *J* = 3.7 Hz, 2H), 7.87 (d, *J* = 2.4 Hz, 1H), 7.56 (dt, *J* = 6.2, 3.4 Hz, 2H), 7.43 (d, *J* = 8.8 Hz, 1H), 6.58 (t, *J* = 2.2 Hz, 1H), 3.68 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 150.49, 148.21, 142.65, 137.56, 137.45, 134.74, 133.77, 133.46, 129.42, 129.20, 129.03, 128.05, 127.41, 127.30, 126.77, 120.12, 117.87, 117.52, 110.86, 107.34, 56.33, 30.97. HRMS (ESI): Calcd. for C₂₂H₁₆IN₅ [M+H]⁺: 478.0523; found: 478.0521.

(29) (E)-3-iodo-1-methyl-5-((1-methyl-1H-pyrazol-3-yl)diazenyl)-2-(1H-pyrazol-1-yl)-1Hindole (4ala)

Orange solid, (48.9 mg, 57% yield), m.p.: 235-236 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.15 (d, J = 1.8 Hz, 1H), 8.05 (dd, J = 8.9, 1.9 Hz, 1H), 7.89 – 7.86 (m, 1H), 7.83 (dd, J = 2.5, 0.6 Hz, 1H), 7.40 – 7.37 (m, 2H), 6.66 (d, J = 2.4 Hz, 1H), 6.56 – 6.53 (m, 1H), 4.02 (s, 3H), 3.64 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 163.87, 148.11, 142.57, 137.48, 137.45, 133.42, 131.86, 128.90, 119.98, 117.99, 110.76, 107.27, 95.94, 56.27, 39.73, 30.90. HRMS (ESI): Calcd. for C₁₆H₁₄IN₇ [M+H]⁺: 432.0428; found: 432.0425.

(30) methyl (*E*)-3-((3-iodo-1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*-indol-5-yl)diazenyl)thiophene-2carboxylate (4ama)

Orange solid, (46.9 mg, 48% yield), m.p.: 206-208 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, J = 1.9 Hz, 1H), 8.06 (dd, J = 8.9, 1.9 Hz, 1H), 7.89 (d, J = 1.4 Hz, 1H), 7.85 (d, J = 1.9 Hz, 1H), 7.54 (d, J = 5.4 Hz, 1H), 7.47 (d, J = 5.4 Hz, 1H), 7.38 (d, J = 8.9 Hz, 1H), 6.57 – 6.55 (m, 1H), 4.00 (s, 3H), 3.66 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 162.14, 156.93, 148.41, 142.66, 137.85, 137.62, 133.43, 130.09, 129.49, 128.97, 122.23, 119.01, 117.10, 111.04, 107.35, 56.47, 52.60, 31.00. HRMS (ESI): Calcd. for C₁₈H₁₄IN₅O₂S [M+H]⁺: 491.9985; found: 491.9981.

(31)(E)-3-iodo-1-methyl-2-(1H-pyrazol-1-yl)-5-(pyridin-3-yldiazenyl)-1H-indole (4ana)

Orange solid, (51.9 mg, 61% yield), m.p.: 205-206 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.22 (s, 1H), 8.69 (s, 1H), 8.18 (d, *J* = 8.6 Hz, 1H), 8.14 (d, *J* = 1.8 Hz, 1H), 8.01 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.89 (d, *J* = 1.3 Hz, 1H), 7.86 (d, *J* = 2.5 Hz, 1H), 7.45 (dd, *J* = 8.2, 4.7 Hz, 1H), 7.40 (d, *J* = 8.8 Hz, 1H), 6.58 – 6.55 (m, 1H), 3.67 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 151.00, 148.17, 147.97, 147.06, 142.70, 137.79, 137.77, 133.41, 128.97, 127.09, 124.15, 120.93, 117.64, 110.94, 107.39, 56.43, 31.01. HRMS (ESI): Calcd. for C₁₇H₁₃IN₆ [M+H]⁺: 429.0319; found: 429.0316.

(32)methyl (*E*)-5-((3-iodo-1-methyl-2-(1*H*-pyrazol-1-yl)-1*H*-indol-5-yl)diazenyl)nicotinate (4aoa)

Orange solid, (50.2 mg, 51% yield), m.p.: 210-211 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.34 (s, 1H), 9.27 (s, 1H), 8.72 (t, *J* = 2.1 Hz, 1H), 8.17 (d, *J* = 1.9 Hz, 1H), 8.03 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.88 (dd, *J* = 15.0, 2.0 Hz, 2H), 7.41 (d, *J* = 8.8 Hz, 1H), 6.60 – 6.56 (m, 1H), 4.01 (s, 3H), 3.68 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 165.52, 151.63, 150.30, 147.85, 147.70, 142.72, 137.99, 137.85, 133.42, 128.97, 127.95, 126.78, 121.39, 117.64, 111.01, 107.42, 56.53, 52.77, 31.02. HRMS (ESI): Calcd. for C₁₉H₁₅IN₆O₂ [M+H]⁺: 446.0272; found: 446.0270.

(33)(E)-1-methyl-5-(phenyldiazenyl)-3-(phenylthio)-2-(1H-pyrazol-1-yl)-1H-indole (5aaa)

Orange solid, (35.6 mg, 87% yield), m.p.: 199-200 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.34 (d, J = 1.8 Hz, 1H), 8.04 (dd, J = 8.9, 1.9 Hz, 1H), 7.92 (dd, J = 8.4, 1.3 Hz, 2H), 7.88 – 7.85 (m, 1H), 7.74 (d, J = 2.5 Hz, 1H), 7.51 (dd, J = 8.4, 6.7 Hz, 3H), 7.46 – 7.42 (m, 1H), 7.18 (dd, J = 8.3, 7.1 Hz, 2H), 7.14 – 7.11 (m, 2H), 7.10 – 7.06 (m, 1H), 6.48 – 6.46 (m, 1H), 3.82 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 152.90, 148.29, 142.61, 140.22, 138.24, 136.92, 133.57, 130.54, 129.15, 129.13, 128.58, 126.28, 125.45, 122.75, 118.57, 117.24, 110.77, 107.15, 97.72, 31.24. HRMS (ESI): Calcd. for C₂₄H₁₉N₅S [M+H]⁺: 410.1433; found: 410.1430.

(34)*tert*-butyl(*E*)-3-(1-methyl-5-((*E*)-phenyldiazenyl)-2-(1*H*-pyrazol-1-yl)-1*H*-indol-3-yl)

acrylate (6aaa)

Orange solid, (29.8 mg, 70% yield), m.p.: 207-208 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.61 (d, J = 1.8 Hz, 1H), 8.04 (dd, J = 8.8, 1.8 Hz, 1H), 7.96 (dd, J = 8.4, 1.3 Hz, 2H), 7.91 (d, J = 1.9 Hz, 1H), 7.76 (d, J = 2.4 Hz, 1H), 7.56 – 7.52 (m, 3H), 7.49 – 7.45 (m, 2H), 6.59 (t, J = 2.2 Hz, 1H), 6.49 (d, J = 16.0 Hz, 1H), 3.63 (s, 3H), 1.53 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 167.19, 152.94, 148.52, 143.02, 137.48, 137.09, 133.79, 133.49, 130.66, 129.24, 124.21, 122.78, 120.12, 118.39, 116.92, 110.85, 108.26, 107.94, 80.35, 30.36, 28.42. HRMS (ESI): Calcd. for C₂₅H₂₅N₅O₂ [M+H]⁺: 428.2081; found: 428.2082.

(35)3-iodo-1-methyl-2-(1H-pyrazol-1-yl)-1H-indole (1a-3)

White solid, (51.6 mg, 80% yield), m.p.: 103-105 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, J = 1.9 Hz, 1H), 7.84 (d, J = 2.5 Hz, 1H), 7.53 (dt, J = 8.0, 0.9 Hz, 1H), 7.40 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.35 (dt, J = 8.3, 0.9 Hz, 1H), 7.30 (ddd, J = 9.5, 7.7, 1.8 Hz, 1H), 6.58 (t, J = 2.2 Hz, 1H), 3.65 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 142.40, 136.36, 135.80, 133.44, 128.61, 124.16, 122.02, 121.37, 110.15, 107.09, 54.45, 30.54. HRMS (ESI): Calcd. for C₁₂H₁₀IN₃ [M+H]⁺: 323.9992; found: 323.9991.

8. Copies of NMR spectra

(1) ¹H-NMR (600MHz, CDCl₃) spectra of 1a-1

(3) ¹H-NMR (600MHz, CDCl₃) spectra of 4aaa

(4) ¹³C-NMR (151MHz, CDCl₃) spectra of 4aaa

(5) ¹H-NMR (600MHz, CDCl₃) spectra of 4baa

(6) ¹³C-NMR (151MHz, CDCl₃) spectra of 4baa

(7) ¹H-NMR (600MHz, CDCl₃) spectra of 4daa

557555555555555555555555555555555555555	29 27 26	46.45	12 12 12 12 12 12 12 12 12 12 12 12 12 1
8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7	444	co co co	22222
	~	~	

(8) ¹³C-NMR (151MHz, CDCl₃) spectra of 4daa

(9) ¹H-NMR (600MHz, CDCl₃) spectra of 4eaa

(10)¹³C-NMR (151MHz, CDCl₃) spectra of 4eaa

(11)¹H-NMR (600MHz, CDCl₃) spectra of 4gaa

(12)¹³C-NMR (151MHz, CDCl₃) spectra of 4gaa

(13)¹H-NMR (600MHz, CDCl₃) spectra of 4haa

8.03 8.02 8.02 8.02 7.289 7.285 7.285 7.554 7.554 7.554 7.554 7.554 7.554 6.56 6.56 -3.64

(14)¹³C-NMR (151MHz, CDCl₃) spectra of 4haa

(15)¹H-NMR (600MHz, CDCl₃) spectra of 4iaa

(16)¹³C-NMR (151MHz, CDCl₃) spectra of 4iaa

(17)¹H-NMR (600MHz, CDCl₃) spectra of 4jaa

(18)¹³C-NMR (151MHz, CDCl₃) spectra of 4jaa

(19)¹H-NMR (600MHz, CDCl₃) spectra of 4kaa

(20)¹³C-NMR (151MHz, CDCl₃) spectra of 4kaa

(21)¹H-NMR (600MHz, CDCl₃) spectra of 4laa

(22)¹³C-NMR (151MHz, CDCl₃) spectra of 4laa

(23)¹H-NMR (600MHz, CDCl₃) spectra of 4aab

(24)¹³C-NMR (151MHz, CDCl₃) spectra of 4aab

(25)¹H-NMR (600MHz, CDCl₃) spectra of 4aac

(26)¹³C-NMR (151MHz, CDCl₃) spectra of 4aac

(27)¹H-NMR (600MHz, CDCl₃) spectra of 4aad

(28)¹³C-NMR (151MHz, CDCl₃) spectra of 4aad

(29)¹H-NMR (600MHz, CDCl₃) spectra of 4aae

(30)¹³C-NMR (151MHz, CDCl₃) spectra of 4aae

(31)¹H-NMR (600MHz, CDCl₃) spectra of 4aaf

(32)¹³C-NMR (151MHz, CDCl₃) spectra of 4aaf

(33)¹H-NMR (600MHz, CDCl₃) spectra of 4aag

(34)¹³C-NMR (151MHz, CDCl₃) spectra of 4aag

(35)¹H-NMR (600MHz, CDCl₃) spectra of 4aah

12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.12
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15
 12.15

(36)¹³C-NMR (151MHz, CDCl₃) spectra of 4aag

(37)¹H-NMR (600MHz, CDCl₃) spectra of 4aba

(38)¹³C-NMR (151MHz, CDCl₃) spectra of 4aba

(40)¹³C-NMR (151MHz, CDCl₃) spectra of 4aca

(41)¹H-NMR (600MHz, CDCl₃) spectra of 4ada

(42)¹³C-NMR (151MHz, CDCl₃) spectra of 4ada

(43)¹⁹F-NMR (565MHz, CDCl₃) spectra of 4ada

(44)¹H-NMR (600MHz, CDCl₃) spectra of 4aea

(45)¹³C-NMR (151MHz, CDCl₃) spectra of 4aea

(47)¹³C-NMR (151MHz, CDCl₃) spectra of 4afa

(48)¹H-NMR (600MHz, CDCl₃) spectra of 4aga

(49)¹³C-NMR (151MHz, CDCl₃) spectra of 4aga

(50)¹H-NMR (600MHz, CDCl₃) spectra of 4aha

(51)¹³C-NMR (151MHz, CDCl₃) spectra of 4aha

(52)¹⁹F-NMR (565MHz, CDCl₃) spectra of 4aha

(53)¹H-NMR (600MHz, CDCl₃) spectra of 4aia

(54)¹³C-NMR (151MHz, CDCl₃) spectra of 4aia

(55)¹H-NMR (600MHz, CDCl₃) spectra of 4aja

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

(57)¹H-NMR (600MHz, CDCl₃) spectra of 4aka

8.49 8.19 8.19 8.19 8.19 8.19 8.10 8.10 8.10 8.10 8.10 8.10 9.8.10 1.5.58 9.5.58 9.5.58 9.5.55 1.5.555 1.5.555 1.5.555 1.5.555 1.5.555 1.5.555 1.5.555 1.5.555 1.5.

(58)¹³C-NMR (151MHz, CDCl₃) spectra of 4aka

(59)¹H-NMR (600MHz, CDCl₃) spectra of 4ala

(60)¹³C-NMR (151MHz, CDCl₃) spectra of 4ala

(62)¹³C-NMR (151MHz, CDCl₃) spectra of 4ama

(63)¹H-NMR (600MHz, CDCl₃) spectra of 4ana

(64)¹³C-NMR (151MHz, CDCl₃) spectra of 4ana

(65)¹H-NMR (600MHz, CDCl₃) spectra of 4aoa

(66)¹³C-NMR (151MHz, CDCl₃) spectra of 4aoa

(67)¹H-NMR (600MHz, CDCl₃) spectra of 5aaa

(68)¹³C-NMR (151MHz, CDCl₃) spectra of 5aaa

(69)¹H-NMR (600MHz, CDCl₃) spectra of 6aaa

(70)¹³C-NMR (151MHz, CDCl₃) spectra of 6aaa

(71)¹H-NMR (600MHz, CDCl₃) spectra of 1a-3

(72)¹³C-NMR (151MHz, CDCl₃) spectra of 1a-3

9. References

- [1] G. W. Gribble and J. H. Hoffman, Synthesis., 1977, 1977, 859–860.
- [2] P. Wang, Z. Yang, Z. Wang, C. Xu, L. Huang, S. Wang, H. Zhang and A. Lei, Angew. Chem.
- Int. Ed., 2019, 131, 15894–15898.
- [3] D. Beukeaw, K. Udomsasporn and S. Yotphan, J Org Chem., 2015, 80, 3447–3454.