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1. Experimental Section. 

Materials and Methods

1,3,5-tri(4-formylphenyl)triazine (TfpTz, 97%) was purchased from Bidepharm. 1, 5-

diaminaphthalene (DaNap, 99.79%), 1,3,5-tribromobenzene (98%), 4-formylphenylboronic 

(98%) acid, and benzylamine (98%) were purchased from Energy Chemical. Commercially 

available reagents and solvents without special descriptions were purchased from Damao 

Chemical Reagent Factory. There was no additional purification to all the reagents and 

solvents.

Powder X-ray diffraction (PXRD) measurements: The PXRD was obtained on a D8 

Advance XRD instrument, and the diffraction patterns were gathered from 2 to 30° at room 

temperature.

Fourier transform infrared spectroscopy (FT-IR) measurements: The FT-IR was recorded 

from 400 to 4000 cm−1 on a ThermoFisher 6700 FTIR spectrometer by using KBr pellets. All 

the spectra were collected neatly in the ambient atmosphere. The signals are given in 

transmittance (%) against wavenumbers (cm−1).

13C cross polarization magic angle spinning (CP-MAS) NMR measurements: The solid 

13C CP-MAS NMR spectroscopy was performed on the Agilent DD2-500MHz spectrometer. 

Thermogravimetric analysis (TGA) measurements: The TGA was recorded on a TA Q500 

thermogravimeter from 20 to 800 °C at a rate of 10 °C /min under an air atmosphere.

Scanning electron microscopy (SEM) measurements: The SEM was performed on the 

JSM-7610F Plus field emission SEM under an accelerating voltage of 500 V. The samples 

were randomly dispersed on the surface of the flat aluminum sample holder for SEM 
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measurements.

Transmission electron microscopy (TEM) measurements: The morphology was 

determined by TEM. TEM experiments were performed on a JEM-F200 field emission 

transmission electron microscope at an acceleration voltage of 300 kV.

Sorption studies: N2 adsorption/desorption was determined with autosorb iQ physical 

adsorption instrument at 77 K. The samples were degassed for 6 hours at 120 °C, under the 

pressure below 1 Torr.

UV-Vis spectra: Liquid UV-Vis spectra were collected on a PERSEE T9CS spectrometer. 

Solid UV-vis spectra were recorded on Hitachi UH5700 UV-vis-NIR spectrophotometer.

Time-resolved decay fluorescence spectra: The time-resolved decay fluorescence 

spectra were recorded on Edinburgh FLS 1000 stable/transient fluorescence 

spectrometer.

Electron paramagnetic resonance (EPR) measurements: The EPR spectrums were 

recorded on a Bruker E500 instrument.

Nuclear magnetic resonance (1H NMR) measurements: The 1H NMR spectra were 

recorded on the Bruker Avance NEO 600 M spectrometer, Bruker Avance II 400 spectrometer, 

or Vaian 400 M spectrometer.

Electrochemical Experiments

Photocurrent measurements were conducted with a ZAHNER ENNIUM electrochemical 

workstation in a standard three-electrode system with the photocatalyst-coated FTO as the 

working electrode, Pt plate as the counter electrode in an aqueous solution of KCl at a scan rate 

of 100 mV·s−1, and an Ag/AgCl as a reference electrode. A 520 nm LED was used as the light 
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source. The 2 mg of catalyst was added into 250 μL of CH3CH2OH and 20 μL of Nafion mixed 

solution. Then a 100 μL suspension was dropped on the surface of an FTO glass and dried at 

room temperature for photocurrent measurements, and the signals were recorded under 10 s 

chopped light. Electrochemical impedance spectroscopy (EIS) and Mott-Schottky plots were 

performed with a 30 μL suspension on the working electrode with a bias potential of −1 V.

Molecular Oxygen Activation Measurements

3,3’,5,5’-tetramethylbenzidine (TMB) oxidation experiments: The TMB oxidation 

experiments were measured according to previous reports.1 2 mL of CH3CN or CH3OH 

suspension containing the catalyst (1 mg·mL−1) and 6 mg of TMB (mg·mL−1 CH3CN or 

CH3OH solution) were mixed in the cuvette. A 520 nm LED equipment was used as the light 

source. TMB oxidation experiments were evaluated by UV-Vis measurements (the absorbance 

around 420 nm) at different time intervals.

Reactive Oxygen Species Trapping Experiment.

The O2
•− and 1O2 generated by NapTz−COF have been detected by EPR in the presence 

of DMPO and TEMP, respectively. Typically, 30 μL DMPO or TEMP in 1 mL CH3CN was 

mixed with 0.5 mL of NapTz−COF/CH3CN suspension (1 mg·mL−1). The formed mixed 

solution is drawn with a capillary tube and placed into an EPR tube. EPR measurements were 

carried out during the 520 nm LED light irradiation under the air conditions.

General Procedure for Recycle

After the photocatalytic reaction, the mixture was centrifuged at 9000 rpm for 5 min, and 

the precipitate was washed with CH2Cl2 until no product was detected in the eluent. The 

recovered solid was reused for the next runs directly.
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Scheme S1. Synthesis of ligand TfpBz.

Synthesis of 1,3,5-tris(4-formylphenyl)benzene (TfpBz).

According to the existing literature, the synthesis process is modified slightly.2 A mixture 

of 4-formylphenylboronic acid (4.64 g, 31.00 mmol), 1,3,5-tribromobenzene (1.57 g, 5.00 

mmol), tetrakis(triphenylphosphine)palladium (0.23 g, 0.20 mmol) and K2CO3 (7.46 g, 54.00 

mmol) was dissolved in 88 mL of a mixed solvent of 1,4-dioxane (80 mL) and water (8 mL) 

in a 250 mL three-necked flask. Then, the solution was stirred at 90 °C under Ar atmosphere 

for 72 h. After cooled at room temperature, the precipitate was collected by filtration and the 

residue was purified by column chromatography (dichloromethane is the eluent) to give TfpBz 

as a white solid. 1H NMR (400 MHz, CDCl3): δ 10.13 (s, 3H), 8.05 (d, J = 8 Hz, 6H), 

7.94 (s, 3H), 7.90 (d, J = 8 Hz, 6H).



S-6

N

N

N

O

O O

O

O OMesitylene/1,4-Dioxane, CH3COOH
120 °C, 72 h

N N
N

N

N

N

N
N

N

NN
N

N

N

N

N
N

N
N

N

N

N
N

N N

N

N

N

N
N

N

N

N

N

N

N

N

N

N

N

N

N

NH2

NH2

TfpTz DaNap TfpBzMesitylene/1,4-Dioxane, CH3COOH
120 °C, 72 h

NapTz-COF NapBz-COF

Fig. S1. Schematic illustration of the synthesis process of NapTz−COF and NapBz−COF.

Preparation of NapTz−COF

TfpTz (35.40 mg, 0.09 mmol) and DaNap (20.60 mg, 0.13 mmol) were added into the 

Pyrex tube together with dioxane (0.30 mL) and mesitylene (1.70 mL). After 25 min ultrasonic 

treatment, acetic acid aqueous solution (0.20 mL, 8 M) was added and treated with ultrasound 

again for 3 min. Then the Pyrex tube was frozen in liquid nitrogen, degassed by three cycles of 

freeze-pump-thaw, and then sealed in a vacuum. The mixture was then heated at 120 °C for 72 

h. The filtrated solid products were washed three times with methanol and dichloromethane. 

Soxhlet extraction with methanol and dichloromethane respectively was used for further 

treatment of 12 h. The final product NapTz−COF was dried in a vacuum oven at 60 °C for 5 h 

to obtain orange-red powder.

Preparation of NapBz−COF

TfpBz (27.90 mg, 0.09 mmol) and DaNap (20.60 mg, 0.13 mmol) were added into the 
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Pyrex tube together with dioxane (0.30 mL) and mesitylene (1.70 mL). After 25 min ultrasonic 

treatment, acetic acid aqueous solution (0.20 mL, 8 M) was added and treated with ultrasound 

again for 3 min. Then the Pyrex tube was frozen in liquid nitrogen, degassed by three cycles of 

freeze-pump-thaw, and then sealed in a vacuum. The mixture was then heated at 120 °C for 72 

h. The filtrated solid products were washed three times with methanol and dichloromethane. 

Soxhlet extraction with methanol and dichloromethane respectively was used for further 

treatment of 12 h. The final product NapBz−COF was dried in a vacuum oven at 60 °C for 5 h 

to obtain chartreuse powder.
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2. Characterizations of Covalent organic framework
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Fig. S2. FT-IR spectra of NapTz−COF and corresponding building blocks.
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Fig. S3. FT-IR spectra of NapBz−COF and corresponding building blocks.
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Fig. S4. PXRD pattern of NapTz−COF.
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Fig. S5. PXRD pattern of NapBz−COF.
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Fig. S6. Structural simulation of the NapTz−COF. (a, b) The unit cell structure of the 

NapTz−COF using the AA stacking model along c axis and b axis. (c, d) The unit cell structure 

of the NapTz−COF using the AB stacking model along c axis and b axis.
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Fig. S7. Structural simulation of the NapBz−COF. (a, b) The unit cell structure of the 

NapBz−COF using the AA stacking model along c axis and b axis. (c, d) The unit cell structure 

of the NapBz−COF using the AB stacking model along c axis and b axis.
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Fig. S8. PXRD patterns of TfpTz、DaNap、NapTz−COF.
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Fig. S9. PXRD patterns of TfpBz、DaNap、NapBz−COF.
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Fig. S10. SEM image of NapTz−COF.
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Fig. S11. SEM image of NapBz−COF.
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Fig. S12. TEM image of NapTz−COF.
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Fig. S13. SEM image of NapBz−COF.
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Fig. S14. N2 adsorption and desorption isotherm of NapTz−COF
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Fig. S15. N2 adsorption and desorption isotherm of NapBz−COF.
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Fig. S16. TGA spectra of NapTz−COF.
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Fig. S17. TGA spectra of NapBz−COF.
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Fig. S18. TGA spectra of comparison of NapTz−COF and NapBz−COF.
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Fig. S19. Time-resolved decay fluorescence spectra of NapTz−COF and NapBz−COF.
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Fig. S20. Mott-Schottky plot of NapTz−COF at frequencies of 500, 1000, and 1500 Hz.
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Fig. S21. Mott-Schottky plot of NapBz−COF at frequencies of 500, 1000, and 1500 Hz.
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Fig. S22. Time-dependent corresponding absorption of TMB (3 mg·mL−1) at 420 nm in 

CH3OH solution containing NapTz−COF under 520 nm irradiation or dark and 

NapBz−COF under 520 nm irradiation in the air atmosphere.
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Fig. S23. Time-dependent corresponding absorption of TMB (3 mg·mL−1) at 420 nm in 

CH3CN solution containing NapTz−COF under 520 nm irradiation or dark and 

NapBz−COF under 520 nm irradiation in the air atmosphere.
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Fig. S24. EPR spectra of O2
•− were generated over NapTz−COF under green light irradiation.
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Fig. S25. EPR spectra of 1O2 were generated over NapTz−COF under green light irradiation.
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3. Catalysis Details

General procedure for the selective oxidative coupling of benzylamines. 

The photocatalyzed selective oxidative coupling of benzylamines was performed in a 

sealed quartz flask (10 mL) containing COFs (5 mg), benzylamines (0.1 mmol), and CH3CN 

(2 mL) under standard conditions. The resulting mixture was stirred in an oxygen atmosphere 

and irradiated at room temperature with a 520 nm LED. After reaction for 3 h, 1,3, 5-

trimethoxybenzene was added as the internal standard, the COFs were separated by filtration, 

and the excess solvent was separated by vacuum rotary evaporation. The yield was determined 

by the 1H NMR spectrum.

General procedures for the selective oxidation of thioethers. 

The photocatalyzed selective oxidation of thioethers was performed in a sealed quartz 

flask (10 mL) containing COFs (5 mg), thioethers (0.1 mmol), and CH3OH (2 mL) under 

standard conditions. The resulting mixture was stirred in an oxygen atmosphere and irradiated 

at room temperature with a 520 nm LED. After the reaction for 10 h, 1,3, 5-trimethoxybenzene 

was added as the internal standard, the COFs were separated by filtration, and the excess 

solvent was separated by vacuum rotary evaporation. The yield was determined by the 1H NMR 

spectrum.

Cycle Catalysis Experiment. 

After the photocatalytic reaction, the mixture was centrifuged at 9000 rpm for 5 min, and 

the precipitate was washed with CH2Cl2 until no product was detected in the eluent. The 

recovered solid was reused for the next runs directly. The yield after running 5 times did not 

decrease obviously.
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Fig. S26. Quenching experiments of oxidative coupling of benzylamines.
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Fig. S27. Yield-time plots of photocatalytic oxidative coupling of benzylamines over 

NapTz−COF under the standard conditions.
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Fig. S28. Recycling experiments of photocatalytic oxidative coupling of benzylamines over 

NapTz−COF under the standard conditions.
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Fig. S29. PXRD spectra of pristine NapTz−COF and NapTz−COF after photocatalytic 

oxidative coupling of benzylamines.
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Fig. S30. FT-IR spectra of the pristine NapTz−COF and NapTz−COF after photocatalytic 

oxidative coupling of benzylamines.
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Fig. S31. TGA of the pristine NapTz−COF and NapTz−COF after photocatalytic oxidative 

coupling of benzylamines.
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Table S1 Photocatalytic Performances of NapTz−COF for selective oxidation of thioethers. α

S NapTz-COF (5 mg), O2
RT, 520 nm LED, 10 h

S
O

3a 4a

Entry Variation from the standard conditions Yield 
(%)

1 None 95
2 NapBz−COF instead of NapTz−COF 23
3 No light N.R.
4 No catalyst 20
5 Ar instead of O2 N.R.
6 Air instead of O2 23
7 Addition of 1 equiv 1,4-benzoquinone 27
8 Addition of 1 equiv DABCO 48
9 Addition of 1 equiv AgNO3 39
10 Addition of 1 equiv KI 32
11 Addition of 1 equiv tert-butyl alcohol 95
12 DaNap instead of NapTz−COF 3
13 TfpTz instead of NapTz−COF N.R.

14 Mixture of DaNap and TfpTz instead of 
NapTz−COF 2

α Standard reaction condition: Thioethers (0.1 mmol), NapTz−COF (5 mg), and CH3OH (2 

mL). The mixture solution was irradiated with a 520 nm LED at room temperature in the 

presence of oxygen for 10 h. The yield was determined by 1H NMR analysis. N.R. = No 

reaction.
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Fig. S32. Yield-time plots of photocatalytic selective oxidation of thioethers over NapTz−COF 

under the standard conditions.



S-41

1 2 3 4 5
0

20

40

60

80

100

Yi
el

d 
(%

)

Cycle

Fig. S33. Recycling experiments of photocatalytic selective oxidation of thioethers over 

NapTz−COF under the standard conditions.
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Fig. S34. PXRD spectra of pristine NapTz−COF and NapTz−COF after photocatalytic 

selective oxidation of thioethers.
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Fig. S35. FT-IR spectra of the pristine NapTz−COF and NapTz−COF after photocatalytic 

selective oxidation of thioethers.
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Fig. S36. TGA of the pristine NapTz−COF and NapTz−COF after photocatalytic selective 
oxidation of thioethers.
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Fig. S37. Mechanism of oxidative coupling of benzylamines and selective oxidation of 

thioethers photocatalyzed by NapTz−COF.
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Detection of NH3:

Benzylamine (0.10 mmol) and NapTz−COF (5.0 mg) was mixed in CH3CN (2.0 mL), which 

was stirred and irradiated by green LED for 3 h at room temperature in O2. Then, 

NapTz−COF was separated from the reaction mixture by centrifugation. After that, 2.0 mL 

distilled water was added into the above solution, which subsequently was extracted by 5.0 

mL CH2Cl2 for twice. The aqueous layer was subject to pH test, showing its basic solution 

(pH = 9.23). However, in the absence of NapTz−COF or light irradiation, the water layer is 

neutral (PH=7), which also indicated that the NH3 molecule was released from the coupling 

reaction.

Fig. S38. The pH test for the reaction solution after different conditions.
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4. Copies of Crude 1H NMR Spectrum

It has been reported that the characteristic peaks of 1,3,5-trimethoxybenzene are 3.75 and 

6.08 ppm.3 The integration number of the peak at 6.08 ppm represents the equivalent of the 

internal standard relative to substrate.

Copies of Crude 1H NMR Spectrum of photocatalyzed selective oxidative coupling of 

benzylamines

Fig. S39. Crude 1H NMR Spectrum for 2a.4
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Fig. S40. Crude 1H NMR Spectrum for 2b.4
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Fig. S41. Crude 1H NMR Spectrum for 2c.4
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Fig. S42. Crude 1H NMR Spectrum for 2d.4
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Fig. S43. Crude 1H NMR Spectrum for 2e.4
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Fig. S44. Crude 1H NMR Spectrum for 2f.4
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Fig. S45. Crude 1H NMR Spectrum for 2g.4
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Fig. S46. Crude 1H NMR Spectrum for 2h.4
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Fig. S47. Crude 1H NMR Spectrum for 2i.4
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Fig. S48. Crude 1H NMR Spectrum for 2j.4
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Fig. S49. Crude 1H NMR Spectrum for 2k.5
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Fig. S50. Crude 1H NMR Spectrum for 2l.4
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Copies of Crude 1H NMR Spectrum of Selective oxidation of thioethers by 

photocatalysis

Fig. S51. Crude 1H NMR Spectrum for 4a.6
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Fig. S52. Crude 1H NMR Spectrum for 4b.6
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Fig. S53. Crude 1H NMR Spectrum for 4c.6
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Fig. S54. Crude 1H NMR Spectrum for 4d.7
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Fig. S55. Crude 1H NMR Spectrum for 4e.6
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Fig. S56. Crude 1H NMR Spectrum for 4f.7
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Fig. S57. Crude 1H NMR Spectrum for 4g.8
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Fig. S58. Crude 1H NMR Spectrum for 4h.9
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