Supplementary Information

Regioselective Synthesis of Isoquinolinonediones through Remote Unactivated C(sp³)-H Bonds

Lei Huang,^a Jun Sun,^a Boxuan Sun,^a Shengjie Song,^a and Jianjun Li^{*a,b,c}

- a. Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
- c. Taizhou Key Laboratory of Advanced Manufacturing Technology, Taizhou Institute, Zhejiang University of Technology, Taizhou 318014, P. R. China.

* Corresponding author. E-mail: lijianjun@zjut.edu.cn.

Page 1	General information
Page 1-2	Preparation of substrates
Page 2-3	Optimization studies
Page 4	General procedure for the synthesis of products
Page 4	Gram-scale experiments
Page 4-5	Mechanistic studies
Page 5-33	Characterization date
Page 33	References
Page 34-104	Copies of NMR spectra

1. General information

The reagents and solvents were purchased from commercial suppliers and used without further purification unless noted. All reactions were monitored by TLC with silica gel-coated plates. Product purification was accomplished by flash chromatography using 200-300 mesh silica gel. ¹H (400 MHz) NMR, ¹³C (101 MHz) NMR, and ¹⁹F (376 MHz) NMR spectra were recorded on a Varian spectrometer in CDCl₃. Measurements were done at ambient temperature. ¹H NMR chemical shifts are referenced to the residual hydrogen signals of the deuterated solvent (7.26 ppm for CDCl₃). The ¹³C NMR chemical shifts are referenced to the ¹³C signals of the deuterated solvent (77.16 ppm for CDCl₃). Abbreviations used in the description of NMR data are listed as follows: s = singlet, d = doublet, dd = doublet of doublet, t = triplet, m = multiplet. Mass spectra were measured with a HRMS-APCI instrument using ESI ionization.

2. Preparation of substrates

2.1 General Procedure for the synthesis of N-methacryloyl-N-methylbenzamide substrates¹⁻⁴

STEP 1: A dried round-bottom flask was charged with a magnetic stirring bar, aniline (10 mmol), triethylamine (10 mmol), and DCM (30 mL). Benzoyl chloride (5 mmol) dissolved in DCM (10 mL) was added slowly for 5 mins at room temperature, and the mixture was stirred for 30 mins. The reaction was monitored by TLC. After completion, the reaction was quenched with saturated NaCl solution (100 mL) and extracted with DCM (30 mL). The organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The reaction mixture was purified via column chromatography to give **1** (98% yield).

STEP 2: A dried round-bottom flask was charged with a magnetic stirring bar, benzamide **1** (5 mmol), triethylamine (10 mmol), DMAP (0.5 mmol), and DCM (30 mL). Methacryloyl chloride (10 mmol) dissolved in DCM (10 mL) was added slowly for 5 mins at 0 °C, and the mixture was stirred for 12 h at room temperature. The reaction was monitored by TLC. After completion, the reaction was quenched with saturated NaCl solution (100 mL) and extracted with DCM (30 mL). The organic phase was dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The reaction mixture was purified via column chromatography to give **2** (91% yield).

2.2 General Procedure for the synthesis of *N*-protected amine from free amines and sulfonyl chloride⁵⁻⁸

$$R_{1}-NH_{2} + CI \xrightarrow{S} R_{2} \xrightarrow{R_{2}} DCM, 0 \ C \text{ to rt, 12h} \xrightarrow{O} R_{2} \xrightarrow{O} R_{1}$$

A dried round-bottom flask was charged with a magnetic stirring bar, free amine (5 mmol), triethylamine (10 mmol), and DCM (30 mL). Sulfuryl chloride (10 mmol) dissolved in DCM (10

mL) was added slowly for 5 mins at 0 °C, and the mixture was stirred for 2-12 h at room temperature. The reaction was monitored by TLC. After completion, the reaction was quenched with saturated NaCl solution (100 mL) and extracted with DCM (30 mL). The organic phase was dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The reaction mixture was purified via column chromatography to give corresponding sulfonamide products (85-96% yields).

2.3 Procedure for the synthesis of ethyl 8-((4-methoxyphenyl)sulfonamido)octanoate⁹

A dried round-bottom flask was charged with a magnetic stirring bar, free amine alkyl bromide (2.0 mmol), *p*-methoxyphenylsulfonamide (4.0 mmol), K₂CO₃ (4.0 mmol), and MeCN (10 mL). Then the reaction mixture was heated to reflux for 12 hours. After being cooled to room temperature, the reaction was quenched with saturated NaCl solution (50 mL) and extracted with EtOAc (15 mL). The organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The reaction mixture was purified via column chromatography to give the desired product (63% yield). **2.4 General Procedure for the synthesis of** *N***-protected amine substrates from free alcohol intermediates and acid** ⁹

A dried round-bottom flask was charged with a magnetic stirring bar, *N*-(6-hydroxyhexyl)-4methoxybenzenesulfonamide (1.0 mmol), acid (1.2 mmol), DCC (1.2 mmol), DMAP (0.1 mmol) and DCM (10 mL). The mixture was stirred for 6 h at room temperature. The reaction was monitored by TLC. After completion, the reaction was quenched with saturated NaCl solution (50 mL) and extracted with DCM (15 mL). The organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The reaction mixture was purified via column chromatography to give the desired products (64% yield).

2.5 Unsuccessful substrates

Standard conditions: AgNO₃ (10 mol%) and K₂S₂O₈ (2.0 equiv.) in MeCN/H₂O (1 mL/1 mL) under air atmosphere and stirred at 60 °C for 9 h.

3. Optimization studies

3.1 Optimization of the conditions for the cascade addition/cyclization of aliphatic alcohols

	$1a \qquad 2a$	AgNO ₃ (20 mol%) K ₂ S ₂ O ₈ (2 equiv.) MeCN/H ₂ O (2 mL) air, 60 °C, 9h	O N O O H 3aa		
Entry	Changes from standard	Yield ^b (%)			
1	None	76			
2	NMP / H ₂ O as so	N.D.			
3	DMA / H ₂ O as so	35			
4	DMF / H ₂ O as so	47			
5	DMSO / H ₂ O as s	N.D.			
6	DMPU / H ₂ O as s	17			
7	Acetone / H ₂ O as	42			
8	AgCl, Ag ₂ CO ₃ , CF ₃ COOAg, Cu	55, 59, 46, N.D., N.D.			
9	Na ₂ S ₂ O ₈ , (NH ₄) ₂ S ₂ O ₈	66, 48			
10	1 equiv. of K ₂ S	64			
11	10 mol% of Ag	58			
12	Without K ₂ S ₂	N.D.			
13	Without AgN	N.D.			
14	100 °C, 80 °C, 4	34, 51, 39			
^a Reaction condition: 1a (0.3 mmol), 2a (0.9 mmol), AgNO ₃ (20 mol%), and K ₂ S ₂ O ₈ (2.0 equiv.) in MeCN/H ₂ O (1					

mL/1 mL) under air atmosphere and stirred at 60 °C for 9 h. ^b Isolated yields based on 1a.

3.2 Optimization of the conditions for the cascade addition/cyclization of sulfonamides

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5ac
Entry	Changes from standard conditions ^a	Yield ^b (%)
1	None	72
2	NMP / H ₂ O as solvent	N.D.
3	DMA / H ₂ O as solvent	28
4	DMF / H ₂ O as solvent	54
5	DMSO / H ₂ O as solvent	36
6	DMPU / H ₂ O as solvent	24
7	Acetone / H ₂ O as solvent	61
8	AgCl, Ag ₂ CO ₃ , CF ₃ COOAg CuCl ₂ , FeCl ₃ as ca	atalyst 44, 67, 51, N.D., N.D.
9	Na ₂ S ₂ O ₈ , (NH ₄) ₂ S ₂ O ₈ as oxidant	58, 55
10	1 equiv. of K ₂ S ₂ O ₈	59
11	10 mol% of AgNO ₃	64
12	Without K ₂ S ₂ O ₈	N.D.
13	Without AgNO ₃	N.D.
14	100 °C, 80 °C, 40 °C	29, 48, 55

^{*a*} Reaction condition: **1a** (0.3 mmol), **4c** (0.33 mmol), AgNO₃ (20 mol%), and $K_2S_2O_8$ (2.0 equiv.) in MeCN/H₂O (1 mL/1 mL) under air atmosphere and stirred at 60 °C for 9 h. ^{*b*} Isolated yields based on **1a**.

4. General procedure for the synthesis of products (3aa as an example)

To a Schlenk-tube was charged with **1a** (0.3 mmol), **2a** (0.9 mmol), AgNO₃ (0.06 mmol), K₂S₂O₈ (0.6 mmol), MeCN (1.0 mL) and H₂O (1.0 mL). The mixture was stirred at 60 °C for 9 hours. After completion, the reaction was quenched with saturated NaCl solution (10 mL) and extracted with EtOAc (4 mL). The organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by chromatography on silica gel column (PE/EtOAc = 6/1-4/1) to afford **3aa** (76%) as a yellow oil.

5. Gram-scale experiments (3aa and 5ac, 3aa as an example)

A 250 mL dried round-bottom flask was charged with a magnetic stirring bar, *N*-methacryloyl-*N*-methylbenzamide (5 mmol), 1-pentanol (15 mmol), silver nitrate (1 mmol), K₂S₂O₈ (10 mmol), MeCN (10 mL) and H₂O (10 mL). The resulting mixture was stirred at 60 °C using an oil bath for 9 hours. After completion, the reaction was quenched with saturated NaCl solution (30 mL) and extracted with EtOAc (10 mL). The organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The crude product was purified by column chromatography. Compound **3aa** was isolated in 53% yield (0.762 g) as a yellow oil.

6. Mechanistic studies

Standard conditions: AgNO₃ (10 mol%) and K₂S₂O₈ (2.0 equiv.) in MeCN/H₂O (1 mL/1 mL) under air atmosphere and stirred at 60 °C for 9 h.

The reaction was completely inhibited by radical inhibitors 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), and the radical adducts **5**ay was detected by HRMS ($[M+Na]^+ = 436.2365$).

7. Characterization date

4-methoxy-N-pentylbenzenesulfonamide (4c)

Prepared on a 10 mmol scale. The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1-4:1). White oil, yield 95%.

¹**H** NMR (400 MHz, CDCl₃) δ 7.79 – 7.75 (m, 2H), 6.94 – 6.89 (m, 2H), 5.19 (s, 1H), 3.80 (dd, J = 8.2, 4.1 Hz, 3H), 2.86 – 2.79 (m, 2H), 1.44 – 1.33 (m, 2H), 1.19 – 1.14 (m, 4H), 0.79 – 0.73 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 162.75, 162.73, 131.53, 129.18, 129.17, 114.19, 55.60, 43.15, 29.10, 29.08, 28.64, 22.11, 13.86, 13.85.

Data are consistent with reported in the literature⁹.

N-pentylnaphthalene-2-sulfonamide (4m)

Prepared on a 10 mmol scale. The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1-4:1). White oil, yield 94%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.46 – 8.45 (m, 1H), 7.99 – 7.93 (m, 2H), 7.93 – 7.82 (m, 2H), 7.66 – 7.57 (m, 2H), 5.03 (s, 1H), 2.99 – 2.95 (m, 2H), 1.49 – 1.42 (m, 2H), 1.25 – 1.17 (m, 4H), 0.81 – 0.76 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 136.79, 136.77, 134.80, 132.18, 129.51, 129.24, 128.75, 128.45, 127.92, 127.54, 122.39, 122.37, 43.31, 29.29, 29.26, 28.64, 22.12, 13.85.

HRMS (ESI) m/z: $[M + H]^+$ Calced for $C_{15}H_{19}NO_2S$: 278.1209. Found: 278.1210.

N-hexyl-4-methoxybenzenesulfonamide (4n)

Prepared on a 10 mmol scale. The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1-4:1). White oil, yield 96%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (d, J = 8.9 Hz, 2H), 6.97 (d, J = 8.9 Hz, 2H), 4.43 (s, 1H), 3.86

(s, 3H), 2.90 (t, *J* = 7.1 Hz, 2H), 1.49 – 1.38 (m, 2H), 1.31 – 1.13 (m, 6H), 0.83 (t, *J* = 7.0 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.81, 131.66, 129.20, 114.20, 55.59, 43.19, 31.23, 29.49, 26.19, 22.44, 13.91.

Data are consistent with reported in the literature⁹.

N-heptyl-4-methoxybenzenesulfonamide (40)

Prepared on a 10 mmol scale. The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1-4:1). White oil, yield 93%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (d, J = 8.6 Hz, 2H), 6.97 (d, J = 8.6 Hz, 2H), 4.52 (s, 1H), 3.86 (s, 3H), 2.93 – 2.88 (m, 2H), 1.50 – 1.36 (m, 2H), 1.32 – 1.12 (m, 8H), 0.85 (t, J = 6.6 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.82, 131.58, 129.23, 114.21, 55.61, 43.19, 31.63, 29.51, 28.74, 26.49, 22.52, 14.04.

Data are consistent with reported in the literature⁹.

4-methoxy-N-octylbenzenesulfonamide (4p)

Prepared on a 10 mmol scale. The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1-4:1). White oil, yield 95%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (d, J = 8.9 Hz, 2H), 6.97 (d, J = 7.5 Hz, 2H), 4.67 (s, 1H), 3.86 (s, 3H), 2.90 (t, J = 7.2 Hz, 2H), 1.49 – 1.35 (m, 2H), 1.30 – 1.13 (m, 10H), 0.85 (t, J = 6.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 162.81, 131.67, 129.20, 114.20, 55.58, 43.18, 31.70, 29.51, 29.07, 29.01, 26.52, 22.58, 14.03.

Data are consistent with reported in the literature⁹.

N-(2,2-dimethylheptyl)-4-methoxybenzenesulfonamide (4q)

Prepared on a 10 mmol scale. The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1-4:1). White oil, yield 87%.

¹**H** NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 9.0 Hz, 2H), 6.97 (d, J = 9.0 Hz, 2H), 4.56 (t, J = 6.7 Hz, 1H), 3.86 (s, 3H), 2.66 (d, J = 6.8 Hz, 2H), 1.26 – 1.05 (m, 6H), 0.85 (t, J = 7.2 Hz, 3H), 0.82 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 162.79, 131.74, 129.20, 114.19, 55.57, 52.99, 39.28, 33.64, 25.87, 24.92, 23.39, 14.01.

HRMS (ESI) m/z: $[M + H]^+$ Calced for $C_{15}H_{25}NO_3S$: 300.1628. Found: 300.1629.

4-methoxy-N-(2,4,4-trimethylpentan-2-yl)benzenesulfonamide (4r)

Prepared on a 10 mmol scale. The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1-4:1). White oil, yield 84%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 – 7.76 (m, 2H), 7.00 – 6.88 (m, 2H), 4.58 (s, 1H), 3.86 (d, J = 0.9 Hz, 3H), 1.52 (s, 2H), 1.24 (d, J = 1.2 Hz, 6H), 0.98 (d, J = 0.9 Hz, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 162.41, 135.45, 129.12, 113.94, 58.44, 55.65, 55.58, 31.63, 29.38. HRMS (ESI) m/z: [M + H]⁺ Calced for C₁₅H₂₅NO₃S: 300.1628. Found: 300.1630.

N-(2-cyclopentylethyl)-4-methoxybenzenesulfonamide (4s)

Prepared by **General Procedure C** on a 10 mmol scale. The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1-4:1). White oil, yield 89%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.84 – 7.72 (m, 2H), 7.01 – 6.92 (m, 2H), 4.56 (t, *J* = 6.2 Hz, 1H), 3.86 (s, 3H), 2.93 – 2.90 (m, 2H), 1.76 – 1.63 (m, 3H), 1.59 – 1.52 (m, 2H), 1.49 – 1.41 (m, 4H), 1.04 – 0.94 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 162.80, 131.58, 129.21, 114.20, 55.61, 42.60, 37.30, 35.78, 32.41, 24.99.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₁₄H₂₁NO₃S: 284.1315. Found: 284.1316.

4-methoxy-N-(oct-7-en-1-yl)benzenesulfonamide (4t)

Prepared on a 10 mmol scale. The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1-4:1). White oil, yield 88%.

¹**H** NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.7 Hz, 2H), 6.97 (d, J = 7.4 Hz, 2H), 5.81 – 5.71 (m, 1H), 4.98 – 4.90 (m, 2H), 4.52 (s, 1H), 3.86 (s, 3H), 2.90 (d, J = 7.2 Hz, 2H), 2.01 – 1.96 (m, 2H), 1.46 – 1.40 (m, 2H), 1.36 – 1.18 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 162.83, 138.87, 131.60, 129.22, 114.35, 114.22, 55.61, 43.15, 33.59, 29.47, 28.65, 28.51, 26.36.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₁₅H₂₃NO₃S: 298.1471. Found: 298.1473.

MeO

ethyl 8-((4-methoxyphenyl)sulfonamido)octanoate (4u)

Prepared on a 10 mmol scale. The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1-4:1). White oil, yield 63%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (d, J = 8.2 Hz, 2H), 6.99 (d, J = 8.2 Hz, 2H), 4.58 (s, 1H), 4.13 – 4.08 (m, 2H), 3.89 (s, 3H), 2.92 (t, J = 6.1 Hz, 2H), 2.27 (t, J = 7.1 Hz, 2H), 1.66 – 1.52 (m, 2H), 1.52 – 1.37 (m, 2H), 1.35 – 1.16 (m, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 173.82, 162.82, 131.55, 129.21, 114.22, 60.23, 55.62, 43.12, 34.25, 29.44, 28.88, 28.68, 26.31, 24.77, 14.26.

Data are consistent with reported in the literature⁹.

6-((4-methoxyphenyl)sulfonamido)hexyl 4-bromobenzoate (4v)

Prepared on a 10 mmol scale. The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1-4:1). White oil, yield 87%.

¹**H** NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.5 Hz, 2H), 7.79 (d, J = 8.9 Hz, 2H), 7.57 (d, J = 8.5 Hz, 2H), 6.96 (d, J = 8.8 Hz, 2H), 4.62 (s, 1H), 4.26 (t, J = 6.6 Hz, 2H), 3.85 (s, 3H), 2.92 (t, J = 6.8 Hz, 2H), 1.73 – 1.67 (m, 2H), 1.52 – 1.45 (m, 2H), 1.43 – 1.28 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 165.91, 162.86, 131.70, 131.66, 131.08, 129.32, 129.19, 127.96, 114.24, 65.06, 55.60, 43.00, 29.43, 28.50, 26.14, 25.48.

Data are consistent with reported in the literature⁹.

6-((4-methoxyphenyl)sulfonamido)hexyl 2-(3-(4-chlorobenzoyl)phenoxy)-2-

<u>methylpropanoate (4w)</u>

Prepared on a 10 mmol scale. The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (5:1-4:1). White oil, yield 82%.

¹**H** NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 9.0 Hz, 2H), 7.69 (d, *J* = 8.3 Hz, 4H), 7.44 (d, *J* = 8.6 Hz, 2H), 6.97 (d, *J* = 9.0 Hz, 2H), 6.84 (d, *J* = 8.9 Hz, 2H), 4.71 (t, *J* = 5.0 Hz, 1H), 4.11 (t, *J* = 6.4 Hz, 2H), 3.86 (s, 3H), 2.86 – 2.81 (m, 2H), 1.67 (s, 6H), 1.57 – 1.44 (m, 2H), 1.34 – 1.27 (m, 2H), 1.19 – 1.13 (m, 2H), 1.11 – 1.02 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 194.53, 173.74, 162.79, 159.80, 138.60, 136.19, 132.02, 131.69, 131.29, 130.27, 129.21, 128.61, 116.96, 114.20, 79.43, 65.52, 55.61, 43.07, 29.48, 28.22, 26.05, 25.46, 25.34.

Data are consistent with reported in the literature⁹.

4-(5-hydroxy-2-methylpentyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3aa)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 76% (dr = 1:1.2).

¹**H** NMR (400 MHz, CDCl₃) δ 8.26 – 8.23 (m, 1H), 7.65 – 7.60 (m, 1H), 7.45 – 7.36 (m, 2H), 3.50 – 3.40 (m, 2H), 3.37 (s, 3H), 2.39 (dd, *J* = 14.0, 5.5 Hz, 0.52H), 2.26 (dd, *J* = 14.0, 8.5 Hz, 0.46H), 2.02 (dd, *J* = 13.9, 3.0 Hz, 0.46H), 1.81 (dd, *J* = 14.0, 5.9 Hz, 0.55H), 1.59 (d, *J* = 4.0 Hz, 3H), 1.44 (s, 1H), 1.38 – 1.28 (m, 2H), 1.15 – 0.97 (m, 3H), 0.59 (d, *J* = 6.1 Hz, 1.36H), 0.44 (d, *J* = 6.5 Hz, 1.58H).

¹³C NMR (101 MHz, CDCl₃) δ 176.94, 176.85, 164.50, 164.43, 143.93, 143.57, 133.85, 133.78, 128.88, 127.29, 127.27, 125.85, 125.72, 124.75, 124.61, 62.89, 49.84, 49.06, 47.11, 46.70, 33.92, 32.92, 31.33, 30.78, 30.08, 29.84, 29.73, 29.41, 27.24, 27.18, 20.79, 19.46.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₁₇H₂₃NO₃: 290.1751. Found: 290.1753.

4-(5-hydroxy-2-methylpentyl)-2,4,6-trimethylisoquinoline-1,3(2H,4H)-dione (3ba)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 79% (dr = 1:1).

¹**H** NMR (400 MHz, CDCl₃) δ 8.13 – 8.10 (m, 1H), 7.26 – 7.13 (m, 2H), 3.50 – 3.39 (m, 2H), 3.35 (s, 3H), 2.43 (s, 3H), 2.36 (dd, J = 14.0, 5.4 Hz, 0.52H), 2.24 (dd, J = 14.0, 8.4 Hz, 0.50H), 1.99 (dd, J = 14.0, 3.1 Hz, 0.50H), 1.78 (dd, J = 14.0, 5.9 Hz, 0.54H), 1.57 (d, J = 4.2 Hz, 3H), 1.52 (s, 1H), 1.45 – 1.27 (m, 2H), 1.15 – 0.95 (m, 3H), 0.58 (d, J = 6.1 Hz, 1.49H), 0.44 (d, J = 6.4 Hz, 1.50H).

¹³C NMR (101 MHz, CDCl₃) δ 177.12, 177.02, 164.52, 164.45, 144.70, 144.60, 143.96, 143.59, 128.90, 128.88, 128.40, 128.37, 126.16, 126.06, 122.27, 122.14, 62.90, 62.87, 49.86, 48.95, 47.04, 46.62, 33.90, 32.95, 31.32, 30.71, 30.07, 29.75, 29.67, 29.43, 27.14, 27.08, 21.98, 20.82, 19.47. **HRMS** (ESI) m/z: $[M + H]^+$ Calced for C₁₈H₂₅NO₃: 304.1907. Found: 304.1909.

4-(5-hydroxy-2-methylpentyl)-6-methoxy-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3ca)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 77% (dr = 1:1.5).

¹**H** NMR (400 MHz, CDCl₃) δ 8.20 – 8.18 (m, 1H), 6.96 – 6.93 (m, 1H), 6.85 – 6.81 (m, 1H), 3.88 (d, *J* = 1.5 Hz, 3H), 3.48 – 3.42 (m, 2H), 3.34 (s, 3H), 2.37 (dd, *J* = 14.0, 5.5 Hz, 0.60H), 2.25 (dd, *J* = 13.9, 8.5 Hz, 0.42H), 1.97 (dd, *J* = 14.0, 3.1 Hz, 0.40H), 1.76 (dd, *J* = 14.0, 5.9 Hz, 0.64H), 1.57 (d, *J* = 3.7 Hz, 3H), 1.52 (s, 1H), 1.46 – 1.30 (m, 2H), 1.16 – 0.94 (m, 3H), 0.59 (d, *J* = 6.2 Hz, 1.21H), 0.48 (d, *J* = 6.5 Hz, 1.83H).

¹³C NMR (101 MHz, CDCl₃) δ 177.03, 176.92, 164.12, 164.08, 164.06, 164.00, 146.21, 145.83, 131.22, 117.83, 117.72, 113.17, 113.12, 110.96, 110.76, 62.90, 62.88, 55.60, 55.59, 49.93, 49.01, 47.30, 46.89, 33.94, 32.92, 31.49, 30.90, 30.07, 29.76, 29.74, 29.43, 27.08, 27.02, 20.85, 19.47. HRMS (ESI) m/z: $[M + H]^+$ Calced for C₁₈H₂₅NO₄: 320.1856. Found: 320.1858.

<u>6-(*tert*-butyl)-4-(5-hydroxy-2-methylpentyl)-2,4-dimethylisoquinoline-1,3(2*H*,4*H*)-dione (3da) The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 83% (dr = 1:1.2).</u>

¹**H** NMR (400 MHz, CDCl₃) δ 8.15 – 8.12 (m, 1H), 7.47 – 7.31 (m, 2H), 3.48 – 3.37 (m, 2H), 3.34 (s, 3H), 2.38 (dd, J = 14.0, 4.8 Hz, 0.55H), 2.23 (dd, J = 14.0, 8.4 Hz, 0.44H), 2.02 (dd, J = 14.1, 3.2 Hz, 0.46H), 1.79 (dd, J = 13.9, 5.8 Hz, 0.57H), 1.68 (s, 1H), 1.57 (d, J = 2.9 Hz, 3H), 1.47 – 1.36 (m, 1H), 1.33 (s, 9H), 1.31 – 1.24 (m, 1H), 1.13 – 0.94 (m, 3H), 0.57 (d, J = 6.2 Hz, 1.34H), 0.38 (d, J = 6.2 Hz, 1.63H).

¹³C NMR (101 MHz, CDCl₃) δ 177.23, 177.13, 164.45, 164.38, 157.55, 157.47, 143.48, 143.14, 128.66, 124.62, 124.58, 122.61, 122.39, 122.21, 122.04, 62.84, 62.78, 49.87, 48.94, 47.36, 46.89, 35.30, 33.99, 33.21, 31.35, 31.08, 31.05, 30.80, 30.14, 29.87, 29.84, 29.43, 27.11, 27.05, 20.82, 19.80.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₁H₃₁NO₃: 346.2377. Found: 346.2380.

4-(5-hydroxy-2-methylpentyl)-2,4,8-trimethylisoquinoline-1,3(2H,4H)-dione (3ea)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 81% (dr = 1:1.3).

¹**H** NMR (400 MHz, CDCl₃) δ 7.48 – 7.44 (m, 1H), 7.31 – 7.20 (m, 2H), 3.52 – 3.41 (m, 2H), 3.34 (s, 3H), 2.78 (d, J = 2.1 Hz, 3H), 2.35 (dd, J = 14.0, 5.5 Hz, 0.58H), 2.24 (dd, J = 14.0, 8.4 Hz, 0.48H), 1.98 (dd, J = 14.0, 3.1 Hz, 0.45H), 1.77 (dd, J = 14.0, 5.9 Hz, 0.62H), 1.58 (d, J = 4.1 Hz, 3H), 1.48 (s, 1H), 1.46 – 1.29 (m, 2H), 1.18 – 0.96 (m, 3H), 0.60 (d, J = 6.2 Hz, 1.28H), 0.47 (d, J = 6.5 Hz, 1.68H).

¹³C NMR (101 MHz, CDCl₃) δ 176.65, 176.57, 165.02, 164.95, 145.26, 144.95, 142.48, 142.45, 132.64, 132.56, 131.24, 131.22, 124.13, 124.01, 123.15, 123.05, 62.92, 62.90, 50.36, 49.53, 47.06, 46.65, 33.95, 32.92, 31.53, 30.84, 29.97, 29.75, 29.43, 27.21, 27.16, 24.12, 24.08, 20.85, 19.52. **HRMS** (ESI) m/z: $[M + H]^+$ Calced for C₁₈H₂₅NO₃: 304.1907. Found: 304.1908.

4-(5-hydroxy-2-methylpentyl)-2,4,7-trimethylisoquinoline-1,3(2H,4H)-dione (3fa)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 74% (dr = 1:1.9).

¹**H** NMR (400 MHz, CDCl₃) δ 8.06 – 8.00 (m, 1H), 7.45 – 7.38 (m, 1H), 7.33 – 7.26 (m, 1H), 3.48 – 3.42 (m, 2H), 3.36 (s, 3H), 2.41 (s, 3H), 2.36 (dd, *J* = 13.9, 5.5 Hz, 0.66H), 2.24 (dd, *J* = 13.9, 8.6 Hz, 0.39H), 1.99 (dd, *J* = 13.9, 3.0 Hz, 0.38H), 1.78 (dd, *J* = 13.9, 5.8 Hz, 0.66H), 1.55 (d, *J* = 4.3 Hz, 3H), 1.49 (s, 1H), 1.45 – 1.27 (m, 2H), 1.16 – 0.93 (m, 3H), 0.57 (d, *J* = 6.1 Hz, 1.02H), 0.45 (d, *J* = 6.4 Hz, 1.97H).

¹³C NMR (101 MHz, CDCl₃) δ 177.27, 177.17, 164.78, 164.71, 141.13, 140.75, 137.25, 137.23, 135.02, 134.96, 128.97, 125.89, 125.76, 124.61, 124.47, 63.02, 49.89, 49.05, 46.93, 46.49, 34.07, 33.00, 31.55, 30.94, 30.18, 29.94, 29.86, 29.53, 27.33, 27.27, 21.08, 20.95, 19.48.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₁₈H₂₅NO₃: 304.1907. Found: 304.1909.

6-fluoro-4-(5-hydroxy-2-methylpentyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3ga)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 67% (dr = 1:1.4).

¹**H NMR** (400 MHz, CDCl₃) δ 8.30 – 8.25 (m, 1H), 7.17 – 7.01 (m, 2H), 3.54 – 3.41 (m, 2H), 3.36 (s, 3H), 2.40 (dd, *J* = 14.1, 5.4 Hz, 0.59H), 2.28 (dd, *J* = 14.1, 8.6 Hz, 0.44H), 1.95 (dd, *J* = 14.0, 3.0 Hz, 0.42H), 1.74 (dd, *J* = 14.0, 5.9 Hz, 0.61H), 1.58 (d, *J* = 4.0 Hz, 3H), 1.47 (s, 1H), 1.40 – 1.28 (m, 2H), 1.17 – 0.96 (m, 3H), 0.59 (d, *J* = 6.2 Hz, 1.27H), 0.48 (d, *J* = 6.4 Hz, 1.77H).

¹³C NMR (101 MHz, CDCl₃) δ 176.42, 176.31, 167.62, 167.55, 165.07, 165.01, 163.52, 163.46, 147.15, 147.06, 146.74, 146.65, 132.02, 132.00, 131.92, 131.91, 121.25, 121.22, 121.13, 121.10, 115.47, 115.45, 115.25, 115.23, 112.72, 112.58, 112.50, 112.36, 62.85, 49.90, 49.07, 47.37, 47.35, 46.96, 46.94, 33.97, 32.91, 31.33, 30.77, 30.09, 29.86, 29.71, 29.39, 27.25, 27.19, 20.79, 19.33.
¹⁹F NMR (376 MHz, CDCl₃) δ -103.54, -103.63.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₁₇H₂₂FNO₃: 308.1656. Found: 308.1657.

6-chloro-4-(5-hydroxy-2-methylpentyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3ha)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 60% (dr = 1:1.3).

¹**H** NMR (400 MHz, CDCl₃) δ 8.19 – 8.16 (m, 1H), 7.43 – 7.33 (m, 2H), 3.51 – 3.42 (m, 2H), 3.35 (s, 3H), 2.38 (dd, *J* = 14.1, 5.4 Hz, 0.58H), 2.27 (dd, *J* = 14.1, 8.6 Hz, 0.43H), 1.97 (dd, *J* = 14.0, 3.1 Hz, 0.43H), 1.76 (dd, *J* = 14.1, 6.0 Hz, 0.61H), 1.58 (d, *J* = 4.3 Hz, 3H), 1.55 (s, 1H), 1.47 – 1.29 (m, 2H), 1.14 – 1.00 (m, 3H), 0.58 (d, *J* = 6.2 Hz, 1.29H), 0.47 (d, *J* = 6.4 Hz, 1.73H).

¹³C NMR (101 MHz, CDCl₃) δ 176.27, 176.15, 163.63, 163.57, 145.71, 145.31, 140.50, 140.44, 130.54, 130.52, 127.98, 127.95, 126.00, 125.91, 123.25, 123.13, 62.82, 49.85, 48.86, 47.20, 46.79, 33.92, 32.93, 31.27, 30.65, 30.09, 29.81, 29.64, 29.39, 27.30, 27.24, 20.84, 19.38. HRMS (ESI) m/z: [M + H]⁺ Calced for C₁₇H₂₂CINO₃: 324.1361. Found: 324.1364.

<u>4-(5-hydroxy-2-methylpentyl)-2,4-dimethyl-6-(trifluoromethyl)isoquinoline-1,3(2H,4H)-</u> <u>dione (3ia)</u>

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 71% (dr = 1:2).

¹**H** NMR (400 MHz, CDCl₃) δ 8.42 – 8.34 (m, 1H), 7.71 – 7.61 (m, 2H), 3.51 – 3.41 (m, 2H), 3.39 (s, 3H), 2.44 (dd, *J* = 14.1, 5.1 Hz, 0.63H), 2.31 (dd, *J* = 14.2, 8.8 Hz, 0.37H), 2.04 (dd, *J* = 14.2, 3.5 Hz, 0.36H), 1.82 (dd, *J* = 14.1, 6.0 Hz, 0.64H), 1.62 (d, *J* = 4.3 Hz, 3H), 1.49 (s, 1H), 1.45 – 1.28 (m, 2H), 1.16 – 0.94 (m, 3H), 0.59 (d, *J* = 6.4 Hz, 1H), 0.43 (d, *J* = 6.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 176.05, 175.93, 163.31, 163.24, 144.76, 144.37, 135.68, 135.62, 135.46, 135.41, 135.25, 135.19, 135.03, 134.98, 129.77, 129.75, 127.62, 127.49, 124.30, 124.02, 124.00, 123.97, 123.03, 123.00, 122.97, 122.94, 122.91, 122.49, 62.71, 62.63, 49.94, 48.82, 47.32, 46.90, 33.90, 33.07, 31.12, 30.50, 30.12, 29.84, 29.55, 29.38, 27.39, 27.32, 20.75, 19.53.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.16, -63.17.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₁₈H₂₂F₃NO₃: 358.1625. Found: 358.1627.

2-ethyl-4-(5-hydroxy-2-methylpentyl)-4-methylisoquinoline-1,3(2H,4H)-dione (3ja)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 52% (dr = 1:1.8).

¹**H** NMR (400 MHz, CDCl₃) δ 8.25 – 8.22 (m, 1H), 7.65 – 7.53 (m, 1H), 7.45 – 7.35 (m, 2H), 4.11 – 3.99 (m, 2H), 3.51 – 3.39 (m, 2H), 2.39 (dd, *J* = 14.0, 5.4 Hz, 0.65H), 2.29 (dd, *J* = 14.0, 8.7 Hz, 0.37H), 2.02 (dd, *J* = 14.0, 3.3 Hz, 0.37H), 1.81 (dd, *J* = 14.0, 6.1 Hz, 0.67H), 1.57 (d, *J* = 5.5 Hz, 3H), 1.45 – 1.31 (m, 2H), 1.22 – 1.18 (m, 3H), 1.15 – 0.96 (m, 3H), 0.59 (d, *J* = 6.3 Hz, 1.08H), 0.44 (d, *J* = 6.5 Hz, 1.91H).

¹³C NMR (101 MHz, CDCl₃) δ 176.43, 176.30, 163.96, 163.91, 143.95, 143.58, 133.75, 133.68, 128.88, 128.86, 127.24, 127.20, 125.89, 125.76, 124.85, 124.72, 62.90, 49.71, 48.53, 46.95, 46.59, 35.67, 35.62, 33.88, 33.12, 31.73, 31.01, 30.20, 29.95, 29.79, 29.65, 20.68, 19.55, 13.10, 12.92. **HRMS** (ESI) m/z: $[M + H]^+$ Calced for C₁₈H₂₅NO₃: 304.1907. Found: 304.1908.

4-(5-hydroxy-2-methylpentyl)-4-methyl-2-propylisoquinoline-1,3(2H,4H)-dione (3ka)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 43% (dr = 1:1.6).

¹**H** NMR (400 MHz, CDCl₃) δ 8.28 – 8.24 (m, 1H), 7.67 – 7.59 (m, 1H), 7.50 – 7.37 (m, 2H), 4.05 – 3.90 (m, 2H), 3.50 – 3.43 (m, 2H), 2.42 (dd, *J* = 14.0, 5.3 Hz, 0.65H), 2.31 (dd, *J* = 14.0, 8.4 Hz, 0.41H), 2.04 (dd, *J* = 14.1, 3.3 Hz, 0.41H), 1.84 (dd, *J* = 14.0, 6.3 Hz, 0.67H), 1.68 – 1.62 (m, 2H), 1.59 (d, *J* = 5.4 Hz, 3H), 1.56 (s, 1H), 1.46 – 1.29 (m, 2H), 1.18 – 1.01 (m, 3H), 0.97 (t, *J* = 7.4 Hz, 3H), 0.61 (d, *J* = 6.1 Hz, 1.19H), 0.45 (d, *J* = 6.4 Hz, 1.90H).

¹³C NMR (101 MHz, CDCl₃) δ 176.61, 176.49, 164.18, 164.12, 143.98, 143.57, 133.73, 133.66, 128.95, 128.93, 127.24, 127.21, 125.89, 125.75, 124.82, 124.67, 62.92, 49.57, 48.43, 47.02, 46.65, 42.14, 42.05, 33.85, 33.18, 31.88, 31.21, 30.24, 29.97, 29.78, 29.63, 21.17, 21.03, 20.64, 19.56, 11.48.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₁₉H₂₇NO₃: 318.2064. Found: 318.2066.

2-butyl-4-(5-hydroxy-2-methylpentyl)-4-methylisoquinoline-1,3(2H,4H)-dione (3la)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 40% (dr = 1:1.6).

¹**H** NMR (400 MHz, CDCl₃) δ 8.25 – 8.21 (m, 1H), 7.67 – 7.56 (m, 1H), 7.46 – 7.33 (m, 2H), 4.03 – 3.92 (m, 2H), 3.41 – 3.47 (m, 2H), 2.39 (dd, *J* = 14.0, 5.4 Hz, 0.63H), 2.28 (dd, *J* = 14.0, 8.5 Hz, 0.39H), 2.01 (dd, *J* = 14.1, 3.3 Hz, 0.39H), 1.81 (dd, *J* = 14.0, 6.2 Hz, 0.65H), 1.63 – 1.58 (m, 2H), 1.56 (d, *J* = 5.5 Hz, 3H), 1.43 – 1.26 (m, 4H), 1.15 – 0.97 (m, 3H), 0.95 – 0.91 (m, 3H), 0.58 (d, *J* = 6.2 Hz, 1.15H), 0.42 (d, *J* = 6.4 Hz, 1.85H).

¹³C NMR (101 MHz, CDCl₃) δ 176.60, 176.46, 164.16, 164.11, 143.97, 143.57, 133.72, 133.65, 128.92, 128.90, 127.24, 127.21, 125.88, 125.75, 124.83, 124.69, 62.90, 49.61, 48.44, 47.00, 46.64, 40.42, 40.34, 33.86, 33.17, 31.85, 31.17, 30.23, 29.97, 29.78, 29.64, 20.63, 20.34, 20.31, 19.54, 13.82, 13.80.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₀H₂₉NO₃: 332.2220. Found: 332.2221.

2-benzyl-4-(5-hydroxy-2-methylpentyl)-4-methylisoquinoline-1,3(2H,4H)-dione (3ma)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 64% (dr = 1:1.4).

¹**H** NMR (400 MHz, CDCl₃) δ 8.28 – 8.25 (m, 1H), 7.64 – 7.60 (m, 1H), 7.48 – 7.43 (m, 2H), 7.42 – 7.35 (m, 2H), 7.31 – 7.25 (m, 2H), 7.25 – 7.20 (m, 1 H), 5.27 – 5.11 (m, 2H), 3.41 – 3.25 (m, 2H), 2.38 (dd, *J* = 14.0, 5.6 Hz, 0.61H), 2.27 (dd, *J* = 14.0, 8.3 Hz, 0.42H), 2.00 (dd, *J* = 14.0, 3.7 Hz, 0.42H), 1.81 (dd, *J* = 14.0, 6.4 Hz, 0.61H), 1.57 (d, *J* = 6.8 Hz, 3H), 1.45 (s, 1H), 1.34 – 1.13 (m, 2H), 1.05 – 0.84 (m, 3H), 0.43 (d, *J* = 6.3 Hz, 1.24H), 0.38 (d, *J* = 6.5 Hz, 1.75H).

¹³C NMR (101 MHz, CDCl₃) δ 176.55, 176.49, 164.24, 164.17, 143.95, 143.62, 137.23, 136.99, 133.91, 133.85, 129.14, 129.11, 128.38, 128.34, 127.46, 127.32, 127.29, 125.95, 125.79, 124.75, 124.62, 62.86, 62.77, 49.76, 48.73, 47.19, 46.89, 43.71, 43.68, 33.71, 33.01, 31.69, 31.17, 30.11, 29.85, 29.73, 29.53, 20.54, 19.48.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₃H₂₇NO₃: 366.2064. Found: 366.2066.

4-(2-ethyl-5-hydroxypentyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3ab)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 67% (dr = 1:1).

¹**H** NMR (400 MHz, CDCl₃) δ 8.25 – 8.22 (m, 1H), 7.65 – 7.60 (m, 1H), 7.45 – 7.37 (m, 2H), 3.47 – 3.41 (m, 1H), 3.37 (s, 3H), 3.35 – 3.31 (m, 1H), 2.31 – 2.22 (m, 1H), 1.91 – 1.81 (m, 1H), 1.62 (d, J = 3.3 Hz, 3H), 1.53 (s, 1H), 1.33 – 1.15 (m, 2H), 1.07 – 0.98 (m, 2H), 0.96 – 0.80 (m, 3H), 0.67 (t, J = 7.3 Hz, 1.49H), 0.58 (t, J = 7.1 Hz, 1.52H).

¹³C NMR (101 MHz, CDCl₃) δ 177.02, 176.77, 164.51, 143.77, 143.69, 133.79, 128.80, 128.78, 127.30, 125.80, 125.78, 124.84, 124.76, 62.94, 62.85, 47.33, 46.98, 46.95, 35.72, 35.65, 30.30, 29.79, 29.45, 29.20, 28.76, 28.71, 27.21, 27.16, 26.42, 25.81, 10.42, 10.21.

HRMS (ESI) m/z: $[M + H]^+$ Calced for $C_{18}H_{25}NO_3$: 304.1907. Found: 304.1910.

4-(5-hydroxy-2-propylpentyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3ac)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 59% (dr = 1:1.1).

¹**H** NMR (400 MHz, CDCl₃) δ 8.27 – 8.25 (m, 1H), 7.67 – 7.63 (m, 1H), 7.48 – 7.39 (m, 2H), 3.52 – 3.43 (m, 1H), 3.39 (s, 3H), 3.27 – 3.33 (m, 1H), 2.33 – 2.26 (m, 1H), 1.92 – 1.86 (m, 1H), 1.64 (d, J = 3.7 Hz, 3H), 1.59 (s, 1H), 1.50 – 1.20 (m, 3H), 1.09 – 1.01 (m, 2H), 1.00 – 0.82 (m, 4H), 0.73 (t, J = 7.1 Hz, 1.39H), 0.62 (t, J = 7.2 Hz, 1.57H).

¹³C NMR (101 MHz, CDCl₃) δ 177.01, 176.80, 164.49, 143.77, 143.71, 133.77, 128.79, 128.78, 127.28, 125.80, 125.79, 124.86, 124.81, 62.95, 62.86, 47.84, 47.17, 46.97, 36.32, 35.79, 34.11, 34.02, 30.23, 29.97, 29.76, 29.26, 29.20, 28.79, 27.19, 27.14, 19.15, 18.99, 14.20, 14.03. HRMS (ESI) m/z: $[M + H]^+$ Calced for C₁₉H₂₇NO₃: 318.2064. Found: 318.2065.

4-(5-hydroxy-2-methylhexyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3ad)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 56%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.26 – 8.23 (m, 1H), 7.65 – 7.60 (m, 1H), 7.47 – 7.36 (m, 2H), 3.64 – 3.51 (m, 1H), 3.37 (d, J = 1.1 Hz, 3H), 2.42 – 2.36 (m, 0.60H), 2.26 (dd, J = 14.0, 8.5 Hz, 0.46H), 2.04 – 1.97 (m, 0.52H), 1.84 – 1.78 (m, 0.63H), 1.59 (d, J = 3.6 Hz, 3H), 1.50 (s, 1H), 1.37 – 1.27 (m, 1H), 1.25 – 1.15 (m, 2H), 1.12 – 0.97 (m, 5H), 0.58 (d, J = 6.1 Hz, 1.21H), 0.44 (dd, J = 6.4, 3.8 Hz, 1.67H).

¹³C NMR (101 MHz, CDCl₃) δ 176.94, 176.81, 164.49, 164.43, 143.94, 143.61, 133.84, 133.78, 133.76, 128.88, 127.28, 127.26, 125.85, 125.84, 125.75, 124.75, 124.61, 68.17, 68.15, 68.02, 67.96, 49.88, 49.76, 49.10, 47.10, 46.72, 46.69, 36.20, 36.16, 35.87, 35.82, 33.96, 33.84, 32.82, 32.76, 31.38, 31.31, 30.87, 30.78, 30.35, 30.17, 30.09, 30.01, 27.23, 27.19, 27.16, 23.57, 23.45, 23.32, 20.81, 20.76, 19.48.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₁₈H₂₅NO₃: 304.1907. Found: 304.1909.

4-(2-ethyl-5-hydroxyhexyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3ae)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 59%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.28 – 8.25 (m, 1H), 7.67 – 7.62 (m, 1H), 7.48 – 7.37 (m, 2H), 3.66 – 3.43 (m, 1H), 3.39 (d, *J* = 1.2 Hz, 3H), 2.36 – 2.24 (m, 1H), 1.93 – 1.83 (m, 1H), 1.64 (d, *J* = 4.2 Hz, 3H), 1.54 (s, 1H), 1.22 – 1.09 (m, 4H), 1.07 – 0.99 (m, 3H), 0.97 – 0.84 (m, 3H), 0.72 – 0.68 (m, 1.40H), 0.63 – 0.58 (m, 1.46H).

¹³C NMR (101 MHz, CDCl₃) δ 177.09, 176.94, 176.76, 176.73, 164.50, 143.82, 143.78, 143.71, 143.70, 133.78, 133.76, 133.73, 128.81, 128.79, 127.28, 125.84, 125.78, 124.88, 124.84, 124.78, 68.22, 68.10, 68.03, 67.98, 47.48, 47.35, 47.02, 46.99, 46.96, 46.94, 46.71, 46.44, 35.96, 35.91, 35.81, 35.76, 35.68, 35.64, 35.20, 35.12, 30.45, 30.28, 29.86, 29.70, 29.42, 28.52, 28.50, 27.23, 27.20, 27.15, 26.43, 26.40, 25.85, 25.80, 23.62, 23.39, 23.34, 23.29, 10.46, 10.40, 10.23, 10.20. **HRMS** (ESI) m/z: $[M + H]^+$ Calced for C₁₉H₂₇NO₃: 318.2064. Found: 318.2067.

4-(5-hydroxy-2,4-dimethylpentyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3af)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 52%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.29 – 8.25 (m, 1H), 7.68 – 7.61 (m, 1H), 7.48 – 7.40 (m, 2H), 3.39 (d, J = 2.9 Hz, 3H), 3.34 – 3.15 (m, 2H), 2.40 – 2.35 (m, 0.60H), 2.31 (dd, J = 14.0, 8.2 Hz, 0.24H), 2.19 (dd, J = 14.0, 8.6 Hz, 0.16H), 2.04 – 1.96 (m, 0.42H), 1.87 (dd, J = 13.9, 5.7 Hz, 0.33H), 1.79 (dd, J = 13.9, 6.7 Hz, 0.30H), 1.62 (t, J = 2.4 Hz, 3H), 1.57 (s, 1H), 1.53 – 1.44 (m, 1H), 1.19 – 1.03 (m, 2H), 0.81 (d, J = 6.6 Hz, 1H), 0.77 – 0.66 (m, 1H), 0.65 – 0.56 (m, 3H), 0.47 – 0.40 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 176.80, 176.76, 164.39, 144.17, 144.14, 133.31, 133.30, 128.95, 128.94, 127.28, 126.71, 126.66, 124.30, 68.64, 68.62, 53.46, 53.32, 45.80, 45.79, 39.98, 39.91, 34.09, 34.07, 33.69, 33.46, 33.38, 28.14, 28.05, 27.32, 27.25, 27.23, 23.57, 23.41. HRMS (ESI) m/z: [M + H]⁺ Calced for C₁₈H₂₅NO₃: 304.1907. Found: 304.1910.

4-(5-hydroxy-2-methoxypentyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3ag)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 58%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.25 – 8.22 (m, 1H), 7.66 – 7.59 (m, 1H), 7.49 – 7.39 (m, 2H), 3.59 – 3.50 (m, 2H), 3.40 (d, J = 1.0 Hz, 3H), 3.00 – 2.91 (m, 1H), 2.81 (d, J = 1.1 Hz, 3H), 2.43 – 2.33 (m, 1H), 2.19 (dd, J = 14.5, 7.5 Hz, 1H), 2.02 (s, 1H), 1.65 (d, J = 0.9 Hz, 3H), 1.57 – 1.46 (m, 2H), 1.41 – 1.36 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 176.58, 164.60, 144.23, 133.54, 128.56, 127.07, 125.81, 124.28, 78.30, 62.70, 56.22, 47.57, 46.18, 29.98, 29.26, 27.72, 27.18.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₁₇H₂₃NO₄: 306.1700. Found: 306.1702.

4-(5-hydroxy-2-phenylpentyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (5ah)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 55%.

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 – 7.94 (m, 1H), 7.35 – 7.31 (m, 1H), 7.23 – 7.10 (m, 2H), 6.94 – 6.89 (m, 3H), 6.66 – 6.58 (m, 2H), 3.43 – 3.39 (m, 2H), 3.37 (s, 3H), 2.67 (dd, *J* = 13.7, 4.6 Hz,

1H), 2.33 (dd, *J* = 13.6, 8.7 Hz, 1H), 2.27 – 2.20 (m, 1H), 1.57 (s, 3H), 1.55 – 1.43 (m, 2H), 1.26 – 1.11 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 176.64, 164.32, 143.47, 143.35, 133.26, 128.49, 128.08, 127.28, 126.81, 125.93, 125.78, 124.32, 62.54, 49.49, 47.13, 43.31, 33.64, 30.77, 30.33, 27.05. HRMS (ESI) m/z: [M + H]⁺ Calced for C₂₂H₂₅NO₃: 352.1907. Found: 352.1909.

4-(2-(3-hydroxypropyl)non-8-en-1-yl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3ai)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 51%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.24 – 8.22 (m, 1H), 7.64 – 7.59 (m, 1H), 7.44 – 7.39 (m, 2H), 5.85 – 5.68 (m, 1H), 4.99 – 4.84 (m, 2H), 3.47 – 3.40 (m, 1H), 3.36 (d, *J* = 1.5 Hz, 3H), 3.34 – 3.30 (m, 1H), 2.33 – 2.18 (m, 1H), 2.01 – 1.96 (m, 1H), 1.93 – 1.83 (m, 2H), 1.61 (d, *J* = 1.4 Hz, 3H), 1.36 – 1.18 (m, 6H), 1.07 – 0.83 (m, 7H).

¹³C NMR (101 MHz, CDCl₃) δ 176.96, 176.77, 164.46, 143.74, 143.70, 139.00, 133.75, 128.79, 127.29, 125.80, 124.84, 124.81, 114.23, 114.20, 62.92, 62.84, 47.69, 47.23, 46.98, 46.94, 34.33, 34.25, 33.94, 33.71, 33.67, 33.38, 30.19, 29.96, 29.88, 29.41, 29.33, 29.29, 29.21, 29.07, 28.83, 28.72, 27.19, 27.16, 25.85, 25.66.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₃H₃₃NO₃: 372.2533. Found: 372.2535.

ethyl 3-((2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)methyl)-6hydroxyhexanoate (3aj)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 53%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.27 – 8.23 (m, 1H), 7.67 – 7.61 (m, 1H), 7.47 – 7.38 (m, 2H), 4.09 – 3.94 (m, 2H), 3.46 – 3.39 (m, 1H), 3.37 (d, *J* = 2.7 Hz, 3H), 3.33 – 3.30 (m, 1H), 2.42 (dd, *J* = 14.2, 7.6 Hz, 0.41H), 2.30 (dd, *J* = 14.2, 7.3 Hz, 0.68H), 2.11 – 2.00 (m, 2H), 1.93 (dd, *J* = 8.4, 5.0 Hz, 0.58H), 1.84 (dd, *J* = 15.6, 7.4 Hz, 0.62H), 1.75 (s, 1H), 1.60 (d, *J* = 13.9 Hz, 3H), 1.51 – 1.27 (m, 3H), 1.20 – 1.16 (m, 3H), 1.12 – 0.97 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 176.79, 176.53, 172.52, 172.44, 164.28, 164.26, 143.23, 143.01, 133.91, 128.99, 128.94, 127.52, 127.48, 126.07, 125.64, 124.92, 124.63, 62.41, 62.19, 60.38, 60.30, 47.17, 46.91, 46.79, 45.47, 39.00, 38.91, 31.75, 31.45, 31.38, 30.97, 29.81, 29.53, 28.97, 28.62, 27.25, 27.23, 14.16, 14.15.

<u>benzyl</u> (3-((2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)methyl)-6hydroxyhexyl)carbamate (3ak)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 53%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.24 – 8.21 (m, 1H), 7.64 – 7.55 (m, 1H), 7.42 – 7.37 (m, 2H), 7.36 – 7.28 (m, 5H), 5.08 – 4.99 (m, 2H), 4.79 (s, 0.53H), 4.45 (s, 0.42H), 3.41 (t, *J* = 6.3 Hz, 1H), 3.35 (d, *J* = 3.0 Hz, 3H), 3.29 – 3.17 (m, 1H), 3.12 – 2.77 (m, 2H), 2.35 – 2.24 (m, 1H), 1.91 (s, 1H), 1.90 – 1.83 (m, 1H), 1.60 (s, 3H), 1.33 – 1.10 (m, 4H), 1.07 – 0.79 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 177.01, 176.75, 164.29, 164.28, 156.42, 156.32, 143.47, 143.40, 136.64, 136.57, 133.97, 133.88, 128.90, 128.54, 128.50, 128.14, 128.12, 128.08, 128.06, 128.02, 127.46, 125.81, 125.77, 124.79, 124.67, 66.60, 62.33, 62.04, 47.02, 46.85, 46.80, 46.64, 38.17, 37.98, 34.39, 33.85, 31.52, 30.22, 30.13, 29.61, 29.16, 28.73, 28.44, 27.22.

HRMS (ESI) m/z: $[M + H]^+$ Calced for $C_{26}H_{32}N_2O_5$: 453.2384. Found: 453.2386.

<u>4-((2-(2-hydroxyethyl)cyclopentyl)methyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione</u> (3al)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 63%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.25 – 8.22 (m, 1H), 7.67 – 7.57 (m, 1H), 7.46 – 7.37 (m, 2H), 3.66 – 3.45 (m, 2H), 3.37 (d, J = 5.0 Hz, 3H), 2.25 – 2.51 (m, 0.54H), 2.24 – 2.16 (m, 0.46H), 1.82 – 1.74 (m, 1H), 1.71 – 1.64 (m, 2H), 1.62 (d, J = 3.4 Hz, 3H), 1.40 – 1.18 (m, 4H), 1.07 – 0.87 (m, 2.39H), 1.06 – 0.71 (m, 3.11H), 0.51 – 0.41 (m, 0.63H).

¹³C NMR (101 MHz, CDCl₃) δ 176.89, 176.84, 164.61, 164.48, 144.13, 143.67, 133.94, 133.57, 128.81, 128.76, 127.34, 127.27, 126.15, 125.49, 124.86, 124.57, 61.95, 61.91, 49.26, 48.28, 47.78, 47.06, 43.49, 43.18, 43.02, 42.58, 37.22, 37.02, 32.81, 31.14, 31.11, 30.91, 30.32, 29.56, 27.28, 27.13, 23.96, 23.94.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₁₉H₂₅NO₃: 316.1907. Found: 316.1910.

4-((2-(2-hydroxyethyl)cyclohexyl)methyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3am)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 58%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.24 – 8.21 (m, 1H), 7.63 – 7.57 (m, 1H), 7.46 – 7.38 (m, 2H), 3.60 – 3.47 (m, 2H), 3.37 (s, 3H), 2.54 (dd, *J* = 14.0, 3.0 Hz, 0.69H), 2.31 (dd, *J* = 14.1, 4.2 Hz, 0.33H), 1.85 (dd, *J* = 14.1, 7.1 Hz, 0.60H), 1.76 (dd, *J* = 14.0, 7.2 Hz, 0.49H), 1.74 – 1.73 (m, 1H), 1.72 – 1.65 (m, 2H), 1.61 (d, *J* = 3.0 Hz, 3H), 1.48 – 1.34 (m, 3H), 1.21 – 1.01 (m, 3H), 0.96 – 0.62 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 176.95, 176.72, 164.60, 144.22, 144.00, 133.74, 133.66, 128.84, 128.82, 127.32, 127.28, 125.96, 125.77, 124.50, 61.28, 60.79, 47.60, 47.38, 37.98, 37.54, 36.08, 32.45, 30.65, 30.39, 29.91, 29.22, 28.45, 27.18, 27.15, 24.77, 24.49.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₀H₂₇NO₃: 330.2064. Found: 330.2065.

4-((4-hydroxycyclooctyl)methyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3an)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 69%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 – 8.22 (m, 1H), 7.64 – 7.60 (m, 1H), 7.47 – 7.33 (m, 2H), 3.75 – 3.50 (m, 1H), 3.40 – 3.28 (m, 3H), 2.45 – 2.23 (m, 1H), 1.91 – 1.82 (m, 1H), 1.78 – 1.68 (m, 1H), 1.58 – 1.57 (m, 3H), 1.54 – 1.48 (m, 4H), 1.44 – 1.20 (m, 4H), 1.17 – 0.93 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 176.79, 176.77, 164.45, 143.72, 143.67, 133.86, 133.82, 133.80, 133.78, 128.88, 128.86, 128.83, 127.31, 127.30, 127.28, 127.26, 125.76, 125.68, 125.66, 124.66, 72.21, 72.15, 71.40, 71.37, 50.09, 50.01, 49.10, 48.95, 46.99, 46.96, 46.92, 34.80, 34.76, 34.58, 34.55, 34.49, 34.36, 34.30, 33.01, 32.94, 32.14, 32.11, 31.39, 31.16, 31.13, 31.02, 30.94, 30.02, 29.70, 29.10, 28.88, 27.69, 27.26, 27.19, 27.16, 25.45, 25.34, 24.75, 24.65, 23.48, 23.22, 21.95, 21.91.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₀H₂₇NO₃: 330.2064. Found: 330.2067.

4-(5-hydroxy-2-(2-hydroxyethyl)pentyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3ao)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 43%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 – 8.23 (m, 1H), 7.66 – 7.61 (m, 1H), 7.47 – 7.39 (m, 2H), 3.56 – 3.42 (m, 2H), 3.37 (d, *J* = 3.6 Hz, 3H), 3.34 – 3.22 (m, 2H), 2.37 – 2.30 (m, 1H), 1.94 – 1.85 (m, 1H), 1.74 (s, 2H), 1.62 (d, *J* = 2.8 Hz, 3H), 1.46 – 1.03 (m, 6H), 0.95 – 0.79 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 177.20, 176.92, 164.41, 143.62, 143.53, 133.93, 133.85, 128.89, 127.45, 125.84, 125.72, 124.83, 124.76, 62.67, 62.51, 60.23, 59.98, 47.22, 47.15, 46.92, 37.04, 36.43, 31.30, 31.10, 30.28, 30.17, 30.06, 29.42, 28.85, 28.50, 27.25.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₁₈H₂₅NO₄: 320.1856. Found: 320.1858.

4-(5-hydroxy-2,2-dimethylpentyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3ap)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 71%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.28 – 8.26 (m, 1H), 7.64 – 7.60 (m, 1H), 7.50 – 7.40 (m, 2H), 3.48 (t, *J* = 6.6 Hz, 2H), 3.39 (s, 3H), 2.53 (d, *J* = 14.4 Hz, 1H), 2.05 (d, *J* = 14.4 Hz, 1H), 1.60 (s, 3H), 1.52 (s, 1H), 1.52 – 1.41 (m, 2H), 1.03 – 0.85 (m, 2H), 0.54 (s, 3H), 0.43 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 176.77, 164.40, 144.12, 133.32, 128.94, 127.29, 126.64, 124.29, 63.47, 53.20, 45.80, 39.87, 34.08, 33.67, 28.17, 27.29, 27.23, 27.17.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₁₈H₂₅NO₃: 304.1907. Found: 304.1910.

4-(5-hydroxy-2,2-dimethylhexyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3aq)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 70%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.28 – 8.26 (m, 1H), 7.65 – 7.58 (m, 1H), 7.51 – 7.39 (m, 2H), 3.60 – 3.54 (m, 1H), 3.40 (d, J = 1.1 Hz, 3H), 2.53 (d, J = 14.4 Hz, 1H), 2.04 (dd, J = 14.4, 2.7 Hz, 1H), 1.61 (s, 3H), 1.50 (s, 1H), 1.36 – 1.26 (m, 2H), 1.12 (dd, J = 6.2, 1.2 Hz, 3H), 1.03 – 0.84 (m, 2H), 0.54 (d, J = 8.0 Hz, 3H), 0.42 (d, J = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 176.80, 176.76, 164.39, 144.17, 144.14, 133.31, 133.30, 128.95, 128.94, 127.28, 126.71, 126.66, 124.30, 68.64, 68.62, 53.46, 53.32, 45.80, 45.79, 39.98, 39.91, 34.09, 34.07, 33.69, 33.46, 33.38, 28.14, 28.05, 27.32, 27.25, 27.23, 23.57, 23.41.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₁₉H₂₇NO₃: 318.2064. Found: 318.2065.

4-(5-hydroxypentyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3ar)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 41%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 – 8.23 (m, 1H), 7.66 – 7.62 (m, 1H), 7.45 – 7.37 (m, 2H), 3.50 (t, *J* = 6.5 Hz, 2H), 3.38 (s, 3H), 2.32 – 2.25 (m, 1H), 1.90 – 1.80 (m, 1H), 1.61 (s, 3H), 1.42 (s, 1H), 1.42 – 1.26 (m, 2H), 1.28 – 1.15 (m, 2H), 0.98 – 0.70 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 176.74, 164.54, 143.66, 134.06, 128.78, 127.29, 125.17, 124.91, 62.64, 47.73, 43.22, 32.25, 29.27, 27.12, 25.65, 24.92.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₁₆H₂₁NO₃: 276.1594. Found: 276.1595.

4-(5-hydroxy-3-methylpentyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3as)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 45%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.24 – 8.22 (m, 1H), 7.69 – 7.57 (m, 1H), 7.48 – 7.36 (m, 2H), 3.59 – 3.46 (m, 2H), 3.37 (s, 3H), 2.39 – 2.20 (m, 1H), 1.95 – 1.77 (m, 1H), 1.60 (s, 3H), 1.54 (s, 1H), 1.49 – 1.34 (m, 2H), 1.28 – 1.13 (m, 1H), 0.94 – 0.85 (m, 1H), 0.79 – 0.41 (m, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 176.76, 176.74, 164.54, 143.66, 134.07, 134.06, 128.78, 127.29, 125.13, 125.11, 124.93, 60.73, 47.69, 40.42, 40.40, 39.28, 39.13, 32.09, 32.08, 29.51, 29.49, 29.38, 29.33, 27.12, 19.37, 19.31.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₁₇H₂₃NO₃: 290.1751. Found: 290.1753.

4-(2-(2-hydroxyethoxy)ethyl)-2,4-dimethylisoquinoline-1,3(2H,4H)-dione (3at)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 44%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.27 – 8.25 (m, 1H), 7.66 – 7.62 (m, 1H), 7.49 – 7.38 (m, 2H), 3.47 (t, *J* = 4.5 Hz, 2H), 3.37 (s, 3H), 3.28 – 3.17 (m, 1H), 3.15 – 3.11 (m, 1H), 3.00 – 2.93 (m, 1H), 2.83 – 2.76 (m, 1H), 2.09 – 2.03 (m, 1H), 1.89 (s, 1H), 1.65 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 176.89, 164.58, 142.82, 128.88, 127.43, 125.40, 125.07, 72.24, 67.49, 61.65, 45.50, 42.47, 29.68, 27.21.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₁₅H₁₉NO₄: 278.1387. Found: 278.1390.

<u>N-(5-(2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-4-</u> methylpentyl)benzenesulfonamide (5aa)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 64% (dr = 1:1.5).

¹**H** NMR (400 MHz, CDCl₃) δ 8.24 – 8.22 (m, 1H), 7.85 – 7.80 (m, 2H), 7.64 – 7.59 (m, 1H), 7.58 – 7.54 (m, 1H), 7.51 – 7.48 (m, 2H), 7.43 – 7.31 (m, 2H), 4.67 – 4.62 (m, 1H), 3.34 (d, *J* = 12.0 Hz, 3H), 2.84 – 2.69 (m, 2H), 2.31 (dd, *J* = 14.1, 5.4 Hz, 0.62H), 2.19 (dd, *J* = 14.0, 8.6 Hz, 0.41H), 1.92 (dd, *J* = 14.1, 3.3 Hz, 0.40H), 1.74 (dd, *J* = 14.0, 6.3 Hz, 0.60H), 1.55 (d, *J* = 4.3 Hz, 3H), 1.38 – 1.18 (m, 2H), 1.09 – 0.84 (m, 3H), 0.49 (d, *J* = 6.2 Hz, 1.21H), 0.35 (d, *J* = 6.5 Hz, 1.83H).

¹³C NMR (101 MHz, CDCl₃) δ 176.86, 176.78, 164.40, 164.37, 143.78, 143.38, 139.99, 139.94, 134.00, 133.84, 132.61, 132.57, 129.11, 128.92, 128.87, 127.36, 127.34, 127.03, 126.98, 125.83, 125.72, 124.65, 124.49, 49.16, 48.66, 47.12, 46.61, 43.31, 43.18, 34.59, 33.81, 31.36, 30.91, 29.90, 29.55, 27.24, 27.20, 26.65, 26.12, 20.67, 19.29.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₃H₂₈N₂O₄S: 429.1843. Found: 429.1847.

<u>N-(5-(2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-4-methylpentyl)-4-</u> methylbenzenesulfonamide (5ab)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 69% (dr = 1:1.5).

¹**H** NMR (400 MHz, CDCl₃) δ 8.24 – 8.22 (m, 1H), 7.73 – 7.67 (m, 2H), 7.63 – 7.60 (m, 1H), 7.45 – 7.32 (m, 2H), 7.30 – 7.28 (m, 2H), 4.53 – 4.48 (m, 1H), 3.35 (d, *J* = 12.0 Hz, 3H), 2.83 – 2.67 (m, 2H), 2.41 (s, 3H), 2.31 (dd, *J* = 14.0, 5.4 Hz, 0.62H), 2.20 (dd, *J* = 14.1, 8.6 Hz, 0.40H), 1.92 (dd, *J* = 14.1, 3.3 Hz, 0.41H), 1.74 (dd, *J* = 14.1, 6.4 Hz, 0.62H), 1.56 (d, *J* = 4.2 Hz, 3H), 1.38 – 1.19 (m, 2H), 1.08 – 0.88 (m, 3H), 0.50 (d, *J* = 6.2 Hz, 1.18H), 0.35 (d, *J* = 6.6 Hz, 1.82H).

¹³C NMR (101 MHz, CDCl₃) δ 176.86, 176.77, 164.40, 164.37, 143.79, 143.39, 143.32, 136.99, 136.93, 133.99, 133.83, 129.70, 128.92, 128.88, 127.35, 127.10, 127.05, 125.83, 125.71, 124.50, 49.18, 48.66, 47.12, 46.61, 43.27, 43.15, 34.62, 33.83, 31.38, 30.90, 29.92, 29.56, 27.23, 27.19, 26.64, 26.12, 21.53, 20.67, 19.28.

<u>N-(5-(2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-4-methylpentyl)-4-</u> methoxybenzenesulfonamide (5ac)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 72% (dr = 1:1.4).

¹**H NMR** (400 MHz, CDCl₃) δ 8.26 – 8.23 (m, 1H), 7.79 – 7.72 (m, 2H), 7.65 – 7.58 (m, 1H), 7.47 – 7.32 (m, 2H), 6.99 – 6.95 (m, 2H), 4.38 – 4.28 (m, 1H), 3.87 (s, 3H), 3.35 (d, *J* = 6.8 Hz, 3H), 2.79 – 2.68 (m, 2H), 2.32 (dd, *J* = 14.0, 5.3 Hz, 0.57H), 2.21 (dd, *J* = 14.0, 8.4 Hz, 0.43H), 1.93 (dd, *J* = 13.8, 3.1 Hz, 0.42H), 1.75 (dd, *J* = 14.0, 6.2 Hz, 0.63H), 1.57 (d, *J* = 1.8 Hz, 3H), 1.38 – 1.19 (m, 2H), 1.08 – 0.87 (m, 3H), 0.51 (d, *J* = 6.0 Hz, 1.22H), 0.36 (d, *J* = 6.4 Hz, 1.72H).

¹³C NMR (101 MHz, CDCl₃) δ 176.87, 176.76, 164.40, 164.37, 162.83, 162.81, 143.80, 143.39, 134.00, 133.83, 131.55, 131.52, 129.20, 129.16, 128.91, 128.87, 127.35, 125.84, 125.72, 124.66, 124.50, 114.23, 55.65, 55.63, 49.21, 48.65, 47.12, 46.61, 43.24, 43.11, 34.64, 33.87, 31.38, 30.88, 29.92, 29.57, 27.23, 27.20, 26.60, 26.11, 20.68, 19.29.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₄H₃₀N₂O₅S: 459.1948. Found: 459.1950.

<u>N-(5-(2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-4-methylpentyl)-3-</u> methoxybenzenesulfonamide (5ad)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 74% (dr = 1:1.4).

¹**H** NMR (400 MHz, CDCl₃) δ 8.23 – 8.21 (m, 1H), 7.63 – 7.59 (m, 1H), 7.46 – 7.37 (m, 4H), 7.35 – 7.32 (m, 1H), 7.09 – 7.06 (m, 1H), 4.73 – 4.69 (m, 1H), 3.83 (d, *J* = 2.3 Hz, 3H), 3.34 (d, *J* = 7.1 Hz, 3H), 2.84 – 2.65 (m, 2H), 2.30 (dd, *J* = 14.0, 5.1 Hz, 0.60H), 2.19 (dd, *J* = 14.0, 8.5 Hz, 0.40H), 1.92 (dd, *J* = 13.9, 2.9 Hz, 0.45H), 1.74 (dd, *J* = 14.0, 6.2 Hz, 0.63H), 1.55 (d, *J* = 3.2 Hz, 3H), 1.39 – 1.18 (m, 2H), 1.11 – 0.85 (m, 3H), 0.49 (d, *J* = 6.0 Hz, 1.26H), 0.34 (d, *J* = 6.4 Hz, 1.74H).

¹³C NMR (101 MHz, CDCl₃) δ 176.87, 176.78, 164.40, 164.37, 159.94, 143.78, 143.37, 141.10, 141.05, 134.00, 133.84, 130.18, 130.16, 128.92, 128.87, 127.36, 127.34, 125.83, 125.71, 124.65, 124.49, 119.18, 119.11, 118.96, 118.86, 111.82, 111.72, 55.67, 49.17, 48.65, 47.12, 46.61, 43.36, 43.24, 34.62, 33.85, 31.36, 30.89, 29.92, 29.56, 27.23, 27.19, 26.65, 26.13, 20.67, 19.28. **HRMS** (ESI) m/z: [M + H]⁺ Calced for C₂₄H₃₀N₂O₅S: 459.1948. Found: 459.1951.

<u>N-(5-(2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-4-methylpentyl)-2-</u> methoxybenzenesulfonamide (5ae)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 71% (dr = 1:2.6).

¹**H** NMR (400 MHz, CDCl₃) δ 8.23 – 8.21 (m, 1H), 7.88 – 7.85 (m, 1H), 7.66 – 7.58 (m, 1H), 7.56 – 7.51 (m, 1H), 7.44 – 7.31 (m, 2H), 7.10 – 7.00 (m, 2H), 4.85 – 4.78 (m, 1H), 3.97 (d, *J* = 14.3 Hz, 3H), 3.33 (d, *J* = 16.3 Hz, 3H), 2.73 – 2.64 (m, 2H), 2.30 (dd, *J* = 14.0, 5.1 Hz, 0.70H), 2.19 (dd, *J* = 14.0, 8.6 Hz, 0.28H), 1.92 (dd, *J* = 14.0, 2.9 Hz, 0.30H), 1.74 (dd, *J* = 14.0, 6.4 Hz, 0.78H), 1.56 (d, *J* = 3.4 Hz, 3H), 1.38 – 1.17 (m, 2H), 1.08 – 0.83 (m, 3H), 0.49 (d, *J* = 6.1 Hz, 0.84H), 0.34 (d, *J* = 6.4 Hz, 2.15H).

¹³C NMR (101 MHz, CDCl₃) δ 176.87, 176.68, 164.39, 164.36, 156.09, 156.06, 143.78, 143.34, 134.48, 134.44, 134.00, 133.81, 130.46, 130.37, 128.90, 128.87, 127.38, 127.35, 127.33, 127.24, 125.84, 125.70, 124.65, 124.51, 120.77, 120.73, 112.11, 112.08, 56.39, 56.37, 49.34, 48.55, 47.10, 46.59, 43.63, 43.44, 34.71, 33.99, 31.48, 30.86, 30.01, 29.58, 27.23, 27.15, 26.62, 26.15, 20.67, 19.27.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₄H₃₀N₂O₅S: 459.1948. Found: 459.1951.

<u>N-(5-(2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-4-methylpentyl)-3,4-</u> dimethoxybenzenesulfonamide (5af)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 76% (dr = 1:1.3).

¹**H** NMR (400 MHz, CDCl₃) δ 8.25 – 8.22 (m, 1H), 7.64 – 7.59 (m, 1H), 7.45 – 7.29 (m, 4H), 6.94 – 6.91 (m, 1H), 4.52 – 4.46 (m, 1H), 3.93 – 3.90 (m, 6H), 3.35 (d, *J* = 5.6 Hz, 3H), 2.80 – 2.69 (m, 2H), 2.31 (dd, *J* = 14.0, 5.2 Hz, 0.45H), 2.21 (dd, *J* = 14.0, 8.3 Hz, 0.58H), 1.92 (dd, *J* = 13.9, 2.9 Hz, 0.58H), 1.75 (dd, *J* = 14.0, 6.2 Hz, 0.54H), 1.56 (d, *J* = 2.1 Hz, 3H), 1.40 – 1.18 (m, 2H), 1.07 – 0.81 (m, 3H), 0.51 (d, *J* = 5.9 Hz, 1.69H), 0.36 (d, *J* = 6.4 Hz, 1.35H).

¹³C NMR (101 MHz, CDCl₃) δ 176.84, 176.76, 164.39, 164.35, 152.50, 152.45, 149.15, 143.77, 143.38, 133.97, 133.83, 131.54, 128.91, 128.88, 127.36, 127.33, 125.82, 125.69, 124.67, 124.50, 121.00, 120.96, 110.52, 109.56, 109.54, 56.26, 56.20, 56.19, 49.19, 48.69, 47.11, 46.60, 43.30, 43.19, 34.68, 33.88, 31.36, 30.91, 29.94, 29.58, 27.23, 27.19, 26.62, 26.11, 20.70, 19.27. **HRMS** (ESI) m/z: $[M + H]^+$ Calced for C₂₅H₃₂N₂O₆S: 489.2054. Found: 489.2057.

<u>N-(5-(2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-4-methylpentyl)-2,4-</u> dimethoxybenzenesulfonamide (5ag)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 77% (dr = 1:1.5).

¹**H NMR** (400 MHz, CDCl₃) δ 8.23 – 8.21 (m, 1H), 7.81 – 7.74 (m, 1H), 7.63 – 7.59 (m, 1H), 7.45 – 7.30 (m, 2H), 6.57 – 6.49 (m, 2H), 4.76 – 4.71 (m, 1H), 3.92 (d, *J* = 14.5 Hz, 3H), 3.85 (d, *J* = 1.1 Hz, 3H), 3.33 (d, *J* = 14.6 Hz, 3H), 2.69 – 2.59 (m, 2H), 2.30 (dd, *J* = 13.9, 5.0 Hz, 0.63H), 2.19 (dd, *J* = 13.9, 8.7 Hz, 0.42H), 1.93 (dd, *J* = 14.0, 2.9 Hz, 0.49H), 1.74 (dd, *J* = 14.0, 6.4 Hz, 0.76H), 1.55 (d, *J* = 3.7 Hz, 3H), 1.37 – 1.17 (m, 2H), 1.07 – 0.86 (m, 3H), 0.49 (d, *J* = 6.0 Hz, 1.25H), 0.34 (d, *J* = 6.4 Hz, 1.88H).

¹³C NMR (101 MHz, CDCl₃) δ 176.89, 176.67, 164.72, 164.69, 164.40, 164.37, 157.56, 157.52, 143.80, 143.34, 134.01, 133.81, 132.16, 132.09, 128.89, 128.86, 127.34, 127.32, 125.85, 125.71, 124.64, 124.50, 119.55, 119.44, 104.41, 104.37, 99.50, 56.32, 55.76, 55.74, 49.39, 48.53, 47.10, 46.58, 43.59, 43.40, 34.75, 34.06, 31.49, 30.83, 30.03, 29.59, 27.22, 27.14, 26.55, 26.12, 20.68, 19.27.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₅H₃₂N₂O₆S: 489.2054. Found: 489.2056.

<u>4-(*tert*-butyl)-*N*-(5-(2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-4methylpentyl)benzenesulfonamide (5ah)</u>

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 70% (dr = 1:1).

¹**H NMR** (400 MHz, CDCl₃) δ 8.24 – 8.22 (m, 1H), 7.76 – 7.71 (m, 2H), 7.63 – 7.59 (m, 1H), 7.51 – 7.48 (m, 2H), 7.44 – 7.32 (m, 2H), 4.69 – 4.56 (m, 1H), 3.35 – 3.32 (m, 3H), 2.82 – 2.68 (m, 2H), 2.32 (dd, *J* = 14.4, 4.7 Hz, 0.52H), 2.20 (dd, *J* = 14.1, 7.9 Hz, 0.53H), 1.98 – 1.91 (m, 0.58H), 1.77 – 1.71 (m, 0.64H), 1.55 (t, *J* = 2.5 Hz, 3H), 1.36 – 1.28 (m, 9H), 1.27 – 1.19 (m, 2H), 1.08 – 0.84 (m, 3H), 0.48 (d, *J* = 5.5 Hz, 1.59H), 0.33 (dt, *J* = 6.6, 1.8 Hz, 1.42H).

¹³C NMR (101 MHz, CDCl₃) δ 176.86, 176.77, 164.39, 164.36, 156.36, 156.28, 143.79, 143.39, 136.90, 136.85, 134.01, 133.83, 128.92, 128.87, 127.34, 126.91, 126.86, 126.07, 125.83, 125.74, 124.65, 124.50, 49.21, 48.65, 47.12, 46.62, 43.30, 43.16, 35.14, 34.60, 33.83, 31.40, 31.11, 30.89, 29.92, 29.57, 27.23, 27.20, 26.66, 26.14, 20.67, 19.28.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₇H₃₆N₂O₄S: 485.2469. Found: 485.2471.

<u>*N*-(5-(2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-4-methylpentyl)-4-</u> fluorobenzenesulfonamide (5ai)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 46% (dr = 1:1).

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 – 8.23 (m, 1H), 7.88 – 7.79 (m, 2H), 7.64 – 7.61 (m, 1H), 7.45 – 7.32 (m, 2H), 7.19 – 7.16 (m, 2H), 4.59 (t, *J* = 6.1 Hz, 0.48H), 4.51 (t, *J* = 6.2 Hz, 0.48H), 3.36 (d, *J* = 7.4 Hz, 3H), 2.85 – 2.68 (m, 2H), 2.32 (dd, *J* = 14.1, 5.4 Hz, 0.49H), 2.21 (dd, *J* = 14.0, 8.5 Hz, 0.50H), 1.93 (dd, *J* = 14.1, 3.4 Hz, 0.51H), 1.75 (dd, *J* = 14.0, 6.2 Hz, 0.50H), 1.57 (d, *J* = 1.5 Hz, 3H), 1.40 – 1.17 (m, 2H), 1.10 – 0.87 (m, 3H), 0.52 (d, *J* = 6.3 Hz, 1.50H), 0.37 (d, *J* = 6.5 Hz, 1.48H).

¹³C NMR (101 MHz, CDCl₃) δ 176.82, 166.29, 164.39, 164.36, 163.76, 143.73, 143.39, 136.09, 136.06, 133.97, 133.87, 129.82, 129.77, 129.73, 129.68, 128.94, 128.92, 127.39, 127.36, 125.82, 125.68, 124.69, 124.50, 116.45, 116.43, 116.23, 116.21, 49.04, 48.76, 47.12, 46.62, 43.27, 43.16, 34.58, 33.73, 31.31, 31.00, 29.89, 29.56, 27.25, 27.22, 26.67, 26.08, 20.70, 19.29.

¹⁹**F NMR** (565 MHz, CDCl₃) δ -105.37, -105.57.

HRMS (ESI) m/z: $[M + H]^+$ Calced for $C_{23}H_{27}FN_2O_4S$: 447.1748. Found: 447.1750.

<u>4-chloro-N-(5-(2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-4-</u> methylpentyl)benzenesulfonamide (5aj)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 54% (dr = 1:2).

¹**H NMR** (400 MHz, CDCl3) δ 8.24 – 8.22 (m, 1H), 7.79 – 7.73 (m, 2H), 7.64 – 7.60 (m, 1H), 7.52 – 7.31 (m, 4H), 7.47 – 7.63 (m, 1H), 3.36 – 3.34 (m, 3H), 2.83 – 2.70 (m, 2H), 2.31 (dd, *J* = 14.2, 5.0 Hz, 0.66H), 2.21 (dd, *J* = 14.3, 7.7 Hz, 0.35H), 1.95 – 1.88 (m, 0.41H), 1.77 – 1.72 (m, 0.67H), 1.56 (s, 3H), 1.42 – 1.18 (m, 2H), 1.09 – 0.86 (m, 3H), 0.51 (d, *J* = 5.4 Hz, 1.00H), 0.36 (d, *J* = 6.3 Hz, 1.97H).

¹³C NMR (101 MHz, CDCl₃) δ 176.83, 164.40, 164.36, 143.74, 143.39, 139.09, 139.02, 138.54, 133.98, 133.87, 129.40, 128.94, 128.91, 128.54, 128.49, 127.39, 127.36, 125.82, 125.68, 124.67, 124.48, 49.04, 48.72, 47.12, 46.61, 43.28, 43.17, 34.56, 33.73, 31.32, 31.00, 29.88, 29.54, 27.25, 27.23, 26.65, 26.08, 20.70, 19.29.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₃H₂₇ClN₂O₄S: 463.1453. Found: 463.1455.

<u>4-bromo-*N*-(5-(2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-4-</u> methylpentyl)benzenesulfonamide (5ak)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 52% (dr = 1:1.7).

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 – 8.22 (m, 1H), 7.74 – 7.59 (m, 5H), 7.46 – 7.32 (m, 2H), 4.70 (t, *J* = 6.1 Hz, 0.62H), 4.72 – 4.59 (m, 0.37H), 3.36 (d, *J* = 5.3 Hz, 3H), 2.82 – 2.67 (m, 2H), 2.32 (dd, *J* = 14.0, 5.3 Hz, 0.63H), 2.21 (dd, *J* = 14.1, 8.4 Hz, 0.40H), 1.92 (dd, *J* = 13.9, 3.1 Hz, 0.42H), 1.75 (dd, *J* = 14.0, 6.1 Hz, 0.61H), 1.57 (d, *J* = 1.2 Hz, 3H), 1.39 – 1.19 (m, 2H), 1.09 – 0.86 (m, 3H), 0.51 (d, *J* = 6.0 Hz, 1.06H), 0.36 (d, *J* = 6.4 Hz, 1.77H).

¹³**C NMR** (101 MHz, CDCl₃) δ 176.84, 164.40, 164.36, 143.73, 143.39, 139.07, 133.98, 133.87, 132.40, 132.39, 128.95, 128.93, 128.64, 128.58, 127.56, 127.50, 127.40, 127.38, 125.82, 125.67, 124.69, 124.49, 49.00, 48.75, 47.13, 46.62, 43.28, 43.16, 34.55, 33.70, 31.31, 31.02, 29.87, 29.54, 27.26, 27.24, 26.67, 26.07, 20.71, 19.30.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₃H₂₇BrN₂O₄S: 507.0948. Found: 507.0951.

<u>N-(5-(2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-4-methylpentyl)-4-</u> (trifluoromethyl)benzenesulfonamide (5al)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 41% (dr = 1:1.9).

¹**H** NMR (400 MHz, CDCl₃) δ 8.26 – 8.22 (m, 1H), 7.98 – 7.93 (m, 2H), 7.79 – 7.76 (m, 2H), 7.65 – 7.60 (m, 1H), 7.46 – 7.32 (m, 2H), 4.74 (t, *J* = 6.0 Hz, 0.59H), 4.61 (t, *J* = 6.1 Hz, 0.33H), 3.36 (d, *J* = 5.5 Hz, 3H), 2.87 – 2.74 (m, 2H), 2.33 (dd, *J* = 14.0, 5.4 Hz, 0.66H), 2.22 (dd, *J* = 13.9, 8.2 Hz, 0.38H), 1.92 (dd, *J* = 14.0, 3.2 Hz, 0.37H), 1.76 (dd, *J* = 14.1, 6.1 Hz, 0.70H), 1.57 (s, 3H), 1.45 – 1.19 (m, 2H), 1.08 – 0.83 (m, 3H), 0.52 (d, *J* = 6.0 Hz, 1.01H), 0.37 (d, *J* = 6.4 Hz, 1.94H).

¹³C NMR (101 MHz, CDCl₃) δ 176.87, 176.81, 164.39, 164.35, 143.69, 143.40, 133.96, 133.89, 128.95, 127.58, 127.52, 127.41, 127.38, 126.35, 126.32, 126.28, 126.24, 125.80, 125.66, 124.70, 124.49, 48.89, 48.81, 47.13, 46.63, 43.33, 43.22, 34.49, 33.60, 31.22, 31.07, 29.84, 29.52, 27.25, 27.23, 26.74, 26.07, 20.71, 19.28.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.08, -63.09.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₄H₂₇F₃N₂O₄S: 497.1716. Found: 497.1718.

<u>N-(5-(2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-4-</u> methylpentyl)naphthalene-2-sulfonamide (5am)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 44% (dr = 1:1.5).

¹**H** NMR (400 MHz, CDCl₃) δ 8.43 – 8.37 (m, 1H), 8.23 – 8.20 (m, 1H), 8.00 – 7.93 (m, 3H), 7.83 – 7.78 (m, 1H), 7.68 – 7.55 (m, 3H), 7.42 – 7.27 (m, 2H), 4.65 – 4.56 (m, 1H), 3.32 (d, *J* = 16.3 Hz, 3H), 2.87 – 2.74 (m, 2H), 2.29 (dd, *J* = 14.0, 5.2 Hz, 0.60H), 2.16 (dd, *J* = 13.9, 8.5 Hz, 0.40H), 1.86 (dd, *J* = 14.0, 3.0 Hz, 0.36H), 1.71 (dd, *J* = 14.0, 6.3 Hz, 0.75H), 1.53 (d, *J* = 9.8 Hz, 3H), 1.40 – 1.18 (m, 2H), 1.10 – 0.82 (m, 3H), 0.47 (d, *J* = 6.0 Hz, 1.17H), 0.32 (d, *J* = 6.4 Hz, 1.78H).

¹³**C NMR** (101 MHz, CDCl₃) δ 176.83, 176.77, 164.38, 164.35, 143.77, 143.35, 136.78, 136.73, 134.79, 133.94, 133.81, 132.18, 132.16, 129.52, 129.51, 129.26, 129.22, 128.93, 128.87, 128.85, 128.76, 128.43, 128.38, 127.94, 127.92, 127.64, 127.56, 127.34, 127.31, 125.79, 125.64, 124.65, 124.49, 122.36, 122.30, 77.37, 77.05, 76.74, 49.05, 48.65, 47.10, 46.57, 43.35, 43.24, 34.61, 33.79, 31.30, 30.92, 29.88, 29.53, 27.23, 27.18, 26.69, 26.14, 20.66, 19.28.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₇H₃₀N₂O₄S: 479.1999. Found: 479.2001.

<u>*N*-(4-((2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)methyl)hexyl)-4-</u> methoxybenzenesulfonamide (5an)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 69% (dr = 1:1).

¹**H** NMR (400 MHz, CDCl₃) δ 8.24 – 8.21 (m, 1H), 7.80 – 7.70 (m, 2H), 7.65 – 7.57 (m, 1H), 7.45 – 7.34 (m, 2H), 7.00 – 6.90 (m, 2H), 4.50 (t, *J* = 6.1 Hz, 0.50H), 4.37 (t, *J* = 6.2 Hz, 0.42H), 3.86 (d, *J* = 1.9 Hz, 3H), 3.39 – 3.30 (m, 3H), 2.86 – 2.53 (m, 2H), 2.24 – 2.17 (m, 1H), 1.85 – 1.73 (m, 1H), 1.59 (d, *J* = 5.5 Hz, 3H), 1.36 – 1.08 (m, 2H), 0.99 – 0.75 (m, 5H), 0.61 (t, *J* = 7.3 Hz, 1.24H), 0.53 (t, *J* = 7.0 Hz, 1.44H).

¹³C NMR (101 MHz, CDCl₃) δ 176.94, 176.64, 164.41, 164.37, 162.85, 162.82, 143.60, 143.53, 133.92, 133.84, 131.57, 131.52, 129.23, 129.21, 129.16, 128.85, 128.79, 127.40, 127.36, 125.78, 125.73, 124.77, 124.67, 114.23, 55.64, 55.62, 47.02, 46.97, 46.91, 45.89, 43.37, 43.14, 35.59, 35.51, 30.46, 30.29, 29.80, 29.60, 27.24, 27.15, 26.35, 26.13, 25.71, 25.30, 10.42, 10.16.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₅H₃₂N₂O₅S: 473.2105. Found: 473.2107.

<u>*N*-(4-((2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)methyl)heptyl)-4-</u> methoxybenzenesulfonamide (5ao)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 64% (dr = 1:1).

¹**H** NMR (400 MHz, CDCl₃) δ 8.24 – 8.21 (m, 1H), 7.79 – 7.71 (m, 2H), 7.63 – 7.60 (m, 1H), 7.44 – 7.35 (m, 2H), 6.97 – 6.96 (m, 2H), 4.50 (s, 0.45H), 4.36 (s, 0.51H), 3.86 (d, *J* = 1.3 Hz, 3H), 3.34 (d, *J* = 13.1 Hz, 3H), 2.78 – 2.57 (m, 2H), 2.23 – 2.18 (m, 1H), 1.83 – 1.71 (m, 1H), 1.59 (d, *J* = 8.7 Hz, 3H), 1.35 – 1.03 (m, 3H), 0.98 – 0.72 (m, 6H), 0.67 (t, *J* = 7.2 Hz, 1.50H), 0.56 (t, *J* = 7.3 Hz, 1.41H).

¹³C NMR (101 MHz, CDCl₃) δ 176.96, 176.69, 164.41, 164.37, 162.84, 162.80, 143.58, 143.54, 133.93, 133.85, 131.54, 131.50, 129.22, 129.20, 129.16, 128.84, 128.78, 127.40, 127.36, 125.79, 125.75, 124.75, 124.68, 114.22, 55.64, 55.62, 47.47, 46.97, 46.88, 46.38, 43.37, 43.15, 36.19, 35.63, 33.96, 33.89, 30.79, 30.41, 30.12, 29.81, 27.24, 27.15, 26.09, 25.29, 19.12, 18.92, 14.15, 13.98. **HRMS** (ESI) m/z: $[M + H]^+$ Calced for C₂₆H₃₄N₂O₅S: 487.2261. Found: 487.2264.

<u>N-(4-((2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)methyl)octyl)-4-</u> methoxybenzenesulfonamide (5ap)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 57% (dr = 1:1.4).

¹**H NMR** (400 MHz, CDCl₃) δ 8.24 – 8.21 (m, 1H), 7.80 – 7.70 (m, 2H), 7.64 – 7.59 (m, 1H), 7.45 – 7.34 (m, 2H), 7.00 – 6.92 (m, 2H), 4.50 (d, *J* = 6.6 Hz, 0.50H), 4.36 (t, *J* = 6.3 Hz, 0.45H), 3.86 (d, *J* = 0.9 Hz, 3H), 3.34 (d, *J* = 7.5 Hz, 3H), 2.78 – 2.59 (m, 2H), 2.27 – 2.13 (m, 1H), 1.88 – 1.74 (m, 1H), 1.58 (d, *J* = 4.5 Hz, 3H), 1.32 – 1.00 (m, 4H), 0.96 – 0.80 (m, 7H), 0.80 – 0.73 (m, 1.82H), 0.69 – 0.67 (m, 1.28H).

¹³C NMR (101 MHz, CDCl₃) δ 176.92, 176.66, 164.39, 164.36, 162.85, 162.82, 143.61, 143.57, 133.90, 133.80, 131.60, 131.57, 129.22, 129.16, 128.84, 128.79, 127.39, 127.34, 125.78, 125.76, 124.78, 124.70, 114.22, 55.63, 55.60, 47.50, 47.01, 46.89, 46.50, 43.38, 43.17, 34.20, 34.13, 33.61, 33.05, 30.82, 30.37, 30.20, 29.84, 28.20, 28.01, 27.22, 27.14, 26.14, 25.38, 22.79, 22.58, 13.92, 13.88.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₇H₃₆N₂O₅S: 501.2418. Found: 501.2421.

<u>N-(4-((2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)methyl)-2,2-dimethylhexyl)-</u> <u>4-methoxybenzenesulfonamide (5aq)</u>

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 49%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.28 – 8.23 (m, 1H), 7.84 – 7.72 (m, 2H), 7.68 – 7.60 (m, 1H), 7.48 – 7.40 (m, 2H), 7.00 – 6.98 (m, 2H), 4.51 (t, J = 7.0 Hz, 0.69H), 4.37 (t, J = 6.8 Hz, 0.30H), 3.89 (s, 3H), 3.37 (d, J = 6.6 Hz, 3H), 2.55 – 2.43 (m, 2H), 2.36 (dd, J = 14.0, 7.4 Hz, 0.38H), 2.23 (dd, J = 14.3, 4.8 Hz, 0.64H), 1.97 (dd, J = 14.2, 6.4 Hz, 0.74H), 1.85 (dd, J = 14.3, 3.5 Hz, 0.30H), 1.61 (d, J = 3.3 Hz, 3H), 1.08 – 0.87 (m, 4H), 0.80 – 0.74 (m, 1H), 0.73 – 0.61 (m, 6H), 0.58 – 0.50 (m, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 176.86, 176.70, 164.38, 164.36, 162.83, 162.77, 143.97, 143.33, 133.81, 133.77, 131.71, 131.57, 129.20, 129.17, 129.14, 128.86, 128.83, 127.43, 127.36, 126.16, 125.86, 124.86, 124.49, 114.24, 114.20, 55.63, 55.61, 54.02, 53.87, 49.00, 48.18, 47.12, 46.93, 43.38, 43.30, 34.40, 34.23, 32.32, 31.82, 31.05, 30.46, 27.61, 27.16, 27.14, 27.03, 25.30, 25.22, 24.92, 24.73, 9.72, 9.67.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₇H₃₆N₂O₅S: 501.2418. Found: 501.2420.

<u>N-(6-(2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)-2,4,4-trimethylhexan-2-yl)-</u> 4-methoxybenzenesulfonamide (5ar)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 43%.

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 – 8.23 (m, 1H), 7.80 – 7.71 (m, 2H), 7.66 – 7.61 (m, 1H), 7.46 – 7.36 (m, 2H), 6.96 – 6.88 (m, 2H), 4.45 (s, 1H), 3.86 (s, 3H), 3.37 (s, 3H), 2.29 – 2.22 (m, 1H), 1.87 – 1.79 (m, 1H), 1.60 (s, 3H), 1.46 – 1.32 (m, 2H), 1.25 (s, 1H), 1.14 – 1.12 (m, 6H), 0.98 (s, 1H), 0.86 – 0.83 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 176.67, 164.48, 162.44, 143.54, 135.39, 134.06, 129.06, 128.81, 127.32, 125.15, 124.99, 113.97, 58.21, 55.57, 52.51, 47.62, 39.83, 37.20, 33.65, 31.63, 29.83, 29.44, 29.42, 28.40, 28.22, 27.13.

HRMS (ESI) m/z: $[M + H]^+$ Calced for $C_{27}H_{36}N_2O_5S$: 501.2418. Found: 501.2419.

<u>N-(2-(2-((2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-</u>

yl)methyl)cyclopentyl)ethyl)-4-methoxybenzenesulfonamide (5as)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 63%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.23 – 8.20 (m, 1H), 7.85 – 7.74 (m, 2H), 7.62 – 7.58 (m, 1H), 7.45 – 7.27 (m, 2H), 7.04 – 6.90 (m, 2H), 4.66 – 4.53 (m, 1H), 3.87 (s, 3H), 3.34 (d, *J* = 5.6 Hz, 3H), 2.99 – 2.72 (m, 2H), 2.40 (dd, *J* = 13.7, 2.2 Hz, 0.60H), 2.15 (dd, *J* = 13.8, 10.6 Hz, 0.43H), 2.03 (dd, *J* = 13.8, 2.6 Hz, 0.48H), 1.71 (dd, *J* = 13.7, 9.8 Hz, 0.56H), 1.59 (d, *J* = 3.2 Hz, 3H), 1.41 – 0.98 (m, 6H), 0.91 – 0.37 (m, 4H).

¹³**C NMR** (101 MHz, CDCl₃) δ 176.73, 164.53, 162.82, 143.99, 134.06, 133.62, 131.56, 129.27, 129.25, 129.21, 128.82, 128.73, 127.38, 127.30, 126.16, 125.49, 124.48, 114.27, 114.25, 55.66, 55.63, 48.80, 47.99, 47.73, 46.97, 43.86, 43.55, 43.47, 42.44, 42.22, 42.13, 33.94, 33.75, 32.78, 31.13, 30.83, 30.56, 30.38, 29.69, 27.26, 27.10, 23.86, 23.79.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₆H₃₂N₂O₅S: 485.2105. Found: 485.2108.

<u>N-(4-((2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)methyl)oct-7-en-1-yl)-4-</u> methoxybenzenesulfonamide (5at)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 54%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.24 – 8.20 (m, 1H), 7.80 – 7.70 (m, 2H), 7.64 – 7.60 (m, 1H), 7.45 – 7.34 (m, 2H), 6.98 – 6.95 (m, 2H), 5.57 – 5.34 (m, 1H), 4.92 – 4.67 (m, 2H), 4.57 (t, *J* = 5.2 Hz, 0.49H), 4.44 (q, *J* = 5.8 Hz, 0.50H), 3.86 (s, 3H), 3.33 (d, *J* = 6.3 Hz, 3H), 2.77 – 2.57 (m, 2H), 2.26 – 2.19 (m, 1H), 1.85 – 1.79 (m, 1H), 1.74 – 1.62 (m, 2H), 1.58 (d, *J* = 4.8 Hz, 3H), 1.29 – 1.08 (m, 2H), 1.02 – 0.78 (m, 5H).

¹³C NMR (101 MHz, CDCl₃) δ 176.89, 176.64, 164.35, 164.31, 162.85, 162.82, 143.48, 143.43, 138.16, 138.12, 133.96, 133.91, 131.51, 131.48, 129.23, 129.16, 128.90, 128.82, 127.45, 127.42, 125.78, 124.75, 124.67, 114.65, 114.64, 114.24, 55.65, 55.63, 47.17, 46.96, 46.83, 46.28, 43.32, 43.11, 33.59, 33.58, 33.15, 32.47, 30.62, 30.51, 30.32, 29.97, 29.93, 27.25, 27.20, 26.04, 25.22. **HRMS** (ESI) m/z: $[M + H]^+$ Calced for C₂₇H₃₄N₂O₅S: 499.2261. Found: 499.2262.

<u>ethyl</u> <u>5-((2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)methyl)-8-((4-methoxyphenyl)sulfonamido)octanoate (5au)</u>

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 65%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.25 – 8.21 (m, 1H), 7.79 – 7.72 (m, 2H), 7.65 – 7.60 (m, 1H), 7.47 – 7.34 (m, 2H), 6.98 – 6.95 (m, 2H), 4.50 (s, 0.51H), 4.35 (s, 0.44H), 4.10 – 4.04 (m, 2H), 3.87 (d, J = 1.1 Hz, 3H), 3.36 – 3.33 (m, 3H), 2.77 – 2.59 (m, 2H), 2.27 – 2.05 (m, 2H), 1.97 – 1.91 (m, 1H), 1.86 – 1.77 (m, 1H), 1.60 – 1.58 (m, 3H), 1.41 – 1.25 (m, 3H), 1.24 – 1.20 (m, 3H), 1.18 – 1.09 (m, 1H), 1.00 – 0.76 (m, 5H).

¹³C NMR (101 MHz, CDCl₃) δ 176.82, 176.60, 173.37, 173.34, 164.29, 164.26, 162.85, 162.82, 143.46, 143.39, 133.97, 133.92, 131.55, 131.51, 129.23, 129.16, 128.92, 128.87, 127.48, 127.43, 125.76, 125.69, 124.71, 124.69, 114.23, 60.28, 55.63, 55.61, 47.01, 46.93, 46.89, 45.98, 43.27, 43.08, 34.15, 34.06, 34.03, 33.97, 33.29, 32.69, 30.56, 30.02, 29.87, 27.27, 27.17, 25.97, 25.19, 21.31, 21.08, 14.24.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₂₉H₃₈N₂O₇S: 559.2472. Found: 559.2474.

<u>3-((2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)methyl)-6-((4-methoxyphenyl)sulfonamido)hexyl 4-bromobenzoate (5av)</u>

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 42%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.18 – 8.13 (m, 1H), 7.79 – 7.65 (m, 4H), 7.62 – 7.50 (m, 3H), 7.41 – 7.28 (m, 2H), 7.00 – 6.93 (m, 2H), 4.53 (t, *J* = 6.1 Hz, 0.46H), 4.42 (t, *J* = 6.3 Hz, 0.54H), 4.16 – 3.96 (m, 2H), 3.86 (s, 3H), 3.33 (d, *J* = 3.7 Hz, 3H), 2.80 – 2.73 (m, 1H), 2.67 – 2.62 (m, 1H), 2.39 – 2.28 (m, 1H), 1.96 – 1.85 (m, 1H), 1.59 (d, *J* = 2.2 Hz, 3H), 1.43 – 1.32 (m, 2H), 1.29 – 1.20 (m, 2H), 1.16 – 0.90 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 176.73, 176.61, 165.66, 165.63, 164.14, 162.87, 162.84, 143.14, 143.04, 134.03, 131.76, 131.72, 131.50, 131.44, 131.04, 131.00, 129.23, 129.15, 128.96, 128.94, 128.88, 128.85, 128.18, 128.12, 127.49, 127.47, 125.73, 125.48, 124.65, 124.63, 114.26, 62.28, 55.65, 55.63, 46.83, 46.81, 46.49, 45.57, 43.15, 42.95, 32.87, 32.19, 31.20, 30.97, 30.78, 30.54, 30.46, 29.77, 27.31, 27.24, 26.01, 25.07.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₃₂H₃₅BrN₂O₇S: 671.1421. Found: 671.1424.

<u>3-((2,4-dimethyl-1,3-dioxo-1,2,3,4-tetrahydroisoquinolin-4-yl)methyl)-6-((4-</u> methoxyphenyl)sulfonamido)hexyl 2-(4-benzoylphenoxy)-2-methylpropanoate (5aw)

The crude was purified by silica gel column chromatography with petroleum ether/ethyl acetate (6:1-4:1). Yellow oil, yield 41%.

¹**H** NMR (400 MHz, CDCl₃) δ 8.22 – 8.16 (m, 1H), 7.78 – 7.73 (m, 2H), 7.71 – 7.56 (m, 5H), 7.47 – 7.30 (m, 4H), 6.99 – 6.92 (m, 2H), 6.76 – 6.69 (m, 2H), 4.89 – 4.83 (m, 1H), 4.13 – 3.91 (m, 1H), 3.85 (s, 3H), 3.31 (d, *J* = 6.3 Hz, 3H), 2.70 – 2.50 (m, 2H), 2.28 – 2.14 (m, 1H) 1.83 – 1.77 (m, 1H), 1.60 – 1.50 (m, 9H), 1.28 – 1.15 (m, 2H), 1.14 – 1.01 (m, 2H), 0.99 – 0.78 (m, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 194.60, 194.55, 176.55, 176.51, 173.54, 173.48, 164.13, 164.07, 162.77, 159.66, 159.56, 143.10, 138.65, 136.10, 134.08, 134.04, 132.05, 132.02, 131.69, 131.56, 131.36, 131.31, 130.38, 130.20, 129.85, 129.22, 129.15, 129.04, 128.90, 128.62, 127.55, 127.51, 125.78, 125.60, 124.62, 124.54, 117.06, 116.88, 114.26, 114.21, 79.28, 63.02, 62.95, 60.42, 55.64, 55.62, 46.87, 46.75, 46.20, 45.53, 43.17, 43.00, 32.48, 31.99, 31.31, 31.28, 30.88, 30.37, 30.17, 29.45, 27.28, 27.18, 25.92, 25.73, 25.61, 25.06, 24.99, 24.76, 21.08, 14.21.

HRMS (ESI) m/z: $[M + H]^+$ Calced for C₄₂H₄₅ClN₂O₉S: 789.2607. Found: 789.2611.

8. References

- 1 S. Huang, P. Niu, Y. Su, D. Hu and C. Huo, Org. Biomol. Chem., 2018, 16, 7748-7752.
- 2 S. Wang, P. Dai, Z. Yan, Y. Wang, J. Shao, Y. Wu, C. Deng and W. Zhang, *ChemistrySelect.*, 2019, **4**, 10329-10333.
- 3 Y. Su, R. Zhang, W. Xue, X. Liu, Y. Zhao, K.-H. Wang, D. Huang, C. Huo and Y. Hu, Org. Biomol. Chem., 2020, 18, 1940-1948.
- 4 X. Li, S. Zhuang, X. Fang, P. Liu and P. Sun, Org. Biomol. Chem., 2017, 15, 1821-1827.
- 5 Z. Deng, G.-X. Li, G. He and G. Chen, J. Org. Chem., 2019, 84, 15777-15787.
- 6 Z. Deng, Z. Zhao, G. He and G. Chen, Org. Lett., 2021, 23, 3631-3635.
- 7 Y. Zhu, J. Shi and W. Yu, Org. Lett., 2020, 22, 8899-8903.
- 8 Z. Deng, Z. Zhao, G. He and G. Chen, Org. Lett., 2021, 23, 3631-3635.
- 9 Z. Chen, W. Zhu, C. Wang, N. Xu, Q. Jin, X. Huang, S. Song and J. Li, Org. Chem. Front., 2023, 10, 4709-4717.

9. Copies of NMR Spectra

¹H and ¹³C NMR spectra of 4c:

¹H and ¹³C NMR spectra of 4m:

¹H and ¹³C NMR spectra of 4n:

¹H and ¹³C NMR spectra of 40:

¹H and ¹³C NMR spectra of 4p:

¹H and ¹³C NMR spectra of 4q:

¹H and ¹³C NMR spectra of 4r:

¹H and ¹³C NMR spectra of 4s:

¹H and ¹³C NMR spectra of 4t:

¹H and ¹³C NMR spectra of 4u:

¹H and ¹³C NMR spectra of 4v:

¹H and ¹³C NMR spectra of 4w:

¹H and ¹³C NMR spectra of **3aa**:

¹H and ¹³C NMR spectra of **3ba**:

¹H and ¹³C NMR spectra of **3ca**:

¹H and ¹³C NMR spectra of 3da:

¹H and ¹³C NMR spectra of **3ea**:

¹H and ¹³C NMR spectra of **3fa**:

¹H ¹⁹F and ¹³C NMR spectra of **3ga**:

¹H and ¹³C NMR spectra of **3ha**:

¹H ¹⁹F and ¹³C NMR spectra of **3ia**:

55

¹H and ¹³C NMR spectra of **3ja**:

¹H and ¹³C NMR spectra of 3ka:

¹H and ¹³C NMR spectra of **3la**:

¹H and ¹³C NMR spectra of **3ma**:

¹H and ¹³C NMR spectra of **3ab**:

¹H and ¹³C NMR spectra of **3ac**:

¹H and ¹³C NMR spectra of **3ad**:

¹H and ¹³C NMR spectra of **3ae**:

¹H and ¹³C NMR spectra of **3af**:

¹H and ¹³C NMR spectra of **3ag**:

¹H and ¹³C NMR spectra of **3ah**:

67

¹H and ¹³C NMR spectra of 3ai:

¹H and ¹³C NMR spectra of **3aj**:

¹H and ¹³C NMR spectra of **3ak**:

¹H and ¹³C NMR spectra of 3al:

¹H and ¹³C NMR spectra of **3am**:

¹H and ¹³C NMR spectra of **3an**:

¹H and ¹³C NMR spectra of **3ao**:

¹H and ¹³C NMR spectra of **3ap**:

¹H and ¹³C NMR spectra of **3aq**:

¹H and ¹³C NMR spectra of **3ar**:

¹H and ¹³C NMR spectra of **3as**:

¹H and ¹³C NMR spectra of **3at**:

¹H and ¹³C NMR spectra of **5aa**:

¹H and ¹³C NMR spectra of **5ab**:

¹H and ¹³C NMR spectra of 5ac:

¹H and ¹³C NMR spectra of **5ad**:

¹H and ¹³C NMR spectra of **5ae**:

¹H and ¹³C NMR spectra of 5af:

¹H and ¹³C NMR spectra of **5ag**:

¹H and ¹³C NMR spectra of **5ah**:

¹H ¹⁹F and ¹³C NMR spectra of 5ai:

¹H and ¹³C NMR spectra of 5aj:

¹H and ¹³C NMR spectra of **5ak**:

¹H ¹⁹F and ¹³C NMR spectra of 5al:

¹H and ¹³C NMR spectra of 5am:

¹H and ¹³C NMR spectra of 5an:

¹H and ¹³C NMR spectra of **5ao**:

¹H and ¹³C NMR spectra of **5ap**:

¹H and ¹³C NMR spectra of **5aq**:

¹H and ¹³C NMR spectra of 5ar:

¹H and ¹³C NMR spectra of **5as**:

¹H and ¹³C NMR spectra of 5at:

¹H and ¹³C NMR spectra of 5au:

¹H and ¹³C NMR spectra of **5av**:

¹H and ¹³C NMR spectra of **5aw**:

