Electronically Supplementary Information for:

Fast proton conductors for low humidity: hydrophilic sulfonated and phosphonated polysilsesquioxanes with Al–O–P crosslinks

Hirotaka Itakura, Masanao Ishijima, and Koichi Kajihara*

Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan *E-mail : kkaji@tmu.ac.jp

Experimental procedure

Dilute hydrochloric acid was added at once promptly to a mixture of (3-sulphanylpropyl)trimethoxysilane (3-SPTMS, 8 mmol, Tokyo Chemical Industry) and (2-diethylphosphatoethyl)triethoxysilane (DPTES, 2 mmol, Gelest) at a 3-SPTMS : DPTES : H₂O : HCl molar ratio of 0.8 : 0.2 : 3 : 0.002 and stirred in a sealed container at 20 °C for 3 h. The resulting solution was aged at 80 °C for 1 day without stirring, followed by drying at 60 °C for 3 h in air and 1 day under vacuum. The resulting viscous liquid 1 was oxidized by mixing with 30 wt% hydrogen peroxide (Fujifilm Wako Pure Chemical) at an S : H₂O₂ molar ratio of 1 : 5 and stirring the mixture at 20 °C for 2 days. Afterward, excess H₂O₂ was decomposed by immersing a Pt plate in this solution, which was subsequently dried to obtain **2** in powder form. Aluminum (III) chloride hexahydrate (Fujifilm Wako Pure Chemical) and phosphoric acid (PA, Fujifilm Wako Pure Chemical) were dissolved in water and **2** was added at a Si : Al : PA molar ratio of 1 : z_{AI} : z_{PA} . The mixture was heated at 100 °C for 2 days in a sealed container, followed by drying at 100 °C for 1 day in air. The samples used for the conductivity measurements were obtained by dissolving the resulting solid in water and drying the solution at 60 °C for 1 day in air. The resulting samples were referred to as the combination of z_{AI} and z_{PA} , i.e., (z_{AI} , z_{PA}).

As reference materials for X-ray diffraction (XRD) and attenuated total reflection Fourier transform infrared (ATR-FT-IR) measurements, poly(R-SQ)s with 3-sulphanylpropyl groups (poly(3-SP-SQ)) and *n*-propyl groups (poly(Pr-SQ)) were prepared. Dilute hydrochloric acid was added to 3-SPTMS or *n*-propyltrimethoxysilane (Tokyo Chemical Industry) at an alkoxysilane : H_2O : HCl molar ratio of 1 : 3 : 0.002, followed by stirring, aging, and drying under the same conditions as those used for the preparation of 1.

Liquid-state ¹H, ²⁹Si, and ³¹P nuclear magnetic resonance (NMR, JNM-ECS300, JEOL) spectra were recorded in a single pulse sequence with pulse flip angles of 45, 30, and 30°, respectively, and relaxation delays of 5, 20, and 5 s, respectively. Gel permeation chromatography (GPC) was performed using a Shodex KF-804L column, refractive index detector (RID-10A, Shimadzu), and tetrahydrofuran as the eluent (flow rate of 1.0 mL min⁻¹). Molar mass distribution curves were derived using standard polystyrene samples and were used to calculate

the number- and mass-average molar masses (M_n and M_m , respectively). X-ray diffractometers (RINT-TTR III, Rigaku and NanoViewer, Rigaku) were used to measure XRD and small-angle X-ray scattering (SAXS) patterns with Cu Ka radiation. The resulting diffraction patterns were plotted as a function of scattering vector $Q = 4\pi \sin \theta / \lambda$. ATR-FT-IR measurements were conducted at room temperature with a FT-IR spectrometer (FT/IR-6100, JASCO) and an ATR attachment with a diamond prism (ATR PRO670H-S). Before the ATR-FT-IR measurements, several samples were subjected to heat treatment up to 200 °C for 24 h in air. Simultaneous thermogravimetric and differential thermal analyses (TG-DTA, STA-7300, Hitachi) were performed at a heating rate of 10 °C min⁻¹ in air in a platinum pan containing ~8 mg of powdered sample. The ac conductivity was evaluated using an electrochemical analyzer (SP-200, Bio-Logic) with a frequency range from 200 kHz to 1 Hz and an ac amplitude of 50 mV. Temperature was maintained between 40 and 120 °C in a conventional air-circulating oven (DKM300, Yamato) in air without humidity control (relative humidity of ~20 %RH at 40 °C and ~1 %RH at 120 °C). The sample (~1–2 mm thick) was sandwiched with Au electrodes (5 mm ϕ) and equilibrated at each temperature by maintaining 1 h prior to the measurement. Resistance R was obtained from the intercept of the extrapolation of the Nyquist plot on the real axis, and ac conductivity σ_{ac} was calculated from the equation $\sigma_{ac} = t/(RA)$, where t is sample thickness and A is electrode area.

Fig. S1 ²⁹Si NMR spectra of **1** (59.6 MHz, CDCl₃) and **2** (59.6 MHz, D₂O). The broad signal peaked at -110 ppm originates from the silica sample tube. The superscripts in T denote the number of bridging oxygen atoms bonded to the respective T (or SQ) units.

Table S1 Fractions of T¹, T², and T³ units (f_{T1} , f_{T2} , and f_{T3} , respectively), average number of bridging oxygen atoms per Si (<m>) evaluated from the equation $<m> = f_{T1} + 2f_{T2} + 3f_{T3}$, fractions of residual SiOMe, SiOEt, and SiOH groups (f_{SiOMe} , f_{SiOEt} , and f_{SiOH} , respectively) of **1** and **2**. The fraction of SiOH groups (f_{SiOH}) was calculated based on the prediction that oxygen atoms bonded to Si belong to either the bridging oxygen atoms, residual SiOMe or SiOEt groups, or SiOH groups ($f_{SiOH} = 1 - <m>/3 - 0.8f_{SiOMe} - 0.2f_{SiOEt}$).

Sample	f_{T1}	fT2	f_{T3}	<m></m>	<i>f</i> SiOMe	<i>f</i> sioet	<i>f</i> sioh
1	_	0.35	0.65	2.65	0.01	0.06	0.10
2	_	0.32	0.68	2.68	0.00	0.00	0.11

Fig. S2 Polystyrene-equivalent molar mass distribution curve of 1.

Table S2 The peak assignments	of ³¹ P NMR	spectra shown	n in Fig.	3(a) or	n the basis	of the
assignments reported in refs. 1 and	d 2.					

Peak	Assignment
А	Free phosphoric acid molecules and ions, H ₃ PO ₄ , H ₂ PO ₄ ⁻ , H ₆ P ₂ O ₈ , H ₅ P ₂ O ₈ ⁻
В	P nuclei in H ₃ PO ₄ molecules bonded to Al and hydrogen-bonded to other H ₃ PO ₄ molecules, $[Al(H_3PO_4) (H_3PO_4)_n]^{m^+}, (n \ge 1, m \text{ is undetermined})$
С	P nuclei in $H_2PO_4^-$ ligands complexed to Al, [Al(H_2PO_4)] ²⁺ and [Al(H_2PO_4) ₂] ⁺
D	P nuclei in H ₃ PO ₄ complexed to Al, $[Al(H_3PO_4)]^{3+}$
В'	P nuclei in RPO(OH) ₂ groups bonded to Al and hydrogen-bonded to other RPO(OH) ₂ groups and H ₃ PO ₄ molecules, [Al(RPO(OH) ₂) (RPO(OH) ₂) _n (H ₃ PO ₄) _l] ^{m+} , (n + l ≥ 1, m is undetermined)
C'	P nuclei in $RPO_2(OH)^-$ ligands bonded to Al, [Al($RPO_2(OH)$)] ²⁺ , [Al($RPO_2(OH)$) ₂] ⁺ , and [Al($RPO_2(OH)$) (HPO ₄)] ⁺
D'	P nuclei in RPO(OH) ₂ groups complexed to Al, $[Al(RPO(OH)_2)]^{3+}$

Table S3 Appearances of samples prepared at various (z_{AI}, z_{PA}) values; -: brittle, +: flexible but not tough, ++: flexible and tough, L: liquid. The sample denoted as $(z_{AI}, z_{PA}) = (0, 0)$ is identical to **2**.

ZAI	ZPA					
	0	0.2	0.3	0.4	0.5	0.6
0	_	+			L	
0.2		++	++	++	++	L
0.3		_	++	++	++	
0.4	_	_	++	++	++	

Fig. S3 Typical appearance of samples listed in Table S3. The samples prepared at $(z_{AI}, z_{PA}) = (0, 0)$ (2) and (0.4, 0.2) were brittle and fractured easily. The sample prepared at $(z_{AI}, z_{PA}) = (0.2, 0)$ was soft but not tough, and split upon bending. The samples prepared at $(z_{AI}, z_{PA}) = (0.2, 0)$ and (0.2, 0.5) were flexible and tough.

Fig. S4 SAXS pattern of the sample prepared at $(z_{AI}, z_{PA}) = (0.2, 0.5)$.

Fig. S5 TG-DTA curves of the sample prepared at $(z_{AI}, z_{PA}) = (0.2, 0.5)$.

Fig. S6 ATR-FT-IR spectra of samples measured at room temperature. Successive curves have shifted ordinates. Spectra magnified 3 or 5 times are also shown between 1300 and 3800 cm⁻¹. The asterisks at ~2350 cm⁻¹ indicate the absorption band of CO₂ in air. (a) Poly(3-SP-SQ), **1**, poly(HO₃SC₃H₆-SQ) (oxidation product of poly(3-SP-SQ)), **2**, and the sample prepared by mixing **2** with Al³⁺ ions and PA at (*z*AI, *z*PA) = (0.2, 0.5). (b) The sample prepared by mixing **2** with Al³⁺ ions and PA at (*z*AI, *z*PA) = (0.2, 0.5); as prepared one and those subjected to heat treatment at designated temperatures for 24 h in air. A spectrum of amorphous SiO₂ (*a*-SiO₂) powder is also shown for comparison.

Fig. S7 Magnified (left) and full-range (right) Nyquist plots of the sample prepared at (z_{AI} , z_{PA}) = (0.2, 0.5).

Fig. S8 Variation of ac conductivity at 100 and 120 °C with time of the samples prepared at (*z*_{Al}, z_{PA}) = (0.2, 0.5) similarly to the one shown in Fig. 4. The right panel shows the conductivity at 100 °C after rest at room temperature for ~20 h of the sample subjected to the conductivity measurement at 100 °C for 24 h (left panel). Prior to starting measurements at *t* = 0 and 45 h, each sample was equilibrated at respective temperature by maintaining for 1 h. At 120 °C, vapor bubbles were formed between the sample and Au electrodes at ~2 h. They deformed the sample, and resulted in the partial loss of electrical contact and a sudden conductivity decrease.

References

- 1 J. W. Akitt, N. N. Greenwood and G. D. Lester, J. Chem. Soc. A, 1971, 2450-2457.
- 2 R. F. Mortlock, A. T. Bell and C. J. Radke, J. Phys. Chem., 1993, 97, 767-774.