Electronic Supporting Information

Pure separation of acetylene based on a sulfonic acid and amino group functionalized Zn -MOF

Yu-Xin Deng, Guo-Ping Yang*, and Yao-Yu Wang*

Abstract

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry \& Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China.

*E-mail: ygp@nwu.edu.cn; wyaoyu@nwu.edu.cn.

1. Materials and general methods

All solvents for synthesis were purchased commercially. Fourier transform infrared spectrum (FT-IR) was measured with a Nicolet FT-IR 170 SX spectrophotometer in the range 4000-400 cm^{-1}. Powder X-ray diffraction (PXRD) pattern was recorded on a Bruker D8 ADVANCE X-ray powder diffractometer $(\mathrm{Cu} \mathrm{K} \alpha, 1.5418 \AA$). Thermalgravimetric analyses (TGA) were carried out in a nitrogen stream using a Netzsch TG209F3 equipment at a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$. Single crystal diffraction data were collected on a Bruker SMART APEX II CCD single crystal diffractometer. Gas adsorption measurements were performed with an automatic volumetric sorption apparatus (Micrometrics ASAP 2020M). Breakthrough experiments were performed on a Quantachrome dynaSorb BT equipment.

1.1 Synthesis of $\left[\mathrm{Zn}_{3}(\mathrm{SNDC})(\mathrm{AmTAZ})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O} \cdot \mathrm{CH}_{3} \mathrm{CN}(1)$.

$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.029 \mathrm{~g}, 0.1 \mathrm{mmol}), \mathrm{H}_{3} \operatorname{SNDC}(0.015 \mathrm{~g}, 0.05 \mathrm{mmol})$, AmTAZ (0.004 g, 0.05 mmol), $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$ and two drops of alkali solution $(1 \mathrm{M} \mathrm{NaOH})$ were added to a glass vial with stirring to dissolve the mixture. The solution was then transferred to an oven set at $105^{\circ} \mathrm{C}$. After heating for 72 h and following a cooling procedure, light yellow transparent block crystals of 1 were obtained (yield: 78\%). FT-IR (KBr, cm ${ }^{-1}$) (Fig. S4): 3420 (s), 1620 (s), 1370 (m), 1340 (m), 1210 (m), 1120 (w), 1040 (w), 828 (w), 760 (w), 677 (w), 572 (w), 486 (w).

2. X-Ray Crystallography

The single-crystal Xray diffractions were tested on Bruker SMART APEX II CCD diffractometer equipped with graphite monochromated Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$ via ϕ / ω scan method. The diffraction data were corrected for Lorentz and polarization effects for empirical absorption based on multiscan. The structures were solved by the direct methods and refined on F^{2} via SHELXTL program. The anisotropic thermal parameters were applied to non-hydrogen atoms. The hydrogen atoms of ligands were calculated and added at ideal positions. The crystallographic data of $\mathbf{1}$ and 1a are summarized in Table S2, and the selected bond lengths and angles are listed in Table S3, S4. The disordered lattice molecules were refined by the SQUEEZE program and this result is consistent to the results of TGA.

In $\mathbf{1}$, the Znl centre was accomplished by one O atom from carboxylic acid group on SNDC and three N atoms from three distinct AmTAZ. Zn 2 centre was formed by one O atom from sulfonic acid group on SNDC and three N atoms from three different AmTAZ. Zn3 centre was
formed by one O atom from a carboxylate of SNDC , one O atom on the axial position originating from water and three N atoms from ligand AmTAZ. In 1a, the Zn 1 centre was accomplished by one O atom from carboxylic acid group on SNDC and three N atoms from three distinct AmTAZ. Zn 2 centre was formed by one O atom from sulfonic acid group on SNDC and three N atoms from three different AmTAZ. Zn 3 was formed with one O coming from the carboxylic acid group of SNDC and three N atoms coming from the ligand AmTAZ.

3. Gas Sorption Experiments

Before the gas adsorption experiment, the synthesized samples were activated at 473 K vacuum for 4 h . Gas adsorption measurements were then performed using the Micrometrics ASAP 2020M gas Adsorption Analyzer.

3.1 Fitting Adsorption Heat of Pure Component Isotherms

The adsorbate molecules $\left(\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{CO}_{2}\right.$ and $\left.\mathrm{CH}_{4}\right)$ and the adsorbent lattice atoms is reflected in the isosteric heat of adsorption $\left(Q_{\mathrm{st}}\right)$ using Virial 2 model, which define as:

$$
\begin{gather*}
\ln P=\ln N+1 / T \sum_{i=0}^{m} a_{i} N^{i}+\sum_{i=0}^{n} b_{i} N^{i} \tag{1}\\
Q_{\text {st }}=-R \sum_{i=0}^{m} a_{i} N^{i}
\end{gather*}
$$

Here, $Q_{\text {st }}$ is the coverage-dependent enthalpy of adsorption, P is the pressure $(\mathrm{mmHg}), N$ is the adsorbed amount (mg / g), T is the temperature (K), a_{i} and b_{i} are virial coefficients, and m and n represent the number of coefficients used to describe the isotherms. $Q_{s t}$ is the coverage-dependent enthalpy of adsorption and R is the universal gas constant. A virial-type equation (1) was used to fit adsorption data at 273 K and 298 K , and then the values of a_{0} through a_{m} were used to calculate the isosteric heat of adsorption using equation (2).

3.2 Ideal Adsorbed Solution Theory (IAST)

The experimental measured loadings for pure $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{CO}_{2}$ and CH_{4} (measured at 273 and 298 K) in samples were fitted with a Langmuir-Freundlich (L-F) model (equation 3):

$$
\begin{equation*}
q=\frac{a_{1}{ }^{*} b_{1}{ }^{*} p^{c_{1}}}{1+b_{1}^{*} p^{c_{1}}} \tag{3}
\end{equation*}
$$

Where q and p are adsorbed amounts per mass of adsorbent ($\mathrm{mmol} / \mathrm{g}$) and pressures of component $i(\mathrm{kPa})$, respectively.

IAST calculations of adsorption selectivity for binary mixtures defined by equation 4 :

$$
\begin{equation*}
S_{i / j}=\frac{x_{i} * y_{i}}{x_{j} * y_{i}} \tag{4}
\end{equation*}
$$

Where x_{i} and x_{j} are the molar loadings in the adsorbed phase in equilibrium with the bulk gas phase with partial pressures y_{i}, and y_{j}. We calculate the values of x_{i} and x_{j} using IAST of Myers and Prausnitz.

3.3 Dynamic Gas Breakthrough Experiments

The as-synthesized sample 0.966 g of $\mathbf{1 a}(966 \mathrm{mg})$ was degasified in-situ in the column through vacuuming at 473 K for 4 h before the measurement. The breakthrough experiment was performed on the Quantachrome dynaSorb BT equipments at 298 K and 1 bar with an equal volume of mixed gas (gas A : gas $\mathrm{B}: \mathrm{Ar}=5 \%: 5 \%: 90 \%$ or gas A : gas B : gas $\mathrm{C}: \mathrm{Ar}=5 \%: 5 \%: 5 \%$: $85 \%, \mathrm{Ar}$ as the carrier gas, flow rate $=6 \mathrm{~mL} \mathrm{~min}^{-1}$). The activated $\mathbf{1 a}$ was filled into a packed column of $\phi 4.2 \times 80 \mathrm{~mm}$, and then the packed column was washed with Ar at a rate $\mathrm{of} 6 \mathrm{~mL} \mathrm{~min}^{-1}$ at 343 K for 60 minutes to further activate the samples. Between two breakthrough experiments, the adsorbent was regenerated by Ar flow of $6 \mathrm{~mL} \mathrm{~min}{ }^{-1}$ for 35 min at 353 K to guarantee a complete removal of the adsorbed gases. The outlet composition was continuously monitored by gas chromatograph until complete breakthrough was achieved. On the basis of the gas balance, the gas adsorption capacities can be determined as follows:

$$
\begin{equation*}
q_{i}=\frac{C_{i} V}{22.4 \times m} \times \int_{0}^{t}\left(1-\frac{F}{F_{0}}\right) d t \tag{5}
\end{equation*}
$$

Where q_{i} is the equilibrium adsorption capacity of gas $i(\mathrm{mmol} / \mathrm{g}), C_{i}$ is the feed gas concentration, V is the volumetric feed flow rate $\left(\mathrm{cm}^{3} / \mathrm{min}\right), t$ is the adsorption time $(\mathrm{min}), F_{0}$ and F are the inlet and outlet gas molar flow rates, respectively, and m is the mass of the adsorbent (g).

The separation factor (α) of the breakthrough experiment is determined as:

$$
\begin{equation*}
\alpha=\frac{q_{1} y_{2}}{q_{2} y_{1}} \tag{6}
\end{equation*}
$$

In which y_{i} is the molar fraction of gas i in the gas mixture.

3.4 Grand canonical Monte Carlo (GCMC) simulations

All simulations were performed by the Materials Studio (MS) 2020 package.
The preferred sorption locations were performed by GCMC simulations with Adsorption fixed loading task and Metropolis method ${ }^{1}$ in the sorption calculation module. As for all of the

GCMC simulations, the framework was considered to be rigid. The framework and gas molecule were described by the forcefiled of universal force field (UFF). The cutoff radius was set to $12.5 \AA$, for the Lennard-Jones (LJ) interactions, and the electrostatic interactions, and the Ewald summation method was selected to calculate the electrostatic interactions between adsorbates as well as between adsorbates and the framework. For state point in GCMC simulation, the system adopted 1×10^{6} Monte Carlo steps to guarantee equilibration, and the ultimate data was collected for another 1×10^{7} Monte Carlo steps. The charges of the atoms of both gas molecules and the framework were assigned by QEq method.

Fig. S1 Coordination environment of Zn^{2+} ions in 1 (Symmetric code: \#1-x, $\mathrm{y}+1 / 2,-\mathrm{z}+1 / 2$; \#2 -x, $-\mathrm{y}+1,-\mathrm{z}+1$; \#3-x, -y, -z+1; \#4 x+1, y, z; \#5-x+1, -y, -z+1; \#6 x-1, y, z; \#7-x, y-1/2, -z+1/2).

Fig. S2 Coordination environment of Zn^{2+} ions in $\mathbf{1 a}$ (Symmetric code: \#1-x+2, $\mathrm{y}-1 / 2,-\mathrm{z}+3 / 2$; \#2 $\mathrm{x}-1, y, z ; \# 3-x+1,-y+1,-z+1 ; \# 4-x+2,-y+1,-z+1 ; \# 5-x+2,-y,-z+1 ; \# 6 x+1, y, z ; \# 7-x+2, y+1 / 2$, $-z+3 / 2$).

SNDC

AmTAZ

Fig. S3 Coordination modes of SNDC and ancillary ligand AmTAZ in $\mathbf{1}$.

Fig. S4 FT-IR spectra of complexes 1 and 1a.

Fig. S5 PXRD patterns of (a) simulated 1, as-synthesized 1, tested 1a, $\mathbf{1}$ in different solvents for 12 h and (b) $\mathbf{1}$ in aqueous solutions of different pH for 12 h .

Fig. S6 TGA curve of as-synthesized 1 and adsorbent 1a

Fig. S7 (a) The pore size distribution of 1a (mainly at $4.0 \AA$), as calculated by Original Density Functional Theory. (b) The BET surface area plot for 1a.

Fig. S8 Virial fitting of (a) $\mathrm{C}_{2} \mathrm{H}_{2}$, (b) CO_{2} and (c) CH_{4} adsorption isotherms (points) for $Q_{\text {st }}$ calculation on 1a.

Fig. S9 Single-site Langmuir-Freundlich fitting of $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{CO}_{2}$ and CH_{4} adsorption isotherms on 1a at 298 K .

Fig. $\mathbf{S 1 0}$ (a) Three cycles of breakthrough experiment for the equimolar $\mathrm{C}_{2} \mathrm{H}_{2} / \mathrm{CO}_{2}$ in $\mathbf{1 a}$. (b) PXRD patterns showing the stability of 1a.

Fig. S11 Three cycles of breakthrough experiment for the equimolar $\mathrm{C}_{2} \mathrm{H}_{2} / \mathrm{CO}_{2} / \mathrm{CH}_{4}$ in 1a.

Fig. S12 Simulated probability density distribution profile of $\mathrm{C}_{2} \mathrm{H}_{2}$ (a) and CO_{2} (b) in 1a by GCMC simulation at 100 kPa and 298 K . (Note: $\mathrm{C}_{2} \mathrm{H}_{2}$ was more concentrated in the voids of the adsorbent than CO_{2}, which was compatible with experimental results.).

Table S1. Physicochemical characteristics of different gases

	Boiling point (K)	Molecular dimensions (\AA)	Polarizability $\left(\AA^{\mathbf{3}}\right)$	Quadrupole moment $\times \mathbf{1 0}^{\mathbf{2 6}} / \mathbf{e s u ~ c m}^{\mathbf{2}}$
$\mathrm{C}_{2} \mathrm{H}_{2}$	189.3	$3.32 \times 3.34 \times 5.7$	$3.33-3.93$	7.5
CO_{2}	194.7	$3.18 \times 3.33 \times 5.36$	2.91	-4.3
CH_{4}	111.66	$3.82 \times 3.94 \times 4.10$	2.59	0

Table S2. Crystallographic data of $\mathbf{1}$ and 1a.

Compond	1	1a
Empirical formula	$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{13} \mathrm{O}_{9} \mathrm{SZn}_{3}$	$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{12} \mathrm{O}_{7} \mathrm{SZn}_{3}$
Formula mass	815.60	738.58
Crystal system	Monoclinic	Monoclinic
Space group	$P 2{ }_{1} / c$	$P 21 / c$
$a[\AA]$	14.143(2)	14.0795(7)
$b[\AA]$	9.9829(15)	9.8510(5)
$c[\AA]$	25.111(5)	25.9541(12)
$\alpha[\AA]$	90	90
$\beta[\AA]$	96.777(5)	95.909(2)
$\gamma[\AA]$	90	90
$V\left[\AA^{3}\right]$	3520.6(10)	3580.6(3)
Z	4	4
$D_{\text {calcd. }}\left[\mathrm{Mg} \cdot \mathrm{m}^{-3}\right]$	1.427	1.370
$F(000)$	1512	1472
$\mathrm{R}_{\text {int }}$	0.0508	0.0425
GOF on F^{2}	1.029	1.054
$R_{1}{ }^{\text {a }}, w R_{2}{ }^{\text {b }}[\mathrm{I}>2 \sigma]$	$R_{1}=0.0896, w R_{2}=0.2568$	$R_{1}=0.0537, w R_{2}=0.1716$
$R_{1}{ }^{\text {a }}, w R_{2}{ }^{\mathrm{b}}$ (all data)	$R_{1}=0.1191, w R_{2}=0.2797$	$R_{1}=0.0636, w R_{2}=0.1802$
${ }^{\mathrm{a}} \mathrm{R}_{1}=\Sigma\left(\left\|\mathrm{F}_{0}\right\|-\left\|\mathrm{F}_{\mathrm{c}}\right\|\right) / \Sigma\left\|\mathrm{F}_{0}\right\| \cdot{ }^{\mathrm{b}} w R_{2}=\left[\Sigma \mathrm{w}\left(\mathrm{~F}_{0}^{2}-\mathrm{F}_{\mathrm{c}}^{2}\right)^{2} / \Sigma \mathrm{w}\left(\mathrm{~F}_{0}^{2}\right)^{2}\right]^{1 / 2}$		

Table S3. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{1}$.

	Compound $\mathbf{1}$		
$\mathrm{Zn}(1)-\mathrm{O}(1)$	$1.950(7)$	$\mathrm{N}(1) \# 4-\mathrm{Zn}(3)-\mathrm{O}(9)$	$80.5(4)$
$\mathrm{Zn}(1)-\mathrm{N}(4)$	$1.986(8)$	$\mathrm{N}(1) \# 4-\mathrm{Zn}(3)-\mathrm{N}(2) \# 5$	$91.5(3)$
$\mathrm{Zn}(1)-\mathrm{N}(7)$	$1.982(8)$	$\mathrm{N}(1) \# 4-\mathrm{Zn}(3)-\mathrm{N}(6) \# 4$	$111.7(3)$
$\mathrm{Zn}(1)-\mathrm{N}(12) \# 1$	$2.010(8)$	$\mathrm{N}(2) \# 5-\mathrm{Zn}(3)-\mathrm{O}(9)$	$171.6(4)$
$\mathrm{Zn}(2)-\mathrm{O}(4)$	$1.954(7)$	$\mathrm{N}(6) \# 4-\mathrm{Zn}(3)-\mathrm{O}(9)$	$88.8(4)$
$\mathrm{Zn}(2)-\mathrm{N}(8) \# 2$	$1.994(8)$	$\mathrm{N}(6) \# 4-\mathrm{Zn}(3)-\mathrm{N}(2) \# 5$	$96.8(3)$
$\mathrm{Zn}(2)-\mathrm{N}(10)$	$1.968(8)$	$\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{Zn}(1)$	$120.0(8)$
$\mathrm{Zn}(2)-\mathrm{N}(13) \# 3$	$1.985(8)$	$\mathrm{S}(1)-\mathrm{O}(4)-\mathrm{Zn}(2)$	$124.9(5)$
$\mathrm{Zn}(3)-\mathrm{O}(6)$	$1.941(8)$	$\mathrm{C}(18)-\mathrm{O}(6)-\mathrm{Zn}(3)$	$116.1(9)$
$\mathrm{Zn}(3)-\mathrm{O}(9)$	$2.368(10)$	$\mathrm{Zn}(3)-\mathrm{O}(9)-\mathrm{H}(9 \mathrm{~A})$	109.2
$\mathrm{Zn}(3)-\mathrm{N}(1) \# 4$	$1.999(7)$	$\mathrm{Zn}(3)-\mathrm{O}(9)-\mathrm{H}(9 \mathrm{~B})$	109.4
$\mathrm{Zn}(3)-\mathrm{N}(2) \# 5$	$2.120(9)$	$\mathrm{N}(4)-\mathrm{N}(1)-\mathrm{Zn}(3) \# 6$	$120.6(6)$
$\mathrm{Zn}(3)-\mathrm{N}(6) \# 4$	$2.013(8)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Zn}(3) \# 6$	$132.4(6)$
$\mathrm{O}(1)-\mathrm{Zn}(1)-\mathrm{N}(4)$	$100.2(3)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{N}(4)$	$105.5(7)$
$\mathrm{O}(1)-\mathrm{Zn}(1)-\mathrm{N}(7)$	$120.1(4)$	$\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{Zn}(3) \# 5$	$126.1(7)$
$\mathrm{O}(1)-\mathrm{Zn}(1)-\mathrm{N}(12) \# 1$	$107.3(3)$	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{Zn}(3) \# 5$	$131.1(8)$
$\mathrm{N}(4)-\mathrm{Zn}(1)-\mathrm{N}(12) \# 1$	$114.2(4)$	$\mathrm{N}(1)-\mathrm{N}(4)-\mathrm{Zn}(1)$	$126.1(6)$
$\mathrm{N}(7)-\mathrm{Zn}(1)-\mathrm{N}(4)$	$111.0(3)$	$\mathrm{C}(12)-\mathrm{N}(4)-\mathrm{Zn}(1)$	$127.9(7)$
$\mathrm{N}(7)-\mathrm{Zn}(1)-\mathrm{N}(12) \# 1$	$104.4(3)$	$\mathrm{C}(12)-\mathrm{N}(4)-\mathrm{N}(1)$	$105.8(8)$
$\mathrm{O}(4)-\mathrm{Zn}(2)-\mathrm{N}(8) \# 2$	$102.0(3)$	$\mathrm{N}(7)-\mathrm{N}(6)-\mathrm{Zn}(3) \# 6$	$124.8(6)$
$\mathrm{O}(4)-\mathrm{Zn}(2)-\mathrm{N}(10)$	$108.7(4)$	$\mathrm{C}(10)-\mathrm{N}(6)-\mathrm{Zn}(3) \# 6$	$130.2(6)$
$\mathrm{O}(4)-\mathrm{Zn}(2)-\mathrm{N}(13) \# 3$	$114.0(4)$	$\mathrm{C}(10)-\mathrm{N}(6)-\mathrm{N}(7)$	$105.0(8)$
$\mathrm{N}(10)-\mathrm{Zn}(2)-\mathrm{N}(8) \# 2$	$112.7(4)$	$\mathrm{N}(6)-\mathrm{N}(7)-\mathrm{Zn}(1)$	$122.6(6)$
$\mathrm{N}(10)-\mathrm{Zn}(2)-\mathrm{N}(13) \# 3$	$110.8(3)$	$\mathrm{C}(8)-\mathrm{N}(7)-\mathrm{Zn}(1)$	$130.5(7)$
$\mathrm{N}(13) \# 3-\mathrm{Zn}(2)-\mathrm{N}(8) \# 2$	$108.6(4)$	$\mathrm{C}(8)-\mathrm{N}(8)-\mathrm{Zn}(2) \# 2$	$128.0(7)$
$\mathrm{O}(6)-\mathrm{Zn}(3)-\mathrm{N}(1) \# 4$	$143.3(4)$	$\mathrm{C}(10)-\mathrm{N}(8)-\mathrm{Zn}(2) \# 2$	$128.6(7)$
$\mathrm{O}(6)-\mathrm{Zn}(3)-\mathrm{N}(2) \# 5$	$101.1(4)$	$\mathrm{N}(13)-\mathrm{N}(10)-\mathrm{Zn}(2)$	$122.9(6)$
$\mathrm{O}(6)-\mathrm{Zn}(3)-\mathrm{N}(6) \# 4$	$101.0(4)$	$\mathrm{C}(6)-\mathrm{N}(10)-\mathrm{Zn}(2)$	$131.5(6)$
$\mathrm{C}(1)-\mathrm{N}(12)-\mathrm{Zn}(1) \# 7$	$125.6(7)$	$\mathrm{N}(10)-\mathrm{N}(13)-\mathrm{Zn}(2) \# 3$	$126.1(6)$
$\mathrm{C}(12)-\mathrm{N}(12)-\mathrm{Zn}(1) \# 7$	$129.4(7)$	$\mathrm{C}(4)-\mathrm{N}(13)-\mathrm{Zn}(2) \# 3$	$129.2(7)$
S			

Symmetric code: \#1-x, y+1/2, -z+1/2; \#2-x, -y+1, -z+1; \#3-x, -y, -z+1; \#4 x+1, y, z; \#5-x+1, -y, $-\mathrm{z}+1 ; \# 6 \mathrm{x}-1, \mathrm{y}, \mathrm{z} ; \# 7-\mathrm{x}, \mathrm{y}-1 / 2,-\mathrm{z}+1 / 2$.

Table S4. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $\mathbf{1 a}$.

	Compound 1a		
$\mathrm{Zn}(1)-\mathrm{O}(4)$	$1.955(3)$	$\mathrm{O}(6)-\mathrm{Zn}(3)-\mathrm{N}(13)$	$107.54(18)$
$\mathrm{Zn}(1)-\mathrm{N}(2) \# 1$	$2.006(4)$	$\mathrm{N}(8) \# 4-\mathrm{Zn}(3)-\mathrm{N}(10) \# 5$	$110.79(17)$
$\mathrm{Zn}(1)-\mathrm{N}(6)$	$1.976(4)$	$\mathrm{N}(8) \# 4-\mathrm{Zn}(3)-\mathrm{N}(13)$	$110.26(17)$
$\mathrm{Zn}(1)-\mathrm{N}(12)$	$2.009(4)$	$\mathrm{N}(10) \# 5-\mathrm{Zn}(3)-\mathrm{N}(13)$	$111.07(17)$
$\mathrm{Zn}(2)-\mathrm{O}(1)$	$1.917(4)$	$\mathrm{C}(18)-\mathrm{O}(1)-\mathrm{Zn}(2)$	$116.9(4)$
$\mathrm{Zn}(2)-\mathrm{N}(1) \# 2$	$1.986(4)$	$\mathrm{C}(20)-\mathrm{O}(4)-\mathrm{Zn}(1)$	$115.1(4)$
$\mathrm{Zn}(2)-\mathrm{N}(4) \# 2$	$2.001(4)$	$\mathrm{S}(1)-\mathrm{O}(6)-\mathrm{Zn}(3)$	$121.2(2)$
$\mathrm{Zn}(2)-\mathrm{N}(7) \# 3$	$2.064(4)$	$\mathrm{N}(12)-\mathrm{N}(1)-\mathrm{Zn}(2) \# 6$	$120.3(3)$
$\mathrm{Zn}(3)-\mathrm{O}(6)$	$1.968(4)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{Zn}(2) \# 6$	$131.3(3)$
$\mathrm{Zn}(3)-\mathrm{N}(8) \# 4$	$1.975(4)$	$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{Zn}(1) \# 7$	$128.6(4)$
$\mathrm{Zn}(3)-\mathrm{N}(10) \# 5$	$1.983(4)$	$\mathrm{C}(13)-\mathrm{N}(2)-\mathrm{Zn}(1) \# 7$	$127.2(3)$
$\mathrm{Zn}(3)-\mathrm{N}(13)$	$1.986(4)$	$\mathrm{N}(6)-\mathrm{N}(4)-\mathrm{Zn}(2) \# 6$	$125.2(3)$
$\mathrm{O}(4)-\mathrm{Zn}(1)-\mathrm{N}(2) \# 1$	$109.51(17)$	$\mathrm{C}(6)-\mathrm{N}(4)-\mathrm{Zn}(2) \# 6$	$128.2(3)$
$\mathrm{O}(4)-\mathrm{Zn}(1)-\mathrm{N}(6)$	$120.66(17)$	$\mathrm{N}(4)-\mathrm{N}(6)-\mathrm{Zn}(1)$	$123.1(3)$
$\mathrm{O}(4)-\mathrm{Zn}(1)-\mathrm{N}(12)$	$99.79(16)$	$\mathrm{C}(4)-\mathrm{N}(6)-\mathrm{Zn}(1)$	$130.4(3)$
$\mathrm{N}(2) \# 1-\mathrm{Zn}(1)-\mathrm{N}(12)$	$112.55(18)$	$\mathrm{C}(8)-\mathrm{N}(7)-\mathrm{Zn}(2) \# 3$	$131.3(3)$
$\mathrm{N}(6)-\mathrm{Zn}(1)-\mathrm{N}(2) \# 1$	$104.66(16)$	$\mathrm{C}(12)-\mathrm{N}(7)-\mathrm{Zn}(2) \# 3$	$125.0(3)$
$\mathrm{N}(6)-\mathrm{Zn}(1)-\mathrm{N}(12)$	$109.87(15)$	$\mathrm{C}(12)-\mathrm{N}(7)-\mathrm{C}(8)$	$102.9(4)$
$\mathrm{O}(1)-\mathrm{Zn}(2)-\mathrm{N}(1) \# 2$	$135.61(18)$	$\mathrm{N}(13)-\mathrm{N}(8)-\mathrm{Zn}(3) \# 4$	$124.2(3)$
$\mathrm{O}(1)-\mathrm{Zn}(2)-\mathrm{N}(4) \# 2$	$99.32(18)$	$\mathrm{C}(12)-\mathrm{N}(8)-\mathrm{Zn}(3) \# 4$	$130.2(3)$
$\mathrm{O}(1)-\mathrm{Zn}(2)-\mathrm{N}(7) \# 3$	$108.24(18)$	$\mathrm{C}(4)-\mathrm{N}(10)-\mathrm{Zn}(3) \# 5$	$128.3(3)$
$\mathrm{N}(1) \# 2-\mathrm{Zn}(2)-\mathrm{N}(4) \# 2$	$111.01(15)$	$\mathrm{C}(6)-\mathrm{N}(10)-\mathrm{Zn}(3) \# 5$	$127.5(3)$
$\mathrm{N}(1) \# 2-\mathrm{Zn}(2)-\mathrm{N}(7) \# 3$	$97.39(16)$	$\mathrm{N}(1)-\mathrm{N}(12)-\mathrm{Zn}(1)$	$127.3(3)$
$\mathrm{N}(4) \# 2-\mathrm{Zn}(2)-\mathrm{N}(7) \# 3$	$100.68(16)$	$\mathrm{C}(13)-\mathrm{N}(12)-\mathrm{Zn}(1)$	$126.2(3)$
$\mathrm{O}(6)-\mathrm{Zn}(3)-\mathrm{N}(8) \# 4$	$114.95(19)$	$\mathrm{N}(8)-\mathrm{N}(13)-\mathrm{Zn}(3)$	$125.5(3)$
$\mathrm{O}(6)-\mathrm{Zn}(3)-\mathrm{N}(10) \# 5$	$101.94(17)$	$\mathrm{C}(8)-\mathrm{N}(13)-\mathrm{Zn}(3)$	$128.2(3)$
Sym			

Symmetric code: \#1-x+2, y-1/2, -z+3/2; \#2 x-1, y, z; \#3-x+1, -y+1, -z+1; \#4-x+2,-y+1,-z+1;\#5 $-\mathrm{x}+2,-\mathrm{y},-\mathrm{z}+1 ; \# 6 \mathrm{x}+1, \mathrm{y}, \mathrm{z} ; \# 7-\mathrm{x}+2, \mathrm{y}+1 / 2,-\mathrm{z}+3 / 2$.

Table S5. Comparison of $\mathrm{C}_{2} \mathrm{H}_{2}$ uptake amount and $Q_{\text {st }}$ of some MOF adsorbents for $\mathrm{C}_{2} \mathrm{H}_{2} / \mathrm{CO}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{2} / \mathrm{CH}_{4}$ separation at 1 bar

MOFs	$\mathrm{C}_{2} \mathrm{H}_{2}$ uptake$\left(\mathrm{cm}^{3} \mathrm{~g}^{-1}\right)$	$\begin{aligned} & \mathrm{C}_{2} \mathrm{H}_{2} Q_{\mathrm{st}} \\ & (\mathrm{~kJ} \mathrm{~mol} \end{aligned}$	Gas selectivity		Ref.
			$\mathrm{C}_{2} \mathrm{H}_{2} / \mathrm{CO}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{2} / \mathrm{CH}_{4}$	
$\mathrm{Cu}_{0.5}(\mathrm{tztp})_{0.5}$	135.0	38.3	2.7	23	2
Zn-MOF-74	122	43.8	3	--	3
$\mathrm{Ca}(\mathrm{dtztp})_{0.5}$	110.0	28.9	1.7	33.3	4
FJU-89a	101.4	31.0	4.5	45.6	5
1a	89.7	36.5	4.8	59.0	This work
ZJU-74	85.7(296K)	45	36.5	1312.9	6
Ni (dpip)	83.6	41.7	2	18.5	7
ZJNU-133	81.8	30.7	3.1	15.4	8
ZJUT-2a	76	41.5	10	--	9
JCM-1	75	36.9	1.47	--	10
NbU-10	$62.5(293 \mathrm{~K})$	31.3	2.8	--	11
BSF-1	52.6	31	3.3	46.9	12
FJU-36a	52.2(296 K)	32.9	2.8	17.7	13
TCuCl	49.3	41	5.3	--	14
DICRO-4-Ni-i	43	37.7	13.9	--	15
SNNU-17	37.8	30.5	1.2	20.3	16
JNU-1	27.4	13	3.6	--	17
M'MOF-2a	--	37.7	1.89	--	18

Table S6. Fitting parameters of the adsorption heats for $\mathbf{1 a}$.

Model	$Q_{\text {st }}(\text { User })$		
Equation	$\mathrm{y}=\ln (\mathrm{x})+1 / \mathrm{K} *\left(\mathrm{a} 0+\mathrm{a} 1 * \mathrm{x}+\mathrm{a} 2 * \mathrm{x}^{\wedge} 2+\mathrm{a} 3 * \mathrm{x}^{\wedge} 3+\mathrm{a} 4 * \mathrm{x}^{\wedge} 4+\mathrm{a} 5 * \mathrm{x}^{\wedge} 5\right)+\left(\mathrm{b} 0+\mathrm{b} 1 *^{2}+\mathrm{b} 2 * \mathrm{x}^{\wedge} 2\right)$		
Plot	$\mathrm{C}_{2} \mathrm{H}_{2}-298 \mathrm{~K}$	$\mathrm{CO}_{2}-298 \mathrm{~K}$	$\mathrm{CH}_{4}-298 \mathrm{~K}$
a0	-4380.41933	-4082.07266	-3086.33286
a1	-8.7023	-22.0224	11.12365
a2	0.23975	0.84978	1.68475
a3	-0.0044	-0.00858	-0.20562
a4	$5.83271 * 10^{-5}$	$1.39829 * 10^{-4}$	0.00624
a5	$-2.42837 * 10^{-7}$	$-8.12035 * 10^{-7}$	$-6.87322 * 10^{-5}$
b0	12.54134	12.79701	11.90174
b1	0.03866	0.08479	-0.09053
b2	$-2.86216 * 10^{-4}$	-0.00195	0.00481
Reduced Chi-Sqr	$1.62282 * 10^{-4}$	$1.01849 * 10^{-4}$	0.0013
R-Square (COD)	0.99997	0.99998	0.99991
Adj. R-Square	0.99997	0.99997	0.99949

Table S7. Fitting parameters of the selectivity for $\mathbf{1 a}$.

Model	LF (User)		
Equation		$\mathrm{a} 1 * \mathrm{~b} 1 * \mathrm{x}^{\wedge} \mathrm{c} 1 /\left(1+\mathrm{b} 1 * \mathrm{x}^{\wedge} \mathrm{c} 1\right)$	
Plot	$\mathrm{C}_{2} \mathrm{H}_{2}-298 \mathrm{~K}$	$\mathrm{CO}_{2}-298 \mathrm{~K}$	$\mathrm{CH}_{4}-298 \mathrm{~K}$
a1	4.78219 ± 0.0478	3.86608 ± 0.06723	2.68996 ± 0.03204
b 1	0.08573 ± 0.00223	$0.03412 \pm 6.81218^{*} 10^{-4}$	$0.00394 \pm 2.04387 * 10^{-5}$
c1	0.87027 ± 0.01411	0.86269 ± 0.01262	1.01594 ± 0.00282
Reduced Chi-Sqr	$7.97619^{*} 10^{-4}$	$1.64982 * 10^{-4}$	$4.2004 * 10^{-7}$
R-Square (COD)	0.99958	0.99977	0.99999
Adj. R-Square	0.99956	0.99976	0.99999

Table S8. The simulation result summary for $\mathbf{1 a}$ adsorbing $\mathrm{C}_{2} \mathrm{H}_{2}$ and CO_{2}.

Gas	Calculated $\boldsymbol{Q}_{\text {st }}\left(\mathbf{k J ~ m o l}{ }^{\mathbf{- 1}}\right)$	Experimental $\boldsymbol{Q}_{\text {st }}\left(\mathbf{k J} \text { mol}^{-\mathbf{1}}\right)^{\mathbf{a}}$
$\mathrm{C}_{2} \mathrm{H}_{2}$	36.7	36.5
CO_{2}	36.2	34.0

${ }^{\mathrm{a}}$ Heat of adsorption at zero coverage.

Reference

[1] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller. J. Chem. Phys., 1953, 21, 1087-1092.
[2] X. Y. Li, Y. Z. Li, L. N. Ma, L. Hou, C. Z. He, Y. Y. Wang, and Z. Zhu. J. Mater. Chem. A, 2020, 8, 5227-5233.
[3] F. Luo, C. Yan, L. Dang, R. Krishna, W. Zhou, H. Wu, X. Dong, Y. Han, T. L. Hu, M. O'Keeffe, L. Wang, M. Luo, R. B. Lin, and B. Chen. J. Am. Chem. Soc., 2016, 138, 5678-5684.
[4] G. D. Wang, Y. Z. Li, W. F. Zhang, L. Hou, Y. Y. Wang, Z. Zhu. ACS Appl. Mater. Interfaces, 2021, 13, 58862-58870.
[5] Y. X. Ye, S. M. Chen, L. J. Chen, J. T. Huang, Z. L. Ma, Z. Y. Li, Z. Z. Yao, J. D. Zhang, Z. J. Zhang, and S. C. Xiang. ACS Appl. Mater. Interfaces, 2018, 10, 30912-30918.
[6] J. Pei, K. Shao, J. X. Wang, H. M. Wen, Y. Yang, Y. Cui, R. Krishna, B. Li, and G. A. Qian. Adv. Mater., 2020, 32, 1908275.
[7] Y. Z. Li, G. D. Wang, L. N. Ma, L. Hou, Y. Y. Wang, and Z. Zhu. ACS Appl. Mater. Interfaces, 2021, 13, 4102-4109.
[8] L. Yue, X. Wang, R. Guo, Y. Lv, T. Zhang, B. Li, S. Lin, Y. Liang, D. L. Chen, and Y. He. Inorg. Chem., 2023, 62, 2415-2424.
[9] H. M. Wen, C. Liao, L. Li, L. Yang, J. Wang, L. Huang, B. Li, B. Chen, and J. Hu. Chem. Соттип., 2019, 55, 11354-11357.
[10] G. D. Wang, H. H. Wang, W. J. Shi, L. Hou, Y. Y. Wang, and Z. Zhu. J. Mater. Chem. A, 2021, 9, 24495-24502.
[11] J. Zhao, Q. Li, X. C. Zhu, J. Li, and D. Wu. Inorg. Chem., 2020, 59, 14424-14431.
[12] Y. Zhang, L. Yang, L. Wang, S. Duttwyler, and H. Xing. Angew. Chem. Int. Ed., 2019, 58, 8145-8150.
[13] L. Liu, Z. Yao, Y. Ye, L. Chen, Q. Lin, Y. Yang, Z. Zhang, and S. Xiang. Inorg. Chem., 2018, 57, 12961-12968.
[14] S. Mukherjee, Y. He, D. Franz, S. Q. Wang, W. R. Xian, A. A. Bezrukov, B. Space, Z. Xu, J. He, and M. J. Zaworotko. Chem. Eur. J., 2020, 26, 4923-4929.
[15] H. S. Scott, M. Shivanna, A. Bajpai, D. G. Madden, K. J. Chen, T. Pham, K. A. Forrest, A. Hogan, B. Space, J. J. Perry IV and M. J. Zaworotko. ACS Appl. Mater. Interfaces, 2017, 9,

33395-33400.
[16] H. P. Li, Y. Y. Xue, Y. Wang, H. Sun, M. C. Hu, S. N. Li, Y. Jiang, and Q. G. Zhai. Cryst. Growth Des., 2021, 21, 1718-1726.
[17] H. Zeng, M. Xie, Y. L. Huang, Y. Zhao, X. J. Xie, J. P. Bai, M. Y. Wan, R. Krishna, W. Lu, and D. Li. Angew. Chem. Int. Ed., 2019, 58, 8515-8519.
[18] S. C. Xiang, Z. Zhang, C. G. Zhao, K. Hong, X. Zhao, D. R. Ding, M. H. Xie, C. D. Wu, M. C. Das, R. Gill, K. M. Thomas, and B. Chen. Nat. Commun., 2011, 2, 204.

