Cyano Modified Triphenylmethyl Radical Skeletons: Higher Stability and Efficiency

Kuo Lv+, Minzhe Zhang+, Xin Xia, WenJing Liu, Keke Wan, Ming Zhang and Feng

Li*

State Key Laboratory of Supramolecular Structure and Materials, College of

Chemistry, Jilin University Changchun, 130012, P. R. China

*E-mail: <u>lifeng01@jlu.edu.cn</u>

Contents

- 1. Synthesis Section
- 2. Photophysical parameters of BnBTM and bisBnTM in various solvents
- 3. Theoretical calculation results
- 4. Electrochemical properties and TGA curve
- 5. Extracted results of TD-DFT calculations
- 6. References

General information

All reagents and solvents required for synthesis and characterization are purchased from commercial suppliers and used directly without any treatment. The nuclear magnetic resonance (¹H NMR) spectra were recorded on the Bruker AVANCEIII 500 spectrometer at 500 MHz at 298 K and tetramethyl silane (TMS) ($\delta H = 0$ ppm) as the internal standard. MALDI-TOF mass spectra were recorded on a Brucker Autoflex speed TOF/TOF mass spectrometer with DCTB as a matrix. UV-vis absorption spectra were recorded on the model UV-vis-2550 spectrophotometer. Fluorescence spectra were carried out using the model RF-6000 Spectro-fluorophotometer. The electrochemical oxidation and reduction potentials were recorded using an electrochemical analyzer (CHI660C, CH Instruments, USA). The femtosecond transient absorption spectrometer Helios Fire (Ultrafast Systems LLC, USA) was used to test the ultrafast absorption spectrum with a delay resolution of 14 fs. The fluorescence decay spectra and PLQY were recorded on an Edinburgh fluorescence spectrometer (FLS980), and the lifetime of the excited states was measured by the timecorrelated single photon counting method under the excitation of a laser (378 nm). Elemental analysis (C, H and N) was performed on a Elementar Vario micro cube elemental analyzer. Thermal gravimetric analysis (TGA) was characterized by a TAINSTRUMENTS Q500 TGA analyzer. DFT and TD-DFT calculations were performed on Gaussian09 series of programs using the UB3LYP function and 6-31G(d,p) basis.¹

1. Synthesis Section

HTTM was prepared as reported.²

Scheme S1. The synthesis route of BnBTM and bisBnTM.

(1) Synthesis of Product 1 and Product $2.^3$

Dichlorobis[di-*tert*-butyl(*p*-dimethylaminophenyl)phosphino]palladium(II) (0.14 g, 0.2 mmol), HTTM (1.11 g, 2.0 mmol), potassium hexacyanoferrate(II) (1.69 g, 4.6 mmol), and sodium carbonate (0.49 g, 4.6 mmol) were dissolved in dry *N*,*N*-dimethylacetamide (20.0 mL) under a nitrogen atmosphere. The reaction mixture was stirred at 130 °C for 10 h. After cooling to room temperature, the solution was extracted with dichloromethane. Organic layer washed five times with water and dried. The solvent was removed under vacuum and the crude product was purified by silica gel column chromatography (using petroleum ether: dichloromethane = 5:1 v/v). Products 1 (0.27 g, 25% yield) and 2 (0.27 g, 25% yield) were obtained as pink and red solids, respectively.

(2) Preparation of HBnBTM and HbisBnTM

Products 1 (0.54g, 1.0mmol) was dissolved in a mixture of tetrahydrofuran (30.0 ml)

and methanol (30.0 ml) solutions. Then, L (+)-Ascorbic acid (3.52g, 20.0mmol) was added at ambient conditions. After stirring at room temperature for 48 h, the solution was extracted with dichloromethane. The obtained organic layer was collected and dried and the solvent was removed under vacuum. Crude product was purified by silica gel column chromatography (using petroleum ether: dichloromethane = 8:1 v/v). HBnBTM was obtained as a white solid (0.49 g, 90% yield). ¹H NMR (500 MHz, CD2Cl2) δ 7.65 (d, J = 1.7 Hz, 1H), 7.53 (d, J = 1.7 Hz, 1H), 7.41 (dd, J = 6.4, 2.2 Hz, 2H), 7.28 (dd, J = 8.4, 2.2 Hz, 2H), 6.75 (s, 1H). MALDI-TOF-MS (m/z): calculated for C₂₀H₇Cl₈N, 544.8028; found, 543.6005. Elem. Anal. Calcd for C₂₀H₇Cl₈N: C 44.09, H 1.29, N 2.57; found, C 43.69, H 1.43, N 2.58.

HbisBnTM was obtained by the same method.

Products 2 (0.53g, 1.0mmol) was dissolved in a mixture of tetrahydrofuran (30.0 ml) and methanol (30.0 ml) solutions. Then, L (+)-Ascorbic acid (3.52g, 20.0mmol) was added at ambient conditions. After stirring at room temperature for 48 h, the solution was extracted with dichloromethane. The obtained organic layer was collected and dried and the solvent was removed under vacuum. Crude product was purified by silica gel column chromatography (using petroleum ether: dichloromethane = 4:1 v/v).

HbisBnTM was obtained as a white solid (0.49 g, 92% yield). ¹H NMR (500 MHz, CD2Cl2) δ 7.67 (dd, J = 6.1, 1.7 Hz, 2H), 7.54 (dd, J = 8.0, 1.7 Hz, 2H), 7.43 (d, J = 2.2 Hz, 1H), 7.30 (d, J = 2.2 Hz, 1H), 6.81 (s, 1H). MALDI-TOF-MS (m/z): calculated for C₂₁H₇Cl₇N₂, 533.8399; found, 533.3288. Elem. Anal. Calcd for C₂₁H₇Cl₇N₂: C 47.11, H 1.32, N 5.23; found, C 47.85, H 1.67, N 5.23.

Fig. S1 ¹H-NMR spectrum of HBnBTM in CD₂Cl₂.

Fig. S2 ¹H-NMR spectrum of HbisBnTM in CD₂Cl₂.

Fig. S3 MALDI-TOF-MS spectrum of HBnBTM.

Fig. S4 MALDI-TOF-MS spectrum of HbisBnTM.

(3) Preparation of BnBTM and bisBnTM

Under argon atmosphere and in the dark, HBnBTM (0.54 g, 1.0 mmol) was dissolved in a mixture of dry THF (5.0 ml) and DMF (10.0 ml). Then NaH (0.40g, 60%, 10.00 mmol) was added. The solution was stirred for 5 h in the dark at room temperature, and then p-chloranil (1.23 g, 5.0 mmol) was added. The solution was stirred for further 1 h. After the reaction finished, the solvent was removed under vacuum and the crude product was purified by silica gel column chromatography (using petroleum ether: dichloromethane = 9:1 v/v). The crude product was recrystallized from dichloromethane and methanol. Finally, BnBTM was obtained as a red solid (0.39 g, 72% yield). MALDI-TOF-MS (m/z): calculated for $C_{20}H_6Cl_8N$, 543.7949; found, 542.5274. Elem. Anal. Calcd for $C_{20}H_6Cl_8N$: C 44.17, H 1.11, N 2.58; found, C 44.44, H 1.39, N 2.62.

bisBnTM was obtained by the same method.

Under argon atmosphere and in the dark, HbisBnTM (0.53 g, 1.0 mmol) was dissolved in a mixture of dry THF (5.0 ml) and DMF (10.0 ml). Then NaH (0.40g, 60%, 10.00 mmol) was added. The solution was stirred for 5 h in the dark at room temperature, and then p-chloranil (1.23 g, 5.0 mmol) was added. The solution was stirred for further 1 h. After the reaction finished, the solvent was removed under vacuum and the crude product was purified by silica gel column chromatography (using petroleum ether: dichloromethane = 4:1 v/v). The crude product was recrystallized from dichloromethane and methanol. bisBnTM was obtained as a red solid (0.39 g, 73% yield). MALDI-TOF-MS (m/z): calculated for $C_{21}H_6Cl_7N_2$, 532.8321; found, 532.4715. Elem. Anal. Calcd for $C_{21}H_6Cl_7N_2$: C 47.20, H 1.13, N 5.24; found, C 47.69, H 1.36, N

Fig. S4 MALDI-TOF-MS spectrum of BnBTM.

Fig. S6 MALDI-TOF-MS spectrum of bisBnTM.

Fig. S7 Crystal structure of (a) BnBTM and (b) bisBnTM with thermal ellipsoids set at50 % probability; EPR spectrum of (c) BnBTM and (d) bisBnTM in in chloroform at room temperature.

Tuble 51. Crystal data and structure refinement for Did 100.						
Identification code	BnBTM					
Empirical formula	$C_{20}H_6Cl_8N$					
Formula weight	543.86					
Temperature/K	110.00					
Crystal system	monoclinic					
Space group	P2 ₁ /c					
a/Å	14.0305(9)					
b/Å	8.0731(5)					
c/Å	18.9296(12)					
a/°	90					
β/°	94.608(2)					
γ/°	90					
Volume/Å ³	2137.2(2)					
Ζ	4					
$ ho_{calc}g/cm^3$	1.690					
µ/mm ⁻¹	1.063					

Table S1. Crystal data and structure refinement for BnBTM.

F(000)	1076.0
Crystal size/mm ³	$0.05\times0.03\times0.02$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.4 to 55.004
Index ranges	$\textbf{-18} \leq \textbf{h} \leq \textbf{18}, \textbf{-10} \leq \textbf{k} \leq \textbf{10}, \textbf{-24} \leq \textbf{l} \leq \textbf{24}$
Reflections collected	47418
Independent reflections	4910 [R_{int} = 0.0422, R_{sigma} = 0.0213]
Data/restraints/parameters	4910/80/283
Goodness-of-fit on F ²	1.148
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0585, wR_2 = 0.1391$
Final R indexes [all data]	$R_1 = 0.0686, wR_2 = 0.1459$
Largest diff. peak/hole / e Å ⁻³	0.65/-0.80

Table S2. Crystal data and structure refinement for bisBnTM.

Identification code	bisBnTM
Empirical formula	C ₂₁ H ₆ Cl ₇ N ₂
Formula weight	534.43
Temperature/K	201.00
Crystal system	triclinic
Space group	P-1
a/Å	8.2197(11)
b/Å	11.2036(15)
c/Å	13.6336(18)
α/°	67.189(5)
β/°	84.761(5)
$\gamma/^{o}$	73.004(5)
Volume/Å ³	1106.4(3)
Ζ	2
$ ho_{calc}g/cm^3$	1.604
µ/mm ⁻¹	0.909
F(000)	530.0
Crystal size/mm ³	$0.05\times0.03\times0.02$
Radiation	MoKα (λ = 0.71073)
2Θ range for data collection/°	5.184 to 55.058
Index ranges	$-10 \le h \le 10, -14 \le k \le 14, -17 \le l \le 17$
Reflections collected	27967
Independent reflections	$5069 [R_{int} = 0.0539, R_{sigma} = 0.0363]$
Data/restraints/parameters	5069/56/298
Goodness-of-fit on F ²	1.035

Final R indexes [I>= 2σ (I)]	$R_1 = 0.0443, wR_2 = 0.1015$
Final R indexes [all data]	$R_1 = 0.0515, wR_2 = 0.1067$
Largest diff. peak/hole / e Å ⁻³	0.88/-1.28

2. Photophysical parameters of BnBTM and bisBnTM in various solvents

Fig. S8 Transient photoluminescence decay spectra of TTM, BnBTM and bisBnTM in various solvents at room temperature.

Fig. S9 The normalized UV-vis absorption and PL spectra of TTM in various solvents (10⁻⁵ M) at room temperature.

Fig. S10 The normalized UV-vis absorption and PL spectra of BnBTM in various solvents (10⁻⁵ M) at room temperature.

Fig. S11 The normalized UV-vis absorption and PL spectra of bisBnTM in various solvents (10⁻⁵ M) at room temperature.

Dadical	Salvant	$\lambda_{abs}^{[a]}$	$\lambda_{PL}^{[b]}$	PLQE ^{[c][d]}	t ^[d]	k _r ^[e]	k _{nr} ^[e]
Kaulcal	Solvent	(nm)	(nm)	(%)	(ns)	10 ⁶ (s ⁻¹)	10 ⁶ (s ⁻¹)
	Toluene	375/543	570	1.4	5.9	2.4	166.0
TTM	Chloroform	373/543	568	1.7	6.0	2.8	164.7
	Dichloromethane	373/542	570	1.5	6.4	2.4	154.4
	Toluene	381/551	590	5.3	37.8	1.4	25.1
BnBTM	Chloroform	380/552	592	6.5	41.2	1.6	22.7
	Dichloromethane	379/551	587	6.2	42.9	1.4	21.9
	Toluene	387/563	600	10.4	50.9	2.0	17.6
bisBnTM	Chloroform	387/560	600	11.2	56.5	2.0	15.7
	Dichloromethane	386/562	601	10.0	55.7	1.8	16.1

Table S3. Photophysical parameters of TTM, BnBTM, and bisBnTM in different solvents.

^[a] absorption peaks in different solvents. ^[b] emission peaks in various solvents ^[c] measured with a calibrated integrating sphere system. ^[d] measured using Edinburgh fluorescence spectrometer (FLS980) at room temperature. ^[e] Calculated from the equation: $\phi = k_r/(k_r + k_{nr})$; $\tau = 1/(k_r + k_{nr})$.

Fig. S12 Normalized UV-vis absorption and PL spectra of TTM, BnBTM and bisBnTM in PMMA film at 3 wt%.

Table S4.	Photophy	sical pa	arameters	of TTM,	BnBTM a	and bisBnTM	in PMMA film.
-----------	----------	----------	-----------	---------	---------	-------------	---------------

Radical	Concentration (wt%)	$\lambda_{abs}^{[a]}$ (nm)	λ _{PL} ^[b] (nm)	PLQE ^[c] (%)
TTM	3	373	567	5.0
BnBTM	3	379	587	9.0
bisBnTM	3	385	596	12.0

^[a] absorption peaks in PMMA film. ^[b] emission peaks in PMMA film. ^[c] The PLQE was measured with a calibrated integrating sphere system.

Fig. S13 Transient absorption studies of bisBnTM and TTM. (a) Femtosecond to nanosecond time-slices from transient absorption studies of bisBnTM (375 nm excitation, 1×10^{-4} M in cyclohexane). (b) Kinetic profiles of bisBnTM and TTM (375 nm excitation, 1×10^{-4} M in chloroform). The two curves represent the D₁ excited state dynamics of their respective molecules.

Fig. 13 (a) displays the transient absorption spectra of bisBnTM within the visible light range. Under the excitation of a 375 nm laser pulse, the ground state molecules are rapidly excited to the excited state within 97.6 fs, reaching their peak at around 300 fs. This process is reflected in the excited state absorption (ESA) peaks around 490 and 545 nm. Over time, the peak positions shift towards 470 nm and 558 nm. This indicates that the molecules are initially excited to high-energy localized states, followed by a rapid transition to the first excited state (D₁). Fig. 13(b) compares the D₁ excited state of TTM shows an obviously shorter excited state lifetime. This suggests that the non-radiative transition process of bisBnTM is effectively suppressed compared to that of TTM.

Fig. S14 Femtosecond to nanosecond time-slices from transient absorption studies of bisBnTM in (a) toluene and (b) chloroform (10⁻⁴ M); (c) kinetic profiles of bisBnTM in those solvents (excited at 375 nm).

Fig. S15. Femtosecond to nanosecond time-slices from transient absorption studies of TTM in (a) cyclohexane, (b) toluene and (c) chloroform; (d) kinetic profiles of TTM at 520nm in those solvents (excited at 375 nm).

3. Theoretical calculation results.

Fig. S16 Spin density distribution of TTM, BnBTM and bisBnTM by DFT calculations (isovalue =0.0015).

Fig. S17 Spin densities of the optimized geometries of TTM, BnBTM, and bisBnTM (calculated by Multiwfn at Becke mode).⁴

Table S5. Spin densities of the optimized geometries of TTM, BnBTM, and bisBnTM

TTM		BnBTN	1	bisBnTM	
Atomic space	Spin population	Atomic space	Spin population	Atomic space	Spin population
1(C)	0.065	1(C)	0.064	1(C)	0.065
2(C)	-0.030	2(C)	-0.029	2(C)	-0.033
3(C)	0.065	3(C)	0.064	3(C)	0.065
4(C)	-0.024	4(C)	-0.024	4(C)	-0.026
5(C)	0.058	5(C)	0.057	5(C)	0.058
6(C)	-0.024	6(C)	-0.024	6(C)	-0.026
7(H)	0.001	7(H)	0.001	7(H)	0.001
8(H)	0.001	8(H)	0.001	8(H)	0.001
9(C)	0.559	9(C)	0.554	9(C)	0.552
10(C)	-0.030	10(C)	-0.033	10(C)	-0.033
11(C)	0.065	11(C)	0.066	11(C)	0.065
12(C)	0.065	12(C)	0.066	12(C)	0.065
13(C)	-0.024	13(C)	-0.027	13(C)	-0.026
14(C)	-0.024	14(C)	-0.027	14(C)	-0.026
15(C)	0.058	15(C)	0.060	15(C)	0.058
16(H)	0.001	16(H)	0.001	16(H)	0.001
17(H)	0.001	17(H)	0.001	17(H)	0.001
18(C)	-0.030	18(C)	-0.029	18(C)	-0.029
19(C)	0.065	19(C)	0.064	19(C)	0.063
20(C)	0.065	20(C)	0.064	20(C)	0.063
21(C)	-0.024	21(C)	-0.024	21(C)	-0.023
22(C)	-0.024	22(C)	-0.024	22(C)	-0.023
23(C)	0.058	23(C)	0.057	23(C)	0.057
24(H)	0.001	24(H)	0.001	24(H)	0.001

25(H)	0.001	25(H)	0.001	25(H)	0.001
26(Cl)	0.012	26(Cl)	0.012	26(Cl)	0.012
27(Cl)	0.012	27(Cl)	0.011	27(Cl)	0.012
28(Cl)	0.013	28(Cl)	0.013	28(Cl)	0.013
29(Cl)	0.012	29(Cl)	0.011	29(Cl)	0.013
30(Cl)	0.012	30(Cl)	0.012	30(Cl)	0.013
31(Cl)	0.013	31(Cl)	0.013	31(Cl)	0.013
32(Cl)	0.012	32(Cl)	0.012	32(Cl)	0.012
33(Cl)	0.012	33(Cl)	0.012	33(C)	-0.008
34(Cl)	0.013	34(C)	-0.008	34(N)	0.031
		35(N)	0.032	35(C)	-0.008
				36(N)	0.031
	25(H) 26(Cl) 27(Cl) 28(Cl) 29(Cl) 30(Cl) 31(Cl) 32(Cl) 33(Cl) 34(Cl)	25(H) 0.001 26(Cl) 0.012 27(Cl) 0.012 28(Cl) 0.013 29(Cl) 0.012 30(Cl) 0.012 31(Cl) 0.012 33(Cl) 0.012 34(Cl) 0.013	25(H) 0.001 25(H) 26(Cl) 0.012 26(Cl) 27(Cl) 0.012 27(Cl) 28(Cl) 0.013 28(Cl) 29(Cl) 0.012 29(Cl) 30(Cl) 0.012 30(Cl) 31(Cl) 0.012 32(Cl) 33(Cl) 0.012 33(Cl) 34(Cl) 0.013 34(C)	25(H) 0.001 25(H) 0.001 26(Cl) 0.012 26(Cl) 0.012 27(Cl) 0.012 27(Cl) 0.011 28(Cl) 0.013 28(Cl) 0.013 29(Cl) 0.012 29(Cl) 0.011 30(Cl) 0.012 30(Cl) 0.012 31(Cl) 0.013 31(Cl) 0.013 32(Cl) 0.012 32(Cl) 0.012 33(Cl) 0.012 33(Cl) 0.012 34(Cl) 0.013 34(C) -0.008 35(N) 0.032 35(N) 0.032	25(H) 0.001 25(H) 0.001 25(H) 26(Cl) 0.012 26(Cl) 0.012 26(Cl) 27(Cl) 0.012 27(Cl) 0.011 27(Cl) 28(Cl) 0.013 28(Cl) 0.013 28(Cl) 29(Cl) 0.012 29(Cl) 0.011 29(Cl) 30(Cl) 0.012 30(Cl) 0.012 30(Cl) 31(Cl) 0.013 31(Cl) 0.012 32(Cl) 32(Cl) 0.012 32(Cl) 0.012 32(Cl) 33(Cl) 0.012 33(Cl) 0.012 33(C) 34(Cl) 0.013 34(C) -0.008 34(N) 35(N) 0.032 35(C) 36(N)

Fig. S18 Ground-state frontier orbitals of TTM from DFT calculations (UB3LYP/6-31G(d,p)).

Fig. S19 Geometries of TTM, BnBTM and bisBnTM at ground state and optimized excited state by DFT and TD-DFT calculations (UB3LYP/6-31G(d,p)).

Table S6. Dihedral angles of TTM, BnBTM and bisBnTM radicals in their DFT calculated D_0 and D_1 geometries. *A*, *B* and *C* refer to the dihedrals between the center plane of the carbon radical and the peripheral benzene ring.

<u>40.8</u>

48.6

<u>38.0</u>

48.5

<u>51.7</u>

48.6

 D_1

 D_0

bisBnTM

4. Electrochemical properties and TGA curve

Fig. S20 Multi-cycle CV measurements (20 cycles) of BnBTM and bisBnTM in DCM.

Fig. S21 TGA thermograph of BnBTM and bisBnTM recorded under nitrogen at a heating rate of 10°C/min.

Fig. S22 The fluorescence decay of TTM, BnBTM, and bisBnTM in (a) cyclohexane, (b) toluene, (c) chloroform, and (d) dichloromethane $(5 \times 10^{-5} \text{M})$ under continuous excitation (measured by the RF-6000 Spectro-fluorophotometer with temporal measurement mode; power density: 50 mW cm⁻²).

5. Extracted results of TD-DFT calculations

Table S7. Excited states of TTM, BnBTM, and bisBnTM calculated by TD-DFT calculations.

Excitation energies and oscillator strengths:

Excited State	1:	2.215-A	2.6555 eV	466.89 nm	f=0.0223	<s**2>=0.976</s**2>
137A ->138	A	-0.19671				
137A ->139	A	0.23171				
133B ->137	В	0.23015				
135B ->137	В	-0.17750				
136B ->137	В	0.86437				
This state for op	otimi	zation and/or se	cond-order c	orrection.		

Total Energy, E(TD-HF/TD-KS) = -4869.25503157

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: 2.215-A 2.6558 eV 466.85 nm f=0.0223 <S**2>=0.976

137A ->138A	0.23153				
137A ->139A	0.19648				
132B ->137B	0.22996				
135B ->137B	0.86450				
136B ->137B	0.17759				
Excited State 3:	2.100-A	2.9287 eV	423.34 nm	f=0.0065	<s**2>=0.853</s**2>
137A ->140A	0.15483				
133B ->137B	0.19130				
134B ->137B	0.94717				
Excited State 4:	2.126-A	2.9295 eV	423.22 nm	f=0.0029	<s**2>=0.880</s**2>
137A ->138A	-0.17467				
132B ->137B	-0.28120				
133B ->137B	0.83904				
134B ->137B	-0.16734				
135B ->137B	0.17417				
136B ->137B	-0.27298				
Excited State 5:	2.126-A	2.9297 eV	423.19 nm	f=0.0029	<s**2>=0.880</s**2>
137A ->138A	0.10136				
137A ->139A	0.17198				
132B ->137B	0.84768				
133B ->137B	0.25715				
134B ->137B	-0.16104				
135B ->137B	-0.27837				
136B ->137B	-0.16602				
Excited State 6:	2.357-A	3.0873 eV	401.60 nm	f=0.0000	<s**2>=1.138</s**2>
135A ->139A	-0.13747				
136A ->138A	0.13739				
137A ->146A	-0.24505				
131B ->137B	0.87166				
134B ->140B	0.10801				
Excited State 7:	2.371-A	3.3456 eV	370.59 nm	f=0.1795	<s**2>=1.156</s**2>
133A ->140A	-0.10479				
134A ->142A	0.12022				
137A ->138A	0.77599				
137A ->139A	0.18288				
131B ->138B	0.10886				
132B ->137B	-0.28236				
133B ->137B	0.15925				
135B ->137B	-0.28595				

135B ->138B	-0.10462				
136B ->139B	0.10420				
Excited State 8:	2.371-A	3.3460 eV	370.54 nm	f=0.1799	<s**2>=1.156</s**2>
132A ->140A	0.10469				
134A ->141A	-0.12057				
137A ->138A	-0.18299				
137A ->139A	0.77595				
131B ->139B	0.10894				
132B ->137B	-0.15923				
133B ->137B	-0.28202				
135B ->139B	0.10430				
136B ->137B	-0.28620				
136B ->138B	0.10442				
Excited State 9:	2.206-A	3.5834 eV	345.99 nm	f=0.0110	<s**2>=0.966</s**2>
137A ->140A	0.95748				
134B ->137B	-0.17194				
E- 1 0 10	2 250 4	2 (02(226 69	6 0 0000	< <u></u>
Exciled State 10 :	3.230-A	5.0820 eV	550.08 nm	1=0.0000	<5**2>=2.390
132A ->130A	0.12301				
132A ->139A	0.11247				
132A - 2141A	-0.20880				
133A ->130A	-0.11272				
133A -> 133A	-0.20895				
133A -> 142A	-0.20895				
135A ->139A	0.15893				
135A ->142A	0.18339				
136A ->138A	-0 15923				
136A ->141A	-0 18331				
131B ->137B	0.40785				
131B ->146B	0.11784				
132B ->138B	-0.14337				
132B ->141B	0.18726				
133B ->139B	-0.14330				
133B ->142B	0.18752				
134B ->140B	-0.29022				
135B ->138B	-0.20390				
135B ->141B	-0.16263				
136B ->139B	-0.20374				
136B ->142B	-0.16269				

Excited State 11: 2.329-A 3.7700 eV 328.87 nm f=0.0057 <S**2>=1.106

133A ->140A	-0.11991				
137A ->138A	-0.14751				
137A ->141A	0.91082				
132B ->137B	0.10256				
133B ->140B	0.11478				
F. 1. 1. C. 1. 10	2 2 2 3 4	2 - - - - - - - - - -	220.02	0.0050	
Excited State 12:	2.330-A	3.7705 eV	328.83 nm	f=0.0056	<s**2>=1.107</s**2>
132A ->140A	0.12020				
137A ->139A	-0.14801				
13/A ->142A	0.91053				
132B ->140B	-0.11506				
133B ->137B	0.10229				
Excited State 13:	3.158-A	3.8750 eV	319.96 nm	f=0.0135	<s**2>=2.243</s**2>
132A ->141A	-0.11339				
132A ->142A	0.15433				
133A ->140A	0.26471				
133A ->141A	0.15440				
133A ->142A	0.11400				
134A ->142A	-0.28381				
135A ->139A	0.14885				
135A ->140A	-0.21369				
136A ->138A	0.14915				
137A ->138A	0.31430				
137A ->139A	0.25201				
137A ->141A	0.22953				
132B ->141B	0.11742				
132B ->142B	-0.15191				
133B ->140B	-0.27849				
133B ->141B	-0.15169				
133B ->142B	-0.11815				
134B ->141B	-0.10191				
134B ->142B	0.28635				
135B ->138B	0.11506				
136B ->139B	-0.11479				
136B ->140B	0.20942				
Excited State 14:	3.158-A	3.8754 eV	319.93 nm	f=0.0135	<s**2>=2.243</s**2>
132A ->140A	-0.26441				
132A ->141A	0.15512				
132A ->142A	0.11354				
133A ->141A	0.11266				
133A ->142A	-0.15471				
134A ->141A	0.28423				

135A ->138A	0.14900		
136A ->139A	-0.14863		
136A ->140A	-0.21385		
137A ->138A	-0.25169		
137A ->139A	0.31403		
137A ->142A	0.23044		
132B ->140B	0.27795		
132B ->141B	-0.15239		
132B ->142B	-0.11753		
133B ->141B	-0.11643		
133B ->142B	0.15227		
134B ->141B	-0.28712		
134B ->142B	-0.10100		
135B ->139B	-0.11452		
135B ->140B	-0.20967		
136B ->138B	-0.11491		
Excited State 15:	3.309-A	4.303	

037 eV 288.09 nm f=0.0000 <S**2>=2.488

neu state 1	0. 0.000 11
132A ->141A	-0.18871
133A ->142A	-0.18909
134A ->140A	A 0.27021
135A ->138A	A 0.12461
135A ->139A	-0.29207
135A ->142A	A 0.10004
136A ->138A	A 0.29319
136A ->139A	A 0.12416
137A ->146A	-0.19575
126B ->137E	0.29313
131B ->137E	-0.11368
132B ->141B	3 0.18847
133B ->142E	3 0.18888
134B ->140E	-0.27403
135B ->138E	0.31331
135B ->139E	0.11194
136B ->138E	-0.11253
136B ->139E	0.31257

BnBTM (UB3LYP/6-31G(d,p))

Excitation energies and oscillator strengths:

Excited State	1:	2.170-A	2.5726 eV	481.94 nm	f=0.0289	<s**2>=0.927</s**2>
135A ->137	'A	0.23896				
132B ->135	В	-0.12573				
134B ->135	В	0.92385				

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -4501.90357632 Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: 2.294-A 2.5737 eV 481.73 nm f=0.0054 <S**2>=1.066 130A ->136A 0.11034 135A ->136A -0.43935 129B ->135B -0.15617 129B ->136B 0.12173 131B ->135B -0.43639 0.70334 133B ->135B Excited State 3: 2.132-A 2.8103 eV 441.17 nm f=0.0005 <S**2>=0.887 135A ->136A 0.29900 129B ->135B 0.14118 131B ->135B 0.63781 133B ->135B 0.66234 Excited State 4: 2.094-A 2.8212 eV 439.48 nm f=0.0070 <S**2>=0.846 135A ->138A -0.10361 132B ->135B 0.96310 134B ->135B 0.16570 Excited State 5: 2.169-A 2.8664 eV 432.54 nm f=0.0082 <S**2>=0.927 135A ->137A 0.14812 130B ->135B 0.95099 134B ->135B -0.13216 Excited State 6: 2.288-A 2.9724 eV 417.12 nm f=0.0547 <S**2>=1.058 130A ->136A -0.16693 133A ->136A 0.10872 134A ->137A 0.11465 135A ->136A 0.36305 135A ->142A 0.10688 135A ->143A -0.15555 129B ->135B 0.66185 131B ->135B -0.48045 131B ->136B -0.13174 133B ->135B 0.12208 3.1861 eV 389.15 nm f=0.1891 <S**2>=1.037 Excited State 7: 2.269-A 134A ->137A -0.11292 135A ->136A 0.69106 135A ->143A 0.12916 129B ->135B -0.48577

131B ->135B	-0.35285				
133B ->135B	0.13575				
134B ->137B	0.11378				
Excited State 8:	2.544-A	3.3508 eV	370.01 nm	f=0.1449	<s**2>=1.369</s**2>
132A ->140A	0.16954				
133A ->138A	-0.12295				
135A ->137A	0.77868				
129B ->137B	-0.10009				
130B ->135B	-0.20249				
131B ->137B	0.11846				
132B ->135B	0.12206				
132B ->140B	-0.13717				
133B ->137B	-0.10732				
133B ->138B	-0.10593				
134B ->135B	-0.27998				
134B ->136B	0.14759				
134B ->144B	-0.10055				
Excited State 9:	3.163-A	3.6360 eV	340.99 nm	f=0.0014	<s**2>=2.252</s**2>
130A ->136A	0.26771				
130A ->140A	-0.12405				
131A ->137A	0.12134				
131A ->138A	-0.15573				
131A ->139A	0.18579				
132A ->138A	0.22766				
133A ->136A	-0.18139				
133A ->140A	-0.19684				
134A ->137A	-0.15052				
134A ->139A	0.14956				
129B ->135B	0.46158				
129B ->136B	0.14936				
129B ->144B	0.10418				
130B ->137B	0.11918				
130B ->138B	-0.14156				
130B ->139B	0.16845				
131B ->136B	0.27772				
131B ->140B	-0.11654				
132B ->138B	-0.20423				
133B ->136B	-0.22572				
133B ->140B	-0.17213				
134B ->137B	0.19354				
134B ->139B	-0.13466				

Excited State 10	: 2.206-A	3.6442 eV	340.22 nm	f=0.0093	<s**2>=0.967</s**2>
135A ->138A	0.95750				
132B ->135B	0.11992				
Excited State 11	: 3.264-A	3.7630 eV	329.48 nm	f=0.0057	<s**2>=2.414</s**2>
129A ->136A	0.15810				
130A ->136A	0.13996				
130A ->140A	0.14867				
131A ->138A	-0.25373				
131A ->139A	0.19915				
132A ->138A	-0.15934				
132A ->139A	-0.21750				
133A ->136A	-0.19140				
133A ->140A	0.21903				
134A ->137A	0.22189				
134A ->138A	-0.12971				
135A ->136A	0.28381				
135A ->140A	-0.14635				
135A ->143A	-0.10342				
129B ->136B	0.22563				
130B ->138B	-0.26765				
130B ->139B	0.20865				
131B ->135B	0.12348				
131B ->140B	0.14812				
132B ->137B	0.10656				
132B ->138B	0.15290				
132B ->139B	0.21396				
133B ->135B	-0.10755				
133B ->136B	-0.10432				
133B ->140B	0.21070				
134B ->137B	-0.21160				
134B ->138B	0.12050				
Excited State 12	: 2.428-A	3.8190 eV	324.65 nm	f=0.0113	<s**2>=1.224</s**2>
130A ->138A	0.15340				
132A ->140A	-0.10945				
134A ->136A	0.12320				
134A ->140A	-0.12636				
135A ->137A	0.29445				
135A ->139A	0.83159				
131B ->138B	0.14473				
132B ->140B	0.11433				
134B ->140B	0.12816				

Excited State	13:	2.358-A	3.8435 eV	322.58 nm	f=0.0015	$=1.140$
134A ->138	8A	-0.14598				
135A ->140	0A	0.92039				
131B ->135	5B	0.10171				
132B ->137	7B	-0.11293				
134B ->138	8B	0.13945				
Excited State	14:	2.979-A	3.8947 eV	318.34 nm	f=0.0158	<s**2>=1.969</s**2>
130A ->138	8A	-0.10365				
130A ->139	9A	-0.15498				
132A ->140	0A	0.31298				
133A ->138	8A	-0.27041				
133A ->139	9A	-0.15629				
134A ->136	6A	-0.17611				
135A ->137	7A	-0.40192				
135A ->139	9A	0.43752				
128B ->135	5B	-0.13322				
131B ->138	8B	-0.12917				
131B ->139	9B	-0.15467				
132B ->14()B	-0.31930				
133B ->137	7B	-0.10219				
133B ->138	8B	-0.26631				
133B ->139	9B	-0.15981				
134B ->136	6B	0.14402				
Excited State	15:	3.390-A	4.0930 eV	302.92 nm	f=0.0021	<s**2>=2.623</s**2>
131A ->130	6A	0.63089				
132A ->130	6A	-0.19562				
134A ->136	6A	0.31870				
130B ->135	5B	0.13971				
130B ->136	6B	0.52646				
132B ->136	6B	0.15280				
134B ->136	6B	-0.24290				

bisBnTM (UB3LYP/6-31G(d,p))

Excitation energies and oscillator strengths:

Excited State 1: 2.187-A 2.5126 eV 493.46 nm f=0.0250 <S**2>=0.946 133A ->135A 0.25623 129B ->133B 0.14634 132B ->133B 0.91610

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -4134.55082329

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: 2.299-A 2.5252 eV 490.98 nm f=0.0033 <S**2>=1.071 133A ->134A 0.44614 127B ->134B 0.12439 128B ->133B 0.49624 130B ->133B 0.27093 131B ->133B 0.62082 Excited State 3: 2.119-A 2.7191 eV 455.97 nm f=0.0021 <S**2>=0.872 133A ->134A -0.25188 128B ->133B -0.42164 130B ->133B -0.40424 131B ->133B 0.74575 Excited State 4: 2.145-A 2.7695 eV 447.67 nm f=0.0065 <S**2>=0.900 133A ->134A -0.16567 128B ->133B -0.44684 130B ->133B 0.84153 0.13966 131B ->133B Excited State 5: 2.162-A 2.7817 eV 445.71 nm f=0.0062 <S**2>=0.919 0.18105 133A ->135A 129B ->133B 0.92563 132B ->133B -0.23122 Excited State 6: 2.442-A 2.9356 eV 422.35 nm f=0.0150 <S**2>=1.241 128A ->134A -0.21209 131A ->134A -0.11397 132A ->135A -0.14173 133A ->135A 0.29880 133A ->139A -0.20278 127B ->133B 0.76599 128B ->134B 0.17652 129B ->133B -0.19146 -0.15787 132B ->133B Excited State 7: 2.108-A 3.0886 eV 401.43 nm f=0.2522 <S**2>=0.861 133A ->134A 0.77344 125B ->133B 0.10943 128B ->133B -0.57147 130B ->133B -0.12554 131B ->133B -0.11044 Excited State 8: 2.444-A 3.2756 eV 378.51 nm f=0.1558 <S**2>=1.243

131A ->138A	0.15486
132A ->135A	0.11702
133A ->135A	0.76206
133A ->139A	0.17719
127B ->133B	-0.30323
129B ->133B	-0.21304
131B ->138B	-0.12934
132B ->133B	-0.23697
132B ->135B	-0.16078

Excited State 9: 3.138-A 3.5833 eV 346.00 nm f=0.0001 <S**2>=2.212 0.29136 128A ->134A 129A ->135A 0.13223 129A ->137A -0.18298 130A ->136A 0.23252 131A ->134A 0.15555 131A ->138A 0.17946 132A ->135A 0.17596 0.13943 132A ->137A 127B ->133B 0.48082 127B ->135B -0.11410 127B ->140B 0.11286 128B ->134B -0.33651 129B ->135B -0.12430 129B ->137B 0.17251 130B ->134B -0.12094 130B ->136B -0.20969 131B ->134B -0.18453 131B ->138B -0.15865 132B ->135B -0.21830 132B ->137B -0.12002 3.7098 eV 334.21 nm f=0.0073 <S**2>=1.189 Excited State 10: 2.399-A 129A ->136A -0.10696 130A ->137A 0.12774 1324 ->1344 0 1 4 2 0 1

132A ->134A	-0.14201
133A ->134A	-0.12063
133A ->136A	0.88052
127B ->134B	0.11239
130B ->133B	-0.12246
130B ->137B	-0.12814
131B ->135B	0.12304

Excited State 11: 3.116-A

3.7108 eV 334.12 nm f=0.0089 <S**2>=2.178

127A ->134A	0.17592
128A ->135A	0.16573
128A ->137A	0.15838
129A ->136A	0.22380
130A ->135A	0.10206
130A ->137A	-0.22569
131A ->135A	0.13687
132A ->134A	0.27791
132A ->136A	-0.14301
132A ->138A	-0.10452
133A ->134A	0.27538
133A ->136A	0.37346
125B ->133B	-0.10799
127B ->134B	-0.24436
128B ->133B	0.15160
128B ->135B	-0.16743
128B ->137B	-0.16113
129B ->136B	-0.24536
130B ->137B	0.23502
132B ->134B	-0.24204
132B ->136B	0.12550
132B ->138B	0.10362

Excited State 12: 3.139-A 3.8019 eV 326.11 nm f=0.0203 <S**2>=2.213

127A ->135A	0.11287
128A ->134A	0.12848
128A ->136A	-0.15023
129A ->137A	-0.11166
130A ->138A	0.20774
131A ->134A	0.17920
131A ->136A	0.23846
131A ->138A	-0.32086
132A ->135A	-0.17269
132A ->139A	-0.10457
133A ->135A	0.42560
133A ->137A	-0.17128
127B ->135B	-0.10996
128B ->134B	-0.10391
128B ->136B	0.15552
129B ->137B	0.14388
130B ->138B	-0.20523
131B ->134B	-0.10764
131B ->136B	-0.23467
131B ->138B	0.32397

132B ->135B	0.19681				
Excited State 13:	2.348-A	3.8987 eV	318.01 nm	f=0.0003	<s**2>=1.128</s**2>
131A ->136A	0.10671				
133A ->137A	0.90144				
129B ->133B	0.12814				
130B ->134B	-0.20981				
131B ->136B	-0.10651				
Excited State 14:	2.379-A	3.9035 eV	317.62 nm	f=0.0016	<s**2>=1.165</s**2>
132A ->136A	-0.13621				
133A ->138A	0.90979				
129B ->134B	0.12532				
130B ->135B	0.11076				
131B ->135B	-0.13526				
132B ->136B	0.13062				
132B ->138B	-0.10809				
Excited State 15:	3.394-A	4.0259 eV	307.97 nm	f=0.0014	<s**2>=2.630</s**2>
128A ->135A	-0.11589				
129A ->134A	0.49757				
130A ->135A	0.28901				
130A ->139A	-0.10081				
132A ->134A	-0.40624				
133A ->138A	0.12882				
129B ->134B	-0.44776				
130B ->133B	0.12003				
130B ->135B	-0.22283				
132B ->134B	0.31741				

Table S8. Optimized excited states of BnBTM and bisBnTM calculated by TD-DFT calculations.

BnBTM (UB3LYP/6-31G(d,p))

Excited State	1:	2.120-A	2.0962 eV	591.46 nm	f=0.0270	<s**2>=0.873</s**2>	
135A ->13	6A	0.1912	5				
135A ->13	7A	0.1268	6				
134B ->13	5B	-0.94928					
This state for optimization and/or second-order correction.							

Total Energy, E(TD-HF/TD-KS) = -4501.91166398

Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State 2: 2.151-A 2.3540 eV 526.70 nm f=0.0234 <S**2>=0.907

135A ->136A 0.28699 135A ->137A -0.15242 129B ->135B 0.11910 131B ->135B -0.17141 133B ->135B -0.88380 134B ->135B 0.10823 Excited State 3: 2.087-A 2.5499 eV 486.24 nm f=0.0091 <S**2>=0.839 135A ->138A -0.10535 130B ->135B -0.18351 132B ->135B 0.95602 Excited State 4: 2.109-A 2.6474 eV 468.33 nm f=0.0002 <S**2>=0.862 -0.32795 135A ->136A 129B ->135B -0.15913 130B ->135B 0.11001 131B ->135B 0.83361 132B ->135B -0.10293 133B ->135B -0.31634 134B ->135B -0.10784 Excited State 5: 2.128-A 2.7072 eV 457.98 nm f=0.0062 <S**2>=0.882 135A ->137A -0.15702 135A ->139A -0.10334 130B ->135B -0.92414 131B ->135B 0.13540 132B ->135B -0.20283 Excited State 6: 2.165-A 2.8451 eV 435.79 nm f=0.0882 <S**2>=0.922 131A ->136A 0.10338 133A ->136A 0.10161 135A ->136A 0.52163 127B ->135B -0.10251 129B ->135B 0.61341 130B ->135B 0.10404 131B ->135B 0.41766 133B ->135B 0.17776 134B ->135B 0.11023

BisBnTM (UB3LYP/6-31G(d,p))

Excited State 1: 2.095-A 1.9726 eV 628.53 nm f=0.0289 <S**2>=0.847 133A ->135A 0.15036 132B ->133B 0.97172

This state for optimization and/or second-order correction.

Total Energy, E(TD-HF/TD-KS) = -4134.55961738Copying the excited state density for this state as the 1-particle RhoCI density.

Excited State	2:	2.185-A	2.2930 eV	540.72 nm	f=0.0119	<s**2>=0.944</s**2>
133A ->134	4A	-0.39560				
129B ->133	BB	-0.35588				
130B ->133	BB	-0.48044				
131B ->133	BB	0.65271				
Excited State	3:	2.085-A	2.4577 eV	504.46 nm	f=0.0075	<s**2>=0.837</s**2>
130B ->133	BB	-0.80478				
131B ->133	BB	-0.56760				
Excited State	4:	2.114-A	2.5677 eV	482.86 nm	f=0.0002	<s**2>=0.867</s**2>
133A ->134	4A	0.29337				
129B ->133	BB	0.77881				
130B ->133	BB	-0.25686				
131B ->133	BB	0.45110				
Excited State	5:	2.131-A	2.6331 eV	470.87 nm	f=0.0079	<s**2>=0.885</s**2>
133A ->135	5A	0.15090				
128B ->133	BB	-0.96252				
Excited State	6:	2.337-A	2.8346 eV	437.39 nm	f=0.0150	<s**2>=1.115</s**2>
129A ->134	4A	0.17779				
131A ->134	4A	0.11818				
133A ->135	5A	0.51564				
133A ->139	9A	-0.14941				
127B ->133	BB	0.72083				
128B ->133B		0.10778				
129B ->134	łB	0.13897				
131B ->134	4B	-0.10665				
132B ->133	BB	-0.10804				

6. References

- R. B. Gaussian 09, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E.Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- 2 N. Roques, D. Maspoch, K. Wurst, D. Ruiz-Molina, C. Rovira, J. Veciana, Chem. Eur. J., 2006, 12, 9238–9253.

- 3 S. Oda, T. Sugitani, H. Tanaka, K. Tabata, R. Kawasumi, T. Hatakeyama, *Adv. Mater.*, 2022, **34**, 2201778–2201783.
- 4 T. Lu, F. Chen, J. Comput. Chem., 2012,33, 580–592.