Supporting Information

Regioselective Synthesis of *N***-Containing Polycyclic Compounds** *via* **Radical Annulation Cyclization of 1,7-Dienes with Aldehydes**

Jia-Li Sui,^a Long-Jin Zhong,^{*a} Bi-Quan Xiong,^a Ke-Wen Tang,^a Yu Liu^{*a}

^a Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China

zlj1511@hnu.edu.cn; lyxtmj_613@163.com

List of Contents

1.	General Information	S1
2.	Experimental Section	S1-S24
	2.1 General Procedure for the Synthesis of Substrates	S1
	2.2 Table S1. Optimization of Reaction Conditions	S2-S3
	2.3 Typical Experimental Procedure	S3-S4
	2.4 GC-MS Analysis	S4-S25
3.	Characterization Data for All Products	S26-S44
4.	Reference	S44
5.	X-Ray Crystallographic Data	S45
6.	Spectra	S46-S139

1.General Information

Unless otherwise stated, all commercial reagents were used as received. aminobenzene (BK, 99%), benzaldehyde (Innochem, >98%) and phenylethynyl (Innochem, >98%) were used without further treatment. All reagents and solvents were commercially available and used without any further purification unless specified. All solvents were dried and distilled according to standard procedures. Flash column chromatography was performed using silica gel (0.25mm, 300-400 mesh). Analytical thin-layer chromatography was performed using glass plates pre-coated with 0.25mm 300-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). All reactions were carried out with magnetic stirring and in dried glassware.Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane on the δ scale. 1H NMR, 19F NMR and 13C NMR spectra were recorded in CDCl3 on a Bruker DRX-400 spectrometer operating at 400 MHz, 376 MHz and 100 MHz, respectively. All chemical shift values are quoted in ppm and coupling constants quated in Hz. The solvent peak was used as a reference value, for 1H NMR: TMS = 0.00 ppm, for 13C NMR: CDCl3 = 77.00 ppm. The following abbreviations were used to explain multiplicities: s = singlet, d =doublet, dd = doublet of doublet, t = triplet, td = triplet of doublet, q = quartet, m =multiplet, and br = broad. High-resolution mass spectra (HRMS) were obtained on an Agilent mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

2. Experiment Section

2.1 General Procedure for the Synthesis of Substrates

All *N*-methyl-*N*-(2-(1-phenylvinyl)phenyl)methacrylamide $\mathbf{1}^{[1]}$ were synthesized according to the known methods and all aldehydes $\mathbf{2}$ were purchased from Energy Chemical.

2.2 Table S1. Optimization of Reaction Conditions^a

Initially, we chose N-methyl-N-(2-(1-phenylvinyl)phenyl)methacrylamide (1a) and *p*-methoxybenzaldehyde (2a) as model substrates to explore the optimum reaction conditions (Table 1). As expected, the desired N-containing polycyclic product 3aa was isolated in 74% yield when the 1a (0.2 mmol) reacted with 2a (0.3 mmol, 1.5 equiv) in the presence of 3 equiv TBHP (tert-Butyl hydroperoxide, 70% solution in water) and DCE (2 mL) at 80 °C under an argon atmosphere for 12 h (entry 1). We found that the oxidant and an argon atmosphere played a key role in this transformation, and the reaction did not occur in the absence of oxidant or under an oxygen atmosphere (entries 2-3). Inspired by these results, a series of other oxidants, including DTBP (di-tert-Butyl peroxide), TBPB (tert-Butyl peroxybenzoate), *m*-CPBA (*m*-Chloroperbenzoicacid), $K_2S_2O_8$, Oxone and PhI(OAc)₂, were investigated (entries 4-9). The result shows that TBHP was most efficient oxidant. As changing the amount of TBHP, the yield of product 3aa declined (entries 10-11). Next, we further explored the effect of reaction solvents. This oxidative radical annulation reaction could also be conducted in acetone, and afforded slightly lower yield than DCE (entry 12). Surprisingly, other solvents, including DMSO, THF, 1,4-dioxane, CH₃CN and toluene, were not compatible with this reaction (entries 13-17). Notably, the temperature had an influence in the current reaction, convert the reaction temperature of 60 °C or 100 °C resulted in the decline of reaction yields (entries 18 and 19). Additionally, the yield of 3aa could not be increased obviously when the reaction time was extended to 24 h (entry 20). It is noteworthy that conducting the reaction with 1 mmol scale of 1,7-dienes 1a still achieved a moderate yield (entry 21).

Entry	Variation from the standard conditions	Isolated yield (%)
1	none	74
2^{b}	air	0
3 ^b	without TBHP	0
4	DTBP instead of TBHP	65%
5	TBPB instead of TBHP	50%

6	<i>m</i> -CPBA instead of TBHP	28%
7 ^b	K ₂ S ₂ O ₈ instead of TBHP	0
8 ^b	oxone instead of TBHP	0
9 ^b	PhI(OAc) ₂ instead of TBHP	trace
10 ^c	none	55%
11 ^d	none	68%
12	Acetone instead of DCE	65%
13 ^b	DMSO instead of DCE	0
14 ^b	THF instead of DCE	0
15 ^b	1,4-dioxane instead of DCE	0
16 ^b	CH ₃ CN instead of DCE	trace
17 ^b	toluene instead of DCE	trace
18	at 60 °C (oil bath)	54%
19	at 100 °C (oil bath)	70%
20	24 h	75%
21 ^e	none	63%

^{*a*} Reaction conditions: 1a (0.2 mmol), 2a (0.3 mmol, 1.5 equiv), TBHP (0.6 mmol, 3 equiv) and solvent (2 mL) at 80 °C under an argon atmosphere for 12 h. ^{*b*} The most of substrate 1a was recovered. ^{*c*} TBHP (2 equiv) instead of TBHP (3 equiv). ^{*d*} TBHP(4 equiv) instead of TBHP(3 equiv). ^{*e*} 1 mmol scale reaction.

2.3 Typical Experimental Procedure

To a Schlenk tube were added *N*-methyl-*N*-(2-(1-phenylvinyl)phenyl)methacrylamide **1a** (0.2 mmol), p-methoxybenzaldehyde **2a** (0.3 mmol, 1.5 equiv), TBHP (0.6 mmol, 3 equiv) and DCE (2 mL). Then the tube was stirred at 80 $^{\circ}$ C in Ar atmosphere for the indicated time until complete

consumption of starting material as monitored by TLC analysis. The residue was purified by silica gel flash column chromatography (petroleum ether/ethyl acetate = 10 : 1) to afford the desired products. A scaled-up experiment conducted in the presence of **1a** (1 g, 3.6 mmol), **2a** (0.74 g, 1.5 equiv), TBHP (0.97 g, 3 equiv), and DCE (30 mL) at 80 °C for 24 h under an argon atmosphere. Until complete consumption of the starting material was observed by TLC and/or GC-MS analysis, the reaction mixture removal of the solvent, the crude product was purified by column chromatography (petroleum ether/ethyl acetate, 10 : 1) to provide the desired product **3aa** (0.93 g) in 63% yield.

2.4 Control Experiments

2.4.1 GC-MS Analysis of Raw Reaction Mixture by Using BHT as Radical Inhibitor

Spectra of GC-MS

MS Spectra of the peak at 14.530 min

[MS Spectrum]

of Peaks 551

Raw Spectrum 14.530 (scan : 2107)

Background No Background Spectrum

Base Peak m/z 135.05 (Inten : 5,847,903)

Event# 1

m/z Absolute Intensity Relative Intensity

50.00	6026	0.10	84.00	1095	0.02	117.10	31329	0.54
51.00	12350	0.21	85.10	1601	0.03	118.10	7930	0.14
52.05	3690	0.06	86.10	452 0.01	l	119.10	84138	1.44
53.00	22674	0.39	87.05	1561	0.03	120.10	14446	0.25
54.05	2143	0.04	88.05	1667	0.03	121.10	121857	2.08
55.05	71668	1.23	89.05	7096	0.12	122.10	11854	0.20
56.05	8073	0.14	90.05	3032	0.05	123.10	8081	0.14
57.05	91681	1.57	91.05	99640	1.70	124.15	11590.02	2
58.00	4684	0.08	92.00	151089	2.58	125.05	1547	0.03
59.05	4296	0.07	93.05	38946	0.67	126.05	2457	0.04
60.05	494 0.01	l	94.10	6865	0.12	127.05	16976	0.29
61.05	998 0.02	2	95.05	11392	0.19	128.10	54530	0.93
62.00	1862	0.03	96.05	7492	0.13	129.10	56834	0.97
63.00	17793	0.30	96.90	4142	0.07	130.10	21087	0.36
64.00	43564	0.74	97.90	11670.02	2	131.10	41617	0.71
65.00	24865	0.43	98.90	11740.02	2	132.10	10281	0.18
66.00	4414	0.08	99.85	355 0.01		133.10	79198	1.35
67.00	25974	0.44	100.15	352 0.01		134.15	60989	1.04
68.00	2540	0.04	101.05	2081	0.04	135.05	5847903	100.00
69.00	35276	0.60	102.05	4756	0.08	136.05	509883	8.72
70.05	2392	0.04	103.05	17581	0.30	137.05	45628	0.78
71.15	2529	0.04	104.05	19118	0.33	138.10	3217	0.06
72.05	1051	0.02	105.05	82817	1.42	139.10	2502	0.04
73.05	24142	0.41	106.05	16080	0.27	140.05	1779	0.03
74.05	3712	0.06	107.05	294210	5.03	141.10	22695	0.39
75.05	6034	0.10	108.05	27256	0.47	142.10	11785	0.20
76.05	20513	0.35	109.10	10970	0.19	143.10	26420	0.45
77.00	360516	6.16	110.05	1257	0.02	144.10	10734	0.18
78.00	35058	0.60	111.05	2107	0.04	145.10	53457	0.91
79.05	57637	0.99	111.85	1049	0.02	146.10	14524	0.25
80.05	8078	0.14	113.05	1204	0.02	147.10	69287	1.18
81.05	17630	0.30	114.15	1399	0.02	148.10	11383	0.19
82.05	2709	0.05	115.05	42392	0.72	149.05	40506	0.69
83.05	9962	0.17	116.05	16121	0.28	150.05	4282	0.07

151.05	2328	0.04	195.05	3084	0.05	239.00	3897	0.07
152.05	5347	0.09	196.00	1247	0.02	240.05	1241	0.02
153.05	8131	0.14	197.05	1274	0.02	240.95	1432	0.02
154.05	4394	0.08	198.05	489 0.01		242.15	510 0.01	
155.05	11199	0.19	199.00	1442	0.02	243.10	1804	0.03
156.10	8852	0.15	200.10	486 0.01		244.00	684 0.01	
157.05	9210	0.16	201.10	1670	0.03	245.15	536 0.01	
158.10	5201	0.09	202.15	4826	0.08	246.05	383 0.01	
159.10	16886	0.29	203.10	225878	3.86	247.05	992 0.02	
160.10	10862	0.19	204.05	42368	0.72	247.95	1358	0.02
161.10	87783	1.50	205.10	9289	0.16	248.95	3214	0.05
162.10	17050	0.29	206.05	2547	0.04	250.05	1746	0.03
163.10	9782	0.17	207.00	53641	0.92	250.95	2767	0.05
164.15	1865	0.03	208.00	12686	0.22	252.05	1673	0.03
165.10	61100.10	1	209.00	9590	0.16	253.05	3239	0.06
166.05	2365	0.04	210.05	2282	0.04	254.05	659 0.01	
167.05	1920	0.03	211.05	1495	0.03	255.05	3006	0.05
168.10	1047	0.02	211.95	878 0.02		256.05	617 0.01	
169.10	3078	0.05	213.00	1929	0.03	256.90	321 0.01	
170.10	9146	0.16	213.95	305 0.01		257.90	350 0.01	
171.05	7210	0.12	215.00	1913	0.03	259.05	400 0.01	
172.15	2473	0.04	216.05	1057	0.02	260.10	546 0.01	
173.05	17838	0.31	217.10	7559	0.13	261.05	358 0.01	
174.15	6057	0.10	218.15	11625	0.20	262.05	737 0.01	
175.10	28657	0.49	219.15	1480697	25.32	263.05	880 0.02	
176.10	5428	0.09	220.10	248609	4.25	264.05	1056	0.02
177.05	3755	0.06	221.10	27620	0.47	265.00	5186	0.09
178.05	4922	0.08	222.10	3703	0.06	266.00	1641	0.03
179.05	4071	0.07	223.00	2327	0.04	267.00	5910	0.10
180.05	676 0.01		224.05	1550	0.03	268.05	1785	0.03
181.05	2562	0.04	225.05	1450	0.02	269.10	2087	0.04
182.10	745 0.01		226.05	11800.02	, ,	270.20	769 0.01	
183.05	11320.02		227.05	3582	0.06	271.20	367 0.01	
184.15	951 0.02		228.05	885 0.02		272.20	169 0.00	
185.10	5754	0.10	229.05	851 0.01		273.20	164 0.00	
186.15	1797	0.03	230.10	340 0.01		274.20	226 0.00	
187.05	19928	0.34	231.10	1238	0.02	275.20	329 0.01	
188.10	15582	0.27	232.05	1240	0.02	276.00	286 0.00	
189.10	44706	0.76	233.10	3159	0.05	277.05	572 0.01	
190.05	7052	0.12	234.05	1072	0.02	278.05	371 0.01	
191.05	10225	0.17	235.00	2153	0.04	279.05	1903	0.03
192.00	31110.05		236.05	1426	0.02	280.05	1745	0.03
193.00	5724	0.10	237.10	1903	0.03	281.00	25153	0.43
194.00	2558	0.04	238.05	1055	0.02	282.05	71180.12	

283.05	12016	0.21	309.15	1367	7	0.02	334.80	27	0.00)
284.05	3028	0.05	310.15	524	0.01		336.15	283	0.00)
284.95	636 0.01		311.05	1805	5	0.03	337.15	1222	2	0.02
286.00	150 0.00)	312.15	694	0.01		338.15	9248	3	0.16
287.00	98 0.00)	313.00	308	0.01		339.15	797	36	1.36
288.00	142 0.00)	314.00	591	0.01		340.15	2098	32	0.36
289.00	142 0.00)	315.00	174	0.00)	341.00	1147	73	0.20
290.00	103 0.00)	316.00	33	0.00)	342.05	3023	3	0.05
291.00	174 0.00)	317.00	57	0.00)	343.00	203	5	0.03
292.10	110 0.00)	318.00	38	0.00)	343.95	638	0.01	
293.10	1294	0.02	319.00	137	0.00)	344.90	159	0.00)
294.15	577 0.01		320.00	151	0.00)	345.90	76	0.00)
295.05	4853	0.08	321.00	646	0.01		346.90	70	0.00)
296.05	2337	0.04	322.15	543	0.01		347.90	34	0.00)
297.10	7263	0.12	323.15	3530)	0.06	348.90	81	0.00)
298.10	2268	0.04	324.05	1389)	0.02	349.90	50	0.00)
299.10	655 0.01		325.00	4186	5	0.07	350.90	156	0.00)
300.10	254 0.00)	325.95	1096	5	0.02	352.25	705	0.01	
301.10	114 0.00)	326.95	2827	7	0.05	353.25	1262	24	0.22
302.10	79 0.00)	328.00	1006	5	0.02	<u>354.15</u>	605	597	10.36
303.10	81 0.00)	328.85	643	0.01		355.15	160.	370	2.74
304.10	209 0.00)	329.80	71	0.00)	356.10	246	50	0.42
305.10	169 0.00)	330.80	90	0.00)	357.15	4088	3	0.07
305.90	326 0.01		331.80	62	0.00)	358.15	383	0.01	
306.95	607 0.01		332.80	84	0.00)	359.10	711	0.01	
308.10	252 0.00)	333.80	24	0.00)	360.10	161	0.00)

Spectra of GC-MS

MS Spectra of the peak at 9.635 min

[MS Spectrum]

of Peaks 476

Raw Spectrum 9.635 (scan : 1128)

Background No Background Spectrum

Base Peak m/z 219.05 (Inten : 8,382,847)

Event# 1

m/z Absolute Intensity Relative Intensity

50.05	9424	0.11	77.05	419269	5.00	104.15	69442	0.83
51.05	70743	0.84	78.05	129136	1.54	105.05	913903	10.90
52.05	32754	0.39	79.05	454240	5.42	106.05	116995	1.40
53.05	205325	2.45	80.05	653266	7.79	107.05	376344	4.49
54.15	23765	0.28	81.00	208386	2.49	108.15	64501	0.77
55.05	871115	10.39	82.05	24009	0.29	109.05	347603	4.15
56.15	116066	1.38	83.05	138897	1.66	110.05	22563	0.27
57.05	4282275	51.08	84.00	19006	0.23	111.05	10439	0.12
58.05	233755	2.79	85.05	31326	0.37	112.05	963 0.01	
59.05	28038	0.33	86.05	81898	0.98	113.05	2594	0.03
60.00	3004	0.04	87.05	297400	3.55	114.05	12317	0.15
61.00	388 0.00	1	87.95	28529	0.34	115.05	624697	7.45
62.05	2982	0.04	89.00	38463	0.46	116.05	219718	2.62
63.05	30243	0.36	90.05	17707	0.21	117.05	426318	5.09
64.05	91184	1.09	91.05	1055231	12.59	118.15	79987	0.95
65.00	222935	2.66	92.05	122537	1.46	119.05	979461	11.68
66.00	55214	0.66	93.05	364346	4.35	120.10	155078	1.85
67.05	249775	2.98	94.05	644805	7.69	121.10	957993	11.43
68.05	18066	0.22	95.00	215751	2.57	122.10	112321	1.34
69.05	473817	5.65	96.00	15169	0.18	123.10	447716	5.34
70.10	50241	0.60	97.05	29566	0.35	124.05	34619	0.41
71.05	482077	5.75	98.10	3902	0.05	125.10	3316	0.04
72.05	69380	0.83	99.05	2875	0.03	126.15	9258	0.11
73.05	109736	1.31	100.05	21000	0.25	127.05	179260	2.14
73.95	14020	0.17	101.05	305639	3.65	128.05	662116	7.90
75.00	11151	0.13	102.00	140265	1.67	129.05	696161	8.30
76.05	34131	0.41	103.00	167618	2.00	130.10	264386	3.15

131.05	555786	6.63	175.00	367178	4.38	219.05	8382847	100.00
132.05	121362	1.45	176.05	66515	0.79	220.00	8382478	100.00
133.05	818396	9.76	177.00	248722	2.97	220.95	2037338	24.30
134.05	163648	1.95	178.00	38722	0.46	222.05	68114	0.81
135.05	239598	2.86	179.00	8026	0.10	223.00	3924	0.05
136.10	30092	0.36	179.95	5539	0.07	224.00	169 0.00	
137.05	16629	0.20	181.00	11218	0.13	225.00	111 0.00	
138.05	1963	0.02	182.00	8574	0.10	226.00	110 0.00	
139.00	17098	0.20	183.00	18015	0.21	227.05	1379	0.02
140.05	11222	0.13	184.05	9799	0.12	228.00	575 0.01	
141.00	319310	3.81	185.00	74852	0.89	229.00	9644	0.12
142.05	244739	2.92	186.05	24170	0.29	230.05	2480	0.03
143.05	371530	4.43	187.00	334410	3.99	231.00	48841	0.58
144.05	150281	1.79	188.00	237486	2.83	232.05	10276	0.12
145.05	776814	9.27	189.00	546188	6.52	233.05	375856	4.48
146.05	184628	2.20	190.00	83550	1.00	234.05	65969	0.79
147.05	696611	8.31	191.00	40338	0.48	235.00	6679	0.08
148.05	119367	1.42	191.95	5704	0.07	236.05	682 0.01	
149.05	272667	3.25	192.90	2031	0.02	237.00	756 0.01	
150.05	31269	0.37	194.00	777 0.01		238.00	154 0.00	
151.00	12537	0.15	195.00	6657	0.08	239.00	190 0.00	
152.00	44847	0.53	196.00	4180	0.05	240.00	46 0.00	
153.00	106407	1.27	197.00	7626	0.09	240.90	569 0.01	
154.00	61377	0.73	198.00	2948	0.04	242.00	180 0.00	
155.00	148777	1.77	199.00	9414	0.11	243.00	11174	0.13
156.05	135879	1.62	200.05	4761	0.06	244.05	3629	0.04
157.00	196356	2.34	201.00	142006	1.69	245.00	157388	1.88
158.00	76303	0.91	202.05	66688	0.80	246.00	31058	0.37
159.00	277865	3.31	203.00	5300180	63.23	247.05	24853	0.30
160.05	152675	1.82	204.00	922318	11.00	248.00	5740	0.07
161.00	1192383	14.22	205.00	2450465	29.23	248.90	770 0.01	
162.00	242750	2.90	206.00	377583	4.50	249.70	378 0.00)
163.00	327785	3.91	207.00	36513	0.44	251.00	239 0.00	
164.00	61783	0.74	207.95	2649	0.03	251.95	1288	0.02
165.00	41412	0.49	209.00	945 0.01		253.00	249 0.00	
166.00	15916	0.19	209.90	529 0.01		254.00	159 0.00	
167.00	50503	0.60	210.90	898 0.01		255.00	284 0.00	
168.00	18892	0.23	212.05	709 0.01		256.00	170 0.00	
169.00	40273	0.48	213.00	2588	0.03	257.00	926 0.01	
170.00	117538	1.40	214.05	1235	0.01	258.05	793 0.01	
171.00	113738	1.36	215.05	25231	0.30	259.05	32235	0.38
172.05	46957	0.56	216.05	7437	0.09	260.15	55414	0.66
173.00	237977	2.84	217.00	272982	3.26	261.05	3807735	45.42
174.00	87260	1.04	218.05	247552	2.95	262.05	778063	9.28

263.05	81333	0.97	271.10	94	0.00)	279.05	1419	90	0.17
264.00	6498	0.08	272.10	310	0.00)	280.05	815	0.01	
265.05	623 0.0	1	273.15	425	0.01		280.95	914	0.01	
266.00	137 0.00)	274.10	9400	5	0.11	282.00	260	0.00)
267.05	552 0.0	1	275.15	7237	74	0.86	283.00	185	0.00	
268.10	105 0.00)	<u>276.10</u>	6620	0028	78 . 97	284.00	81	0.00	
269.10	135 0.00)	277.10	1453	3306	17.34				
270.10	279 0.00)	278.05	1649	956	1.97				

Molecular Weight: 304.4740

Exact Mass: 276.2453 Molecular Weight: 276.4640

Spectra of GC-MS

MS Spectra of the peak at 11.160 min

[MS Spectrum]

of Peaks 477

Raw Spectrum 11.160 (scan : 1433)

Background No Background Spectrum

m/z 219.05 (Inten : 1,755,819) Base Peak

Event# 1

m/z Absolute Intensity **Relative Intensity**

50.00	951 0.05		94.05	10439	0.59	138.00	113 0.01	
51.00	3961	0.23	95.05	5798	0.33	139.05	925 0.05	
52.00	2039	0.12	96.05	2028	0.12	140.05	322 0.02	
53.00	8327	0.47	97.00	1404	0.08	141.05	12111	0.69
54.05	802 0.05		98.00	140 0.01		142.05	8295	0.47
55.05	31044	1.77	99.10	417 0.02	2	143.00	18884	1.08
56.15	5750	0.33	100.10	406 0.02	2	144.05	6969	0.40
57.05	197158	11.23	101.05	738 0.04	Ļ	145.05	30374	1.73
58.05	11161	0.64	102.05	3716	0.21	146.00	7988	0.45
59.05	1816	0.10	103.05	9283	0.53	147.05	43726	2.49
60.10	135 0.01		104.10	3034	0.17	148.10	6540	0.37
61.10	471 0.03		105.05	43262	2.46	149.05	10506	0.60
62.10	254 0.01		106.05	6275	0.36	150.10	1074	0.06
63.10	1521	0.09	107.10	15790	0.90	151.05	756 0.04	
64.05	2602	0.15	108.05	1838	0.10	152.05	1639	0.09
65.05	9304	0.53	109.05	5472	0.31	153.00	3689	0.21
66.05	2089	0.12	110.00	884 0.05	5	154.00	2022	0.12
67.05	11299	0.64	111.10	734 0.04	Ļ	155.05	6166	0.35
68.10	990 0.06		112.10	97 0.01		156.00	6185	0.35
69.10	19569	1.11	113.10	490 0.03	3	157.00	6942	0.40
70.05	2050	0.12	114.05	403 0.02	2	158.05	2806	0.16
71.00	2634	0.15	115.05	24052	1.37	159.00	11730	0.67
72.05	1217	0.07	116.05	8817	0.50	160.05	6180	0.35
73.10	4396	0.25	117.05	17828	1.02	161.05	73270	4.17
74.05	751 0.04		118.15	3429	0.20	162.00	13230	0.75
75.00	1374	0.08	119.05	48301	2.75	163.05	8969	0.51
76.05	1081	0.06	120.10	7151	0.41	164.05	1656	0.09
77.05	19705	1.12	121.10	42778	2.44	164.95	1246	0.07
78.10	6033	0.34	122.10	4494	0.26	165.95	404 0.02	
79.10	18918	1.08	123.10	6052	0.34	166.95	1054	0.06
80.10	18105	1.03	124.05	576 0.03	3	168.00	658 0.04	
81.05	8670	0.49	125.10	276 0.02	2	169.00	1471	0.08
82.10	1209	0.07	126.15	507 0.03	3	170.05	5198	0.30
83.05	6760	0.39	127.05	81160.46	5	171.05	4519	0.26
84.05	825 0.05		128.05	31545	1.80	171.95	940 0.05	
85.10	6806	0.39	129.05	30549	1.74	173.00	10666	0.61
86.05	1227	0.07	130.10	9959	0.57	174.00	4471	0.25
86.95	1531	0.09	131.10	21265	1.21	175.05	19845	1.13
88.05	1013	0.06	132.05	4700	0.27	176.00	3439	0.20
89.05	2314	0.13	133.10	43506	2.48	176.95	5277	0.30
90.15	683 0.04		134.05	9709	0.55	177.95	1292	0.07
91.05	44796	2.55	135.05	12771	0.73	178.95	1339	0.08
92.05	5342	0.30	136.10	1697	0.10	180.00	407 0.02	
93.10	14807	0.84	137.05	1494	0.09	180.95	601 0.03	

182.00	396 0.02		224.00	135 0.01	l	265.90	186	0.01	
183.00	692 0.04		225.00	241 0.01	l	266.90	1114	0.06	
184.05	454 0.03		226.00	108 0.01	l	267.95	456	0.03	
185.05	7178	0.41	227.00	276 0.02	2	268.90	353	0.02	
186.05	1631	0.09	228.00	132 0.01	l	269.90	167	0.01	
187.00	15009	0.85	229.05	694 0.04	Ļ	271.10	660	0.04	
188.00	10417	0.59	229.95	494 0.03	3	272.10	31	0.00	
189.00	26030	1.48	231.00	7585	0.43	273.05	1837		0.10
190.00	3977	0.23	231.95	1239	0.07	274.20	678	0.04	
190.95	3057	0.17	233.05	3685	0.21	275.15	377	0.02	
192.00	772 0.04		234.00	950 0.05	5	276.10	588	0.03	
192.95	3206	0.18	235.00	750 0.04	ŀ	277.25	536	0.03	
193.90	615 0.04		236.00	695 0.04	ŀ	279.20	42	0.00	
194.90	354 0.02		237.00	262 0.01	l	279.90	52	0.00	
195.90	102 0.01		238.00	65 0.00)	280.90	2548		0.15
197.05	428 0.02		239.00	113 0.01	l	282.00	588	0.03	
198.00	305 0.02		239.90	111 0.01	l	283.00	572	0.03	
199.10	718 0.04		240.95	690 0.04	ŀ	284.00	70	0.00	
200.05	315 0.02		241.90	166 0.01	l	285.00	145	0.01	
200.95	1248	0.07	242.90	241 0.01	l	286.00	175	0.01	
202.05	1691	0.10	244.00	230 0.01	l	287.10	521	0.03	
203.00	246174	14.02	245.00	1732	0.10	288.15	486	0.03	
204.00	45522	2.59	246.05	6380	0.36	289.05	3041	6	1.73
205.05	16202	0.92	247.00	1538	0.09	290.10	6839)	0.39
205.95	2528	0.14	248.10	756 0.04	Ļ	291.10	700	0.04	
206.90	12818	0.73	249.10	407 0.02	2	292.10	434	0.02	
207.90	2799	0.16	250.00	282 0.02	2	293.10	63	0.00	
208.90	2082	0.12	251.00	609 0.03	3	294.10	143	0.01	
209.90	174 0.01		251.95	402 0.02	2	295.10	105	0.01	
210.90	393 0.02		252.90	231 0.01	l	297.10	33	0.00	
211.90	74 0.00		253.90	3 0.00)	299.10	29	0.00	
212.90	342 0.02		254.90	150 0.01	l	300.10	63	0.00	
213.90	110 0.01		255.90	746 0.04	Ļ	301.00	102	0.01	
215.00	953 0.05		256.90	278 0.02	2	302.05	1276		0.07
215.95	335 0.02		257.90	119 0.01	l	303.15	943	0.05	
217.00	9417	0.54	259.10	802 0.05	5	<u>304.10</u>	1597	34	<u>9.10</u>
218.05	6492	0.37	260.05	364 0.02	2	305.10	4039	1	2.30
219.05	1755819	100.00	261.05	4509	0.26	306.10	5471		0.31
220.05	299952	17.08	262.05	960 0.05	5	307.10	394	0.02	
221.00	33009	1.88	263.05	949 0.05	5	308.10	106	0.01	
222.05	2328	0.13	264.00	231 0.01	l	309.10	130	0.01	
223.00	380 0.02		265.00	463 0.03	3	310.10	52	0.00	

2.4.2 GC-MS Analysis of Raw Reaction Mixture by Using TMEPO as Radical Inhibitor

The MS spectra of the peak at 12.430min

[MS Spectrum]

of Peaks 543

Raw Spectrum 12.430 (scan : 1687)

Background No Background Spectrum

m/z 207.05 (Inten : 4,436,257) Base Peak

Event# 1

m/z Absolute Intensity		Relative Intensity						
50.00	22145	0.50	55.00	10769	0.24	60.05	623 0.0)1
51.00	79815	1.80	56.05	5871	0.13	61.05	2396	0.05
52.00	17870	0.40	57.05	3491	0.08	62.00	9735	0.22
53.00	12583	0.28	57.95	4515	0.10	63.00	51641	1.16
54.00	4534	0.10	59.00	1302	0.03	64.00	17774	0.40

65.00	89946	2.03	109.35	7395	0.17	153.05	72740	1.64
66.00	13914	0.31	110.35	2960	0.07	154.05	20405	0.46
67.00	5194	0.12	111.05	2564	0.06	155.10	6366	0.14
68.05	13553	0.31	112.05	1974	0.04	156.05	4056	0.09
69.00	405210	9.13	113.05	13413	0.30	157.10	2233	0.05
70.00	24666	0.56	114.10	11702	0.26	158.10	12550	0.28
70.95	3850	0.09	115.05	90906	2.05	159.10	2921	0.07
72.05	603 0.01		116.05	52341	1.18	160.10	9950	0.22
73.00	12825	0.29	117.10	97362	2.19	161.05	10418	0.23
74.00	13438	0.30	118.05	506802	11.42	162.15	4424	0.10
75.00	31070	0.70	119.10	48170	1.09	163.05	33973	0.77
76.00	58823	1.33	120.05	15214	0.34	164.15	54425	1.23
77.00	293820	6.62	121.05	2476	0.06	165.05	348180	7.85
78.00	47338	1.07	121.85	2454	0.06	166.05	88086	1.99
79.00	87098	1.96	122.85	3450	0.08	167.05	71871	1.62
80.05	8673	0.20	123.80	5788	0.13	168.05	16683	0.38
81.15	9607	0.22	125.05	7907	0.18	169.10	3255	0.07
82.05	50556	1.14	126.05	31520	0.71	170.05	2204	0.05
83.40	22735	0.51	127.10	45964	1.04	171.10	1250	0.03
84.35	2471	0.06	128.05	95670	2.16	172.10	4377	0.10
84.95	2159	0.05	129.10	27878	0.63	173.15	3842	0.09
86.05	9768	0.22	130.10	97572	2.20	174.05	14533	0.33
87.00	13150	0.30	131.15	45682	1.03	175.15	49110.11	
88.05	24145	0.54	132.05	33390	0.75	176.05	26448	0.60
89.05	89528	2.02	133.00	11343	0.26	177.05	37397	0.84
90.05	68586	1.55	134.05	3363	0.08	178.05	111147	2.51
91.05	641333	14.46	135.05	9741	0.22	179.05	145319	3.28
92.05	61098	1.38	136.15	1783	0.04	180.05	134505	3.03
93.05	9539	0.22	137.05	5139	0.12	181.05	66653	1.50
94.10	11356	0.26	138.15	4526	0.10	182.05	11483	0.26
95.55	26058	0.59	139.05	40873	0.92	183.00	2002	0.05
96.50	29060	0.66	140.05	18205	0.41	184.05	1872	0.04
97.45	5046	0.11	141.05	14212	0.32	185.05	730 0.02	,
98.05	4629	0.10	142.05	17444	0.39	186.05	24829	0.56
99.05	5804	0.13	143.05	6826	0.15	186.95	4175	0.09
100.05	6345	0.14	144.05	9955	0.22	188.05	3547	0.08
101.15	25405	0.57	145.15	6951	0.16	189.05	9023	0.20
102.15	77186	1.74	146.05	176112	3.97	190.05	25975	0.59
103.05	99796	2.25	147.05	24868	0.56	191.05	52553	1.18
104.05	75830	1.71	148.05	2223	0.05	192.05	224881	5.07
105.00	93238	2.10	149.15	2453	0.06	193.05	265385	5.98
106.05	32718	0.74	150.05	21830	0.49	194.05	1382073	31.15
107.05	44208	1.00	151.05	80240	1.81	195.05	220224	4.96
100.40	0506	0.22	152.05	255593	5 76	196.05	159485	3 60

197.05	23225	0.52	233.05	17961	0.40	268.90	609 0.0	1
198.10	2148	0.05	234.05	37932	0.86	269.90	193 0.0	0
199.05	293 0.0	1	235.05	10802	0.24	270.90	154 0.0	0
199.95	1072	0.02	236.05	3799	0.09	271.90	145 0.0	0
201.00	2252	0.05	237.05	1253	0.03	272.90	68 0.0	0
202.00	6572	0.15	238.05	1560	0.04	274.10	1550	0.03
203.05	11252	0.25	239.00	316 0.0	1	275.00	774 0.02	2
204.05	62299	1.40	240.00	313 0.0	1	276.15	758 0.02	2
205.15	42028	0.95	241.00	135 0.00	0	277.10	3402	0.08
206.15	509328	11.48	242.05	445 0.0	1	278.05	1481	0.03
207.05	4436257	100.00	242.95	442 0.0	1	279.10	302 0.0	1
208.05	1331653	30.02	244.00	3062	0.07	280.00	151 0.0	0
209.05	203611	4.59	245.05	3446	0.08	281.00	6788	0.15
210.00	20913	0.47	246.05	10428	0.24	281.95	2687	0.06
211.00	2287	0.05	247.05	19733	0.44	282.95	1387	0.03
212.00	428 0.02	1	248.05	178919	4.03	283.90	238 0.0	1
212.95	618 0.02	1	249.05	38507	0.87	284.90	114 0.0	0
214.00	1538	0.03	250.00	5329	0.12	285.90	22 0.0	0
215.00	2847	0.06	251.05	11360.03	3	286.90	122 0.0	0
216.05	6090	0.14	252.05	328 0.0	1	287.90	27 0.0	0
217.05	21404	0.48	253.00	634 0.02	1	288.90	54 0.0	0
218.05	20142	0.45	254.05	479 0.0	1	289.90	114 0.0	0
219.05	13527	0.30	255.15	303 0.02	1	<u>291.15</u>	2426	0.05
220.05	54122	1.22	256.05	563 0.02	1	292.10	104238	2.35
221.05	21912	0.49	257.15	523 0.0	1	293.10	98999	2.23
222.00	60857	1.37	258.10	916 0.02	2	294.05	18718	0.42
223.05	43307	0.98	259.05	821 0.02	2	295.10	3185	0.07
224.05	44764	1.01	260.05	1807	0.04	296.00	567 0.0	1
225.00	7174	0.16	261.15	1614	0.04	297.00	174 0.0	0
225.95	903 0.02	2	262.05	21128	0.48	298.00	76 0.0	0
227.05	707 0.02	2	263.05	71096	1.60	299.00	33 0.0	0
228.05	2001	0.05	264.05	18045	0.41	300.00	21 0.0	0
229.10	1487	0.03	265.10	5042	0.11	301.00	62 0.0	0
230.10	8239	0.19	266.00	782 0.02	2	302.00	46 0.0	0
231.05	17473	0.39	267.00	2322	0.05	303.00	57 0.0	0
232.05	30863	0.70	267.95	335 0.0	1	304.00	66 0.0	0

2x

 $\begin{array}{c} 9\\ \text{Chemical Formula: } C_{14}H_{27}NO_2\\ \text{Exact Mass: } 241.2042\\ \text{Molecular Weight: } 241.3750 \end{array}$

Spectra of GC-MS

The MS spectra of the peak at 8.150min

[MS Spectrum]

of Peaks 411

Raw Spectrum 8.150 (scan : 831)

Background No Background Spectrum

Base Peak m/z 142.10 (Inten : 1,204,047)

Event# 1

50.05	964 0.08		67.05	21077	1.75	84.05	33983	2.82
51.05	2690	0.22	68.05	13877	1.15	85.05	76542	6.36
52.05	1814	0.15	69.05	123416	10.25	86.05	18892	1.57
53.00	15175	1.26	70.10	58551	4.86	87.05	2552	0.21
54.00	8007	0.67	71.05	13227	1.10	88.05	1551	0.13
55.05	218973	18.19	72.10	12358	1.03	89.00	444 0.04	
56.05	118435	9.84	73.05	9177	0.76	90.10	102 0.01	
57.05	1002049	83.22	74.05	49461	4.11	91.10	3162	0.26
58.05	127951	10.63	75.05	2168	0.18	92.10	11830.10	
59.10	7593	0.63	76.05	349 0.03		93.05	2999	0.25
60.05	2339	0.19	77.05	3064	0.25	94.05	3228	0.27
60.90	575 0.05		78.10	1281	0.11	95.10	7497	0.62
62.10	444 0.04		79.05	6758	0.56	96.10	12764	1.06
63.10	882 0.07	,	80.05	2940	0.24	97.05	20332	1.69
64.05	588 0.05		81.10	33324	2.77	98.05	20453	1.70
65.00	3282	0.27	82.05	34904	2.90	99.05	2144	0.18
66.05	1472	0.12	83.05	101684	8.45	100.10	2895	0.24

101.05	436 0.04		145.10	521	0.04	Ļ	188.90	102	0.01	
101.95	604 0.05		146.10	92	0.01		189.90	21	0.00	
103.00	2217	0.18	147.00	506	0.04	L	190.75	424	0.04	
104.15	426 0.04		148.00	134	0.01		191.70	172	0.01	
105.10	1378	0.11	149.00	194	0.02	2	192.90	1311	0.11	
106.15	597 0.05		150.00	135	0.01		193.90	273	0.02	
107.05	5716	0.47	151.00	183	0.02		194.90	153	0.01	
108.05	3406	0.28	151.95	328	0.03	;	195.90	130	0.01	
109.10	93601	7.77	152.95	351	0.03	;	196.90	44	0.00	
110.10	16254	1.35	154.05	533	0.04	Ļ	197.90	126	0.01	
111.10	2772	0.23	155.15	436	0.04	Ļ	198.90	70	0.01	
112.10	1506	0.13	156.10	3313	8	2.75	199.90	39	0.00	
113.05	11220.09		157.05	4829	2	4.01	202.90	223	0.02	
114.05	86110.72		158.05	5883	5	0.49	203.90	2	0.00	
115.00	964 0.08		159.05	653	0.05	i	204.90	82	0.01	
116.00	524 0.04		160.10	94	0.01		205.90	31	0.00	
117.05	461 0.04		161.10	89	0.01		206.90	3367	7	0.28
118.10	308 0.03		162.10	97	0.01		208.00	633	0.05	
119.10	394 0.03		163.10	206	0.02		208.90	636	0.05	
120.05	503 0.04		164.10	223	0.02		209.90	207	0.02	
121.05	813 0.07		165.10	124	0.01		210.90	162	0.01	
122.10	1886	0.16	166.10	49	0.00)	212.00	786	0.07	
123.10	29063	2.41	167.10	90	0.01		213.00	68	0.01	
124.10	31494	2.62	168.05	806	0.07	,	214.05	792	0.07	
125.10	10092	0.84	169.10	337	0.03	;	215.10	132	0.01	
126.10	47114	3.91	170.10	313	0.03	;	216.10	54	0.00	
127.10	4863	0.40	171.10	102	0.01		217.10	31	0.00	
128.10	794 0.07		172.10	92	0.01		218.10	58	0.00	
129.00	463 0.04		173.10	135	0.01		219.10	206	0.02	
130.00	142 0.01		174.10	41	0.00)	220.10	62	0.01	
131.15	527 0.04		175.10	50	0.00)	221.10	162	0.01	
132.00	185 0.02		175.95	482	0.04	L	222.10	86	0.01	
133.05	821 0.07		176.90	1226	<u>,</u>	0.10	223.10	16	0.00	
133.95	403 0.03		177.90	382	0.03	;	224.10	190	0.02	
134.95	1232	0.10	178.90	297	0.02	2	225.05	726	0.06	
136.05	930 0.08		179.90	68	0.01		226.05	2444	138	20.30
137.05	634 0.05		180.90	29	0.00)	227.05	3717	78	3.09
138.10	2873	0.24	181.90	90	0.01		228.05	4050)	0.34
139.10	2774	0.23	182.90	103	0.01		229.10	514	0.04	
140.10	22932	1.90	183.90	8	0.00)	230.10	6	0.00	
141.15	7912	0.66	184.90	27	0.00)	231.10	11	0.00	
142.10	1204047	100.00	185.90	29	0.00)	232.10	42	0.00	
143.10	113090	9.39	186.90	65	0.01		233.10	33	0.00	
144.05	6837	0.57	187.90	27	0.00)	234.10	279	0.02	

235.10	214	0.02	239.10	16 0.0	0	243.00	154	0.01
236.10	82	0.01	240.10	21 0.0	0	247.00	19	0.00
237.10	145	0.01	<u>241.05</u>	8851	0.74			
238.10	47	0.00	242.00	1540	0.13			

2.4.3 GC-MS Analysis of Raw Reaction Mixture by Using 1,1-diphenylethene as Radical Inhibitor

Spectra of GC-MS

The MS spectra of the peak at 15.150min

[MS Spectrum]

of Peaks 549

Raw Spectrum 15.150 (scan : 2231)

Background No Background Spectrum

Base Peak m/z 313.10 (Inten : 346,735)

Event# 1

m/z Ab	solute In	tensity	Relative Int	tensity				
50.00	2865	0.83	52.95	1706	0.49	56.05	1027	0.30
51.00	11081	3.20	53.90	190 0.0)5	57.05	1246	0.36
52.00	1839	0.53	54.95	1783	0.51	57.95	375 0.1	1

58.95	1659	0.48	102.95	3105	0.90	147.05	6232	1.80
59.95	368 0.1	1	104.05	1527	0.44	148.15	1856	0.54
61.00	970 0.2	8	105.05	18131	5.23	149.10	2732	0.79
62.00	1279	0.37	106.15	3044	0.88	150.05	3350	0.97
63.05	7225	2.08	107.05	26475	7.64	151.10	6369	1.84
64.00	10135	2.92	108.05	12633	3.64	152.05	14350	4.14
65.00	2999	0.86	109.00	1814	0.52	153.05	2330	0.67
66.10	722 0.2	1	109.95	593 0.1	7	153.95	464 0.1	3
67.05	418 0.1	2	111.05	672 0.1	9	154.95	666 0.1	9
68.00	209 0.0	6	112.15	803 0.2	.3	155.95	2198	0.63
69.00	1598	0.46	113.10	6039	1.74	156.95	4292	1.24
70.05	509 0.1	5	114.10	2740	0.79	157.85	982 0.2	.8
71.10	846 0.2	4	115.05	4879	1.41	158.90	274 0.0	8
72.05	422 0.1	2	116.05	908 0.2	6	159.90	111 0.0	3
73.05	23675	6.83	116.75	1084	0.31	161.00	636 0.1	8
74.00	3612	1.04	117.75	989 0.2	.9	162.05	616 0.1	8
75.00	5892	1.70	118.75	3043	0.88	163.00	2783	0.80
76.05	6704	1.93	119.65	6747	1.95	164.15	2619	0.76
77.00	58868	16.98	121.00	3932	1.13	165.10	19071	5.50
78.00	6167	1.78	122.10	1210	0.35	166.05	4215	1.22
79.00	3474	1.00	123.05	922 0.2	.7	167.05	2249	0.65
79.95	358 0.1	0	124.15	383 0.1	1	168.05	1046	0.30
81.05	823 0.2	4	125.15	31180.9	0	169.05	1852	0.53
82.00	900 0.2	6	126.10	9580	2.76	170.00	249 0.0)7
83.00	764 0.2	2	127.05	3427	0.99	171.00	167 0.0)5
83.90	250 0.0	7	128.10	3660	1.06	172.00	63 0.0	2
84.95	763 0.2	2	129.05	1908	0.55	173.00	185 0.0)5
86.05	856 0.2	5	130.05	596 0.1	7	174.05	603 0.1	7
86.95	2055	0.59	131.05	1646	0.47	175.15	1363	0.39
88.05	1828	0.53	132.05	2060	0.59	176.05	13084	3.77
89.00	3364	0.97	133.00	6350	1.83	177.05	13522	3.90
89.95	543 0.1	6	134.05	3456	1.00	178.05	62917	18.15
91.05	5558	1.60	135.05	80804	23.30	179.05	24411	7.04
92.00	26897	7.76	136.00	9329	2.69	180.05	4394	1.27
93.05	2751	0.79	137.10	2353	0.68	181.05	888 0.2	26
94.05	1337	0.39	138.05	802 0.2	.3	182.00	553 0.1	6
94.95	1722	0.50	139.00	3841	1.11	183.05	513 0.1	5
96.00	6652	1.92	140.05	1671	0.48	184.00	732 0.2	21
96.95	1976	0.57	141.05	3462	1.00	185.00	279 0.0	8
97.95	721 0.2	1	142.10	2169	0.63	186.00	190 0.0)5
99.05	11320.3	3	143.05	1669	0.48	187.00	580 0.1	7
100.05	1048	0.30	144.10	249 0.0	07	187.95	389 0.1	1
101.05	3506	1.01	145.10	481 0.1	4	188.90	2161	0.62
102.05	6525	1.88	146.05	279 0.0	8	190.05	1030	0.30

191.00	8026	2.31	234.95	917 0.26		279.00	444 0.1	3
192.05	2316	0.67	236.05	2136	0.62	280.05	1824	0.53
192.95	61181.76		237.05	23408	6.75	281.00	25273	7.29
194.00	4948	1.43	238.05	4936	1.42	282.00	8433	2.43
195.05	2299	0.66	239.05	7172	2.07	283.00	5940	1.71
196.05	567 0.16		240.05	3565	1.03	284.05	2051	0.59
196.95	486 0.14		241.00	41181.19		285.10	10810	3.12
197.90	108 0.03		242.05	2124	0.61	286.10	17367	5.01
198.90	254 0.07		243.05	5470	1.58	287.10	3492	1.01
200.05	574 0.17		244.10	1550	0.45	288.05	560 0.1	6
201.05	682 0.20	I Contraction of the second	245.05	647 0.19		289.10	212 0.0	6
202.00	2446	0.71	246.10	306 0.09		290.10	132 0.0	4
202.95	11910.34		247.05	445 0.13		291.10	130 0.0	4
204.05	890 0.26	i la	247.95	323 0.09		292.10	76 0.0	2
205.05	7258	2.09	248.95	2231	0.64	293.10	489 0.1	4
206.05	7966	2.30	250.00	1721	0.50	294.20	226 0.0	7
207.00	74932	21.61	250.95	1868	0.54	295.15	1673	0.48
208.00	16604	4.79	252.05	6357	1.83	296.00	690 0.2	0
209.05	11807	3.41	253.05	88112.54		297.05	2308	0.67
210.05	2282	0.66	254.05	4094	1.18	298.05	7763	2.24
211.00	1665	0.48	255.00	5158	1.49	299.00	3684	1.06
211.95	377 0.11		256.10	1634	0.47	300.00	577 0.1	7
212.95	1253	0.36	256.90	689 0.20		301.00	166 0.0	5
214.05	382 0.11		258.20	335 0.10		302.00	100 0.0	3
215.05	4605	1.33	259.15	305 0.09		303.00	94 0.0	3
216.05	1284	0.37	260.20	156 0.04		304.00	225 0.0	6
217.05	831 0.24		260.80	146 0.04		305.00	121 0.0	3
218.00	663 0.19		261.75	643 0.19		306.00	57 0.0	2
219.05	964 0.28		263.00	572 0.16		307.00	210 0.0	6
220.05	296 0.09		264.05	411 0.12		308.00	87 0.0	3
221.05	6576	1.90	265.00	4854	1.40	309.00	305 0.0	9
222.00	2562	0.74	265.95	11880.34		310.00	273 0.0	8
222.95	1515	0.44	266.95	4186	1.21	311.05	1031	0.30
224.00	738 0.21		268.05	2470	0.71	312.15	4165	1.20
225.05	495 0.14		269.05	4546	1.31	313.10	346735	100.00
226.00	2614	0.75	270.05	22371	6.45	<u>314.10</u>	178004	51.34
227.05	1781	0.51	271.05	10591	3.05	315.05	32792	9.46
228.05	5649	1.63	272.00	1772	0.51	316.10	4766	1.37
229.00	1849	0.53	273.15	436 0.13		317.00	862 0.2	5
229.95	631 0.18		274.20	186 0.05		318.00	281 0.0	8
231.05	728 0.21		275.10	198 0.06		319.00	66 0.0	2
232.00	257 0.07		276.10	615 0.18		320.00	127 0.0	4
233.00	342 0.10	1	277.10	222 0.06		321.00	126 0.0	4
234.05	355 0.10	1	278.05	521 0.15		322.00	65 0.0	2

323.00	238 0.07	324.95	2022	0.58	326.90	2916	0.84
324.00	134 0.04	325.95	628 0.18	3	328.05	645 0.19)

Exact Mass: 264.1514 Molecular Weight: 264.3680 Exact Mass: 236.1565 Molecular Weight: 236.3580

Spectra of GC-MS

The MS spectra of the peak at 9.940min

1	<u> </u>															 		 		 						盖峰	: 221/3	266, 305
100											22											n/2	299.00	绝对强	æ	•	相对强度	; 0.00
100	-						143				Π																	
75	1																											
				91																								
50-																												
												22																
	-					- in						1																
23	-							165	178			1																
	1	1	77			1.	1.1																					
0	1	 91 	م بالز ـــ	- 11-	<u>al - lu</u>	_ ال	ن الد	الم حرا	_ الن	ن الر	ل الا		 	281	309	 341	357	 415	429	 475	459		529		563	587	598	

[MS Spectrum]

of Peaks 533

Raw Spectrum 9.940 (scan : 1189)

Background No Background Spectrum

m/z 143.05 (Inten : 3,165,151) Base Peak

Event# 1

m/z Abs	solute Int	ensity	Relative Int	ensity				
50.05	27839	0.88	55.05	20264	0.64	60.00	260 0.0	1
51.00	137417	4.34	56.10	4702	0.15	61.05	1391	0.04
52.05	27570	0.87	57.10	29585	0.93	62.05	13837	0.44
53.05	26391	0.83	58.05	2253	0.07	63.00	76073	2.40
54.05	1577	0.05	59.10	234 0.0	1	64.05	14078	0.44

65.05	100308	3.17	109.05	7810	0.25	153.00	45537	1.44
66.05	7281	0.23	110.10	9676	0.31	154.00	7255	0.23
67.05	6538	0.21	111.05	5489	0.17	155.05	6609	0.21
67.95	1263	0.04	112.00	1932	0.06	156.05	2909	0.09
68.35	1041	0.03	113.05	24810	0.78	157.05	56964	1.80
69.30	12854	0.41	114.05	13030	0.41	158.05	39058	1.23
70.25	4212	0.13	115.05	496767	15.69	159.05	23714	0.75
71.25	1882	0.06	116.05	77488	2.45	160.05	2886	0.09
72.00	654 0.02		117.05	141490	4.47	161.05	1952	0.06
73.00	1961	0.06	118.10	30585	0.97	162.00	7223	0.23
74.05	24621	0.78	119.05	149374	4.72	162.95	54482	1.72
75.05	52017	1.64	120.10	15956	0.50	164.00	79650	2.52
76.05	135029	4.27	121.10	1287	0.04	165.00	577993	18.26
77.05	296418	9.37	121.95	11370.04		166.00	126311	3.99
78.05	68614	2.17	123.10	1388	0.04	167.00	174431	5.51
79.05	97950	3.09	124.05	1277	0.04	168.00	25503	0.81
80.45	4088	0.13	125.05	6664	0.21	169.00	2297	0.07
81.55	27378	0.86	126.05	49659	1.57	170.00	625 0.02	
82.45	62300	1.97	127.05	222196	7.02	171.00	130 0.00	
83.45	11905	0.38	128.05	1006822	31.81	172.00	62 0.00	
84.95	1095	0.03	129.05	342357	10.82	173.00	230 0.01	
86.00	9319	0.29	130.10	49655	1.57	173.95	5192	0.16
87.05	24603	0.78	131.10	65780	2.08	175.05	10329	0.33
88.00	73002	2.31	132.10	10220	0.32	175.95	109479	3.46
89.05	280639	8.87	133.05	2073	0.07	177.00	76994	2.43
89.95	32727	1.03	134.05	689 0.02		178.00	524404	16.57
91.05	1995219	63.04	134.95	1378	0.04	178.95	308847	9.76
92.05	152408	4.82	136.00	242 0.01		180.00	58495	1.85
92.60	22847	0.72	137.00	7954	0.25	181.00	19316	0.61
93.65	16838	0.53	138.05	6394	0.20	182.00	4532	0.14
94.65	89255	2.82	139.00	73990	2.34	183.00	1246	0.04
95.55	47864	1.51	140.00	9508	0.30	184.00	247 0.01	
96.55	21747	0.69	141.05	122303	3.86	184.95	479 0.02	
97.95	7051	0.22	142.05	66451	2.10	185.95	771 0.02	
99.10	7530	0.24	143.05	3165151	100.00	186.95	10594	0.33
100.10	31430	0.99	144.05	384517	12.15	188.05	12197	0.39
101.05	178500	5.64	145.05	57144	1.81	188.95	168754	5.33
102.05	153404	4.85	146.05	5345	0.17	190.00	121258	3.83
103.05	197284	6.23	147.00	833 0.03		191.00	306135	9.67
104.15	29039	0.92	147.95	379 0.01		192.00	222558	7.03
105.10	933361	29.49	149.00	3706	0.12	193.00	334759	10.58
106.10	86159	2.72	150.00	32129	1.02	194.00	54194	1.71
107.40	18228	0.58	151.00	69625	2.20	195.00	5866	0.19
108.35	9552	0.30	152.00	217113	6.86	196.00	11530.04	

196.95	425 0.01		212.95	5308	0.17	229.10	327 0.01	
198.00	1057	0.03	213.95	2132	0.07	230.10	169 0.01	
199.05	1837	0.06	214.95	16902	0.53	231.10	206 0.01	
199.95	18965	0.60	216.00	5578	0.18	232.05	369 0.01	
201.00	24519	0.77	217.00	5958	0.19	233.00	588 0.02	,
201.95	167778	5.30	218.00	3759	0.12	234.00	1854	0.06
202.95	160605	5.07	218.95	18156	0.57	235.05	43463	1.37
203.95	104315	3.30	220.05	25161	0.79	236.00	1073607	<u>33.92</u>
205.00	124089	3.92	221.00	3151194	99.56	237.00	211913	6.70
206.00	161238	5.09	222.00	580988	18.36	238.00	18494	0.58
207.00	68982	2.18	223.00	50559	1.60	238.95	11400.04	
208.00	10207	0.32	223.95	3152	0.10	240.00	82 0.00)
209.00	1700	0.05	224.95	314 0.01		240.95	470 0.01	
209.85	339 0.01		226.00	510 0.02		241.90	121 0.00)
210.80	636 0.02		227.00	255 0.01				
212.00	390 0.01		228.05	442 0.01				

Spectra of GC-MS

[MS Spectrum]

of Peaks 533

Raw Spectrum 11.165 (scan : 1434)

Background No Background Spectrum

Base Peak m/z 193.00 (Inten : 600,054)

Event# 1

m/z Absolute Intensity R	elative Intensity
--------------------------	-------------------

50.00	3076	0.51	88.00	4396	0.73	125.05	1392	0.23
51.00	12596	2.10	89.00	21089	3.51	126.05	5566	0.93
52.00	2529	0.42	90.00	3094	0.52	127.05	18984	3.16
53.05	3804	0.63	91.05	229909	38.31	128.05	48754	8.12
54.00	556 0.09)	92.05	17491	2.91	129.05	131918	21.98
55.05	9644	1.61	93.45	1473	0.25	130.05	50094	8.35
56.15	4104	0.68	94.40	5270	0.88	131.05	6829	1.14
57.05	153481	25.58	95.35	3708	0.62	132.05	555 0.09)
58.05	6967	1.16	96.35	2064	0.34	133.00	1588	0.26
59.05	344 0.06	5	96.95	1676	0.28	133.90	602 0.10	
60.00	103 0.02	2	98.05	1089	0.18	135.05	1771	0.30
61.00	410 0.07	7	99.10	1316	0.22	136.00	199 0.03	3
62.00	2150	0.36	100.05	1547	0.26	137.00	1550	0.26
63.00	10535	1.76	101.05	5509	0.92	137.95	734 0.12	2
64.05	1951	0.33	102.05	13645	2.27	139.05	7439	1.24
65.05	25122	4.19	103.05	16676	2.78	140.05	11700.19)
66.10	1782	0.30	104.05	3201	0.53	141.05	4204	0.70
67.15	901 0.15		105.05	13084	2.18	142.05	11470.19	
68.10	249 0.04		106.10	1609	0.27	143.00	3054	0.51
69.15	4715	0.79	107.15	1432	0.24	144.05	358 0.06	5
70.05	1500	0.25	108.05	1099	0.18	145.05	901 0.15	5
71.10	5342	0.89	109.10	255 0.04	Ļ	146.00	11860.20)
72.05	344 0.06	5	110.10	710 0.12		147.00	1326	0.22
73.00	2708	0.45	110.95	490 0.08	3	148.05	276 0.05	5
74.05	2354	0.39	112.05	560 0.09)	148.95	2797	0.47
75.00	5983	1.00	113.05	3632	0.61	150.00	3830	0.64
76.05	9957	1.66	114.05	3401	0.57	151.00	8329	1.39
77.05	26273	4.38	115.05	521836	86.96	152.00	28065	4.68
78.05	6974	1.16	116.05	55888	9.31	153.00	7582	1.26
79.05	4524	0.75	117.05	9149	1.52	154.10	1726	0.29
80.55	424 0.07		118.05	1056	0.18	155.00	11850.20	
81.55	2307	0.38	119.00	1247	0.21	156.05	433 0.07	7
82.55	4067	0.68	120.00	249 0.04	ŀ	157.00	481 0.08	8
83.45	887 0.15		121.00	562 0.09		158.00	214 0.04	
85.00	462 0.08	3	122.00	340 0.06	5	159.00	439 0.07	7
86.00	1295	0.22	123.00	193 0.03	3	160.00	201 0.03	5
87.05	2450	0.41	124.15	489 0.08	3	161.00	337 0.06	õ

161.95	11230.19)	198.00	148 0.02	2	233.80	247 0.04	4
162.95	8793	1.47	198.90	194 0.03	3	234.85	559 0.0	9
164.05	10482	1.75	199.90	1343	0.22	235.90	767 0.1	3
165.00	131530	21.92	201.05	1801	0.30	236.90	401 0.0	7
165.95	21418	3.57	202.00	9369	1.56	237.90	74 0.0	1
167.00	21378	3.56	202.95	10228	1.70	238.90	236 0.04	4
168.00	3162	0.53	204.00	6055	1.01	239.90	234 0.04	4
169.00	746 0.12	2	205.00	8682	1.45	240.95	672 0.1	1
170.00	210 0.03	3	206.00	7617	1.27	242.00	63 0.0	1
171.00	559 0.09)	206.95	28751	4.79	243.00	218 0.04	4
172.00	145 0.02	2	208.00	20887	3.48	244.00	42 0.0	1
173.00	322 0.05	5	208.90	4054	0.68	245.00	340 0.0	6
174.05	648 0.11		209.85	701 0.12	2	246.00	191 0.0	3
174.95	1049	0.17	210.90	247 0.04	ļ	246.95	1528	0.25
176.00	13199	2.20	211.90	126 0.02	2	248.20	378 0.0	6
177.00	13202	2.20	212.90	598 0.10)	249.00	577 0.1	0
177.95	162202	27.03	214.00	247 0.04	ļ	249.85	431 0.0	7
179.00	81980	13.66	215.00	1393	0.23	250.80	564 0.0	9
180.00	220638	36.77	215.90	630 0.10)	251.85	412 0.0	7
181.00	34940	5.82	217.05	902 0.15	5	252.90	263 0.04	4
182.00	41110.69)	218.00	788 0.13	3	253.90	250 0.04	4
182.95	328 0.05	5	218.95	2520	0.42	254.90	148 0.02	2
184.00	2 0.00)	220.00	815 0.14	ļ	256.00	460 0.0	8
185.10	129 0.02	2	221.05	2597	0.43	257.00	106 0.02	2
186.05	3826	0.64	222.05	800 0.13	3	258.00	81 0.0	1
186.95	2271	0.38	223.00	11420.19)	259.00	60 0.0	1
188.00	2191	0.37	223.90	598 0.10)	260.00	182 0.0	3
188.95	32843	5.47	224.90	145 0.02	2	261.10	114 0.02	2
189.95	20922	3.49	225.90	361 0.06	5	262.05	1392	0.23
191.00	60079	10.01	226.90	238 0.04	ļ	263.15	4138	0.69
192.05	33787	5.63	227.90	206 0.03	3	264.05	215314	35.88
193.00	600054	100.00	228.90	318 0.05	5	265.05	44097	7.35
194.00	104863	17.48	229.90	161 0.03	3	266.05	4774	0.80
194.95	8189	1.36	230.90	310 0.05	5	266.95	1586	0.26
196.00	836 0.14	ļ	231.90	98 0.02	2	268.00	215 0.04	4
197.00	266 0.04	Ļ	232.95	452 0.08	3	269.00	228 0.04	4

3. Characterization data for all products

11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-i

ndeno[2,1-c]quinolin-6-one (**3aa**): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 49.0 mg, 74%; white solid; mp 178.0-178.5 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.80-7.78

(m, 2H), 7.63 (d, J = 7.6 Hz, 1H), 7.35-7.32 (m, 1H), 7.22-7.17 (m, 3H), 7.09-7.05 (m, 1H), 6.88-6.79 (m, 4H), 4.05 (d, J = 16.8 Hz, 1H), 3.81 (s, 3H), 3.49 (s, 3H), 3.44 (d, J = 16.9 Hz, 1H), 3.18 (d, J = 15.1 Hz, 1H), 2.81 (d, J = 15.2 Hz, 1H), 1.32 (s, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 195.6, 173.5, 163.3, 148.1, 140.9, 139.9, 130.2, 129.9, 129.0, 127.5, 127.1, 126.6, 126.3, 124.9, 123.9, 122.4, 114.4, 113.4, 55.4, 54.1, 52.4, 45.4, 45.0, 30.1, 18.9; HRMS (ESI-TOF) *m*/*z*: C₂₇H₂₆NO₃ (M + H)⁺ calcd for 412.1908, found 412.1912.

5,6a-dimethyl-11b-(2-oxo-2-(p-tolyl)ethyl)-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c

]quinolin-6-one (**3ab**): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 61.6 mg, 78%; white solid; mp 104.0-104.5 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.71 (d, *J* = 8.2 Hz, 2H),

7.63 (d, J = 7.5 Hz, 1H), 7.36-7.32 (m, 1H), 7.21-7.19 (m, 3H), 7.14 (d, J = 8.0 Hz, 2H), 7.10-7.06 (m, 1H), 6.89-6.83 (m, 2H), 4.08 (d, J = 17.2 Hz, 1H), 3.50-3.45 (m, 4H), 3.19 (d, J = 15.2 Hz, 1H), 2.81 (d, J = 15.3 Hz, 1H), 2.35 (s, 3H), 1.30 (s, 3H); $^{13}C{^{1}H}NMR$ (100 MHz, CDCl₃) δ : 196.7, 173.5, 148.2, 143.7, 140.9, 140.0, 134.3, 129.0 (2C), 128.1, 127.5, 127.1, 126.7, 126.2, 124.9, 123.9, 122.4, 114.4, 54.1, 52.4, 45.7, 45.0, 30.1, 21.6, 18.9; HRMS (ESI-TOF) *m*/*z*: C₂₇H₂₆NO₂ (M + H)⁺ calcd for 396.1958, found 396.1966.

11b-(2-(4-ethylphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-inde

no[2,1-c]quinolin-6-one (**3ac**): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 57.3 mg, 70%; white solid; mp 173.0-173.5 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.74 (d, J = 8.3 Hz, 2H), 7.64 (d, J = 7.5 Hz, 1H), 7.36-7.32 (m, 1H), 7.22-7.15 (m, 5H), 7.09-7.05 (m, 1H), 6.88- 6.82 (m, 2H), 4.09 (d, J = 17.2 Hz, 1H), 3.47 (d, J = 19.0 Hz, 4H), 3.19 (d, J = 15.2 Hz, 1H), 2.81 (d, J = 15.2 Hz, 1H), 2.67-2.61 (m, 2H), 1.31 (s, 3H), 1.20 (t, J = 7.6 Hz, 3H);¹³C{¹H}NMR (100 MHz, CDCl₃) δ :196.7, 173.5, 149.9, 148.1, 140.8, 139.9, 134.5, 129.0, 128.2, 127.8, 127.4, 127.1, 126.6, 126.2, 124.9, 123.9, 122.4, 114.4, 54.1, 52.3, 45.8, 45.0, 30.0, 28.8, 18.8, 15.2; HRMS (ESI-TOF) *m/z*: C₂₈H₂₈NO₂ (M + H)⁺ calcd for 410.2115, found 410.2119.

11b-(2-(4-isopropylphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-i

ndeno[2,1-c]quinolin-6-one (3ad): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 65.2 mg, 76%; white solid; mp 127.0-127.5 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.76 (d, J

= 8.3 Hz, 2H), 7.63 (d, J = 7.5 Hz, 1H), 7.36-7.32 (m, 1H), 7.22-7.17 (m, 5H), 7.09-7.04 (m, 1H), 6.87-6.82 (m, 2H), 4.10 (d, J = 17.3 Hz, 1H), 3.50-3.45 (m, 4H), 3.19 (d, J = 15.2 Hz, 1H), 2.93-2.87 (m, 1H), 2.81 (d, J = 15.3 Hz, 1H), 1.31 (s, 3H), 1.22 (d, J = 6.9 Hz, 6H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 196.7, 173.5, 154.4, 148.1, 140.9, 139.9, 134.6, 129.0, 128.2, 127.4, 127.1, 126.7, 126.3, 126.2, 124.9, 123.9, 122.4, 114.3, 54.1, 52.3, 45.8, 45.0, 34.1, 30.1, 23.6(2C), 18.84; HRMS (ESI-TOF) m/z: C₂₉H₃₀NO₂ (M + H)⁺ calcd for 424.2271, found 424.2276.

11b-(2-(4-(tert-butyl)phenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6

H-indeno[2,1-c]quinolin-6-one (3ae): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 59.4 mg, 68%; yellow solid; mp 181.0-181.5 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.75 (d,

J = 8.2 Hz, 2H), 7.63 (d, J = 7.6 Hz, 1H), 7.37-7.32 (m, 3H), 7.23-7.17 (m, 3H), 7.07 (t, J = 7.7 Hz, 1H), 6.88-6.82 (m, 2H), 4.11 (d, J = 17.3 Hz, 1H), 3.80 (s, 3H), 3.47 (d, J = 21.1 Hz, 4H), 3.19 (d, J = 15.2 Hz, 1H), 2.82 (d, J = 15.2 Hz, 1H), 1.29 (s, 9H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 196.7, 173.6, 156.6, 148.2, 140.9, 140.0, 134.2,

129.0, 127.9, 127.5, 127.1, 126.7, 125.2, 124.9, 123.9, 122.4, 114.4, 54.1, 52.4, 45.9, 45.1, 35.0, 31.0, 30.1, 18.9; HRMS (ESI-TOF) m/z: C₃₀H₃₂NO₂ (M + H)⁺ calcd for 438.2428, found 438.2423.

11b-(2-(4-fluorophenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-ind

eno[2,1-c]quinolin-6-one (3af): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 51.9 mg, 65%; white solid; mp 118.0-118.5°C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.84-7.80 (m, 2H), 7.63

(d, J = 7.5 Hz, 1H), 7.34 (t, J = 6.8 Hz, 1H), 7.24-7.17 (m, 3H), 7.11-7.07 (m, 1H), 7.01 (t, J = 6.8 Hz, 2H), 6.88-6.84 (m, 2H), 4.06 (d, J = 16.9 Hz, 1H), 3.45 (d, J = 8.6 Hz, 4H), 3.17 (d, J = 15.2 Hz, 1H), 2.81 (d, J = 15.3 Hz, 1H), 1.32 (s, 3H); ¹⁹F NMR (282 MHz, CDCl₃) δ : -105.2 (s, 1F); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 195.7 , 173.4 , 166.8(d, $J_{C-F} = 253.5$ Hz, 1C), 147.8 , 140.9 , 139.9 , 133.2(d, $J_{C-F} = 3.0$ Hz, 1C), 130.7(d, $J_{C-F} = 9.2$ Hz, 1C) , 129.0 , 127.6 , 127.2 , 126.7 , 126.1 , 125.0 , 123.9 , 122.5 , 115.5(d, $J_{C-F} = 21.6$ Hz, 1C), 114.4, 54.1, 52.4 , 45.6, 44.9, 30.1, 18.9; HRMS (ESI-TOF) m/z: C₂₆H₂₃FNO₂ (M + H)⁺ calcd for 400.1707, found 400.1716.

11b-(2-(4-chlorophenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-ind

eno[2,1-c]quinolin-6-one (3ag): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 51.4 mg, 62%; white solid; mp 133.0-133.5 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.72 (s,

1H), 7.65 (t, J = 7.0 Hz, 2H), 7.44-7.42 (m, 1H), 7.35 (t, J = 7.7 Hz, 1H), 7.28 (d, J = 7.9 Hz, 1H), 7.23-7.17 (m, 3H), 7.10-7.06 (m, 1H), 6.87-6.84 (m, 2H), 4.04 (d, J = 16.9 Hz, 1H), 3.46 (d, J = 15.2 Hz, 4H), 3.17 (d, J = 15.2 Hz, 1H), 2.81 (d, J = 15.2 Hz, 1H), 1.32 (s, 3H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ : 196.2, 173.3, 147.6, 140.8, 139.7, 138.2, 132.8, 129.6, 129.0, 128.1, 127.7, 127.2, 126.7, 126.0, 125.0, 123.9, 122.6, 114.4, 54.1, 52.4, 45.6, 44.8, 30.1, 18.8; HRMS (ESI-TOF) m/z: C₂₆H₂₃ClNO₂ (M + H)⁺ calcd for 416.1412, found 416.1417.

11b-(2-(4-bromophenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-ind

eno[2,1-c]quinolin-6-one (3ah) : by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 60.7 mg, 66%; white solid; mp 148.0-148.5 °C (uncorrected) ; ¹H NMR (400 MHz, CDCl₃) δ :

7.66-7.61 (m, 3H), 7.48-7.46 (m, 2H), 7.36 (t, J = 8.0 Hz, 1H), 7.21-7.17 (m, 3H), 7.11-7.07 (m, 1H), 6.88-6.83 (m, 2H), 4.05 (d, J = 16.9 Hz, 1H), 3.47-3.42 (m, 4H), 3.17 (d, J = 15.2 Hz, 1H), 2.81 (d, J = 15.3 Hz, 1H), 1.31 (s, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 196.3, 173.3, 147.7, 140.8, 139.8, 135.4, 131.6, 129.5, 129.0, 128.1, 127.7, 127.2, 126.7, 126.0, 125.0, 123.8, 122.5, 114.4, 54.1, 52.3, 45.6, 44.9, 30.1, 18.9; HRMS (ESI-TOF) m/z: C₂₆H₂₃BrNO₂ (M + H)⁺ calcd for 460.0907, found 460.0901.

5,6a-dimethyl-11b-(2-oxo-2-phenylethyl)-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c]

quinolin-6-one (**3ai**): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield:49.5 mg, 65%; yellow solid; mp 165.6-166.1°C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.82-7.79 (m, 2H), 7.64 (d, *J* = 7.6 Hz, 1H), 7.48

(t, J = 7.4 Hz, 1H), 7.35 (t, J = 7.8 Hz, 3H), 7.23-7.18 (m, 3H), 7.10-7.06 (m, 1H), 6.88-6.83 (m, 2H), 4.11 (d, J = 17.1 Hz, 1H), 3.51-3.47 (m, 4H), 3.19 (d, J = 15.2 Hz, 1H), 2.82 (d, J = 15.2 Hz, 1H), 1.32 (s, 3H); $^{13}C{^{1}H}MR$ (100 MHz, CDCl₃) δ : 197.2, 173.5, 148.0, 140.9, 139.9, 136.8, 133.0, 129.1, 128.3, 128.0, 127.6, 127.2, 126.7, 126.2, 125.0, 123.9, 122.5, 114.4, 54.1, 52.4, 45.8, 45.0, 30.1, 18.9; HRMS (ESI-TOF) m/z: C₂₆H₂₄NO₂ (M + H)⁺ calcd for 382.1802, found 382.1806.

5,6a-dimethyl-11b-(2-oxo-2-(4-(trifluoromethyl)phenyl)ethyl)-5,6a,7,11b-tetrahy

dro-6H-indeno[2,1-c]quinolin-6-one (3aj): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield:54.8 mg, 61%; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.87 (d, J = 8.1 Hz, 2H), 7.65-7.59 (m,

3H), 7.29-7.26 (m, 1H), 7.22-7.18 (m, 3H), 7.11-7.06 (m, 1H), 6.88-6.84 (m, 2H),

4.11 (d, J = 16.9 Hz, 1H), 3.49 (d, J = 18.1 Hz, 4H), 3.18 (d, J = 15.2 Hz, 1H), 2.82 (d, J = 15.2 Hz, 1H), 1.33 (s, 3H); ¹⁹F NMR (282 MHz, CDCl₃) δ : -63.1 (s,3F); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 196.6, 173.3, 147.6, 140.8, 139.8, 139.4, 129.0, 128.3(q, $J_{C-F} = 8.1$ Hz, 1C), 127.9, 127.7, 127.3, 126.7, 125.8, 125.5, 125.3(q, $J_{C-F} = 3.5$ Hz, 1C), 125.0, 123.8, 122.6(q, $J_{C-F} = 250.1$ Hz, 1C), 114.4, 54.1, 52.3, 45.9, 44.9, 30.1, 18.9; HRMS (ESI-TOF) m/z: C₂₇H₂₃F₃NO₂(M + H)⁺ calcd for 450.1675, found 450.1679.

11b-(2-(3-methoxyphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-i

ndeno[2,1-c]quinolin-6-one (**3ak**): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield:56.7 mg, 69%; white solid; mp 155.5-156.0°C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.63 (d, *J* = 7.6 Hz, 1H), 7.42

(d, J = 7.8 Hz, 1H), 7.36-7.32 (m, 2H), 7.25-7.19 (m, 4H), 7.11-7.07 (m, 1H), 7.04-7.02 (m, 1H), 6.91-6.84 (m, 2H), 4.14-4.09 (m, 1H), 3.79 (s, 3H), 3.52-3.47 (m, 4H), 3.19 (d, J = 15.3 Hz, 1H), 2.82 (d, J = 15.2 Hz, 1H), 1.30 (s, 3H); $^{13}C{^{1}H}NMR$ (100 MHz, CDCl₃) δ : 196.9, 173.6, 159.6, 148.0, 140.8, 140.0, 138.0, 129.2, 129.0, 127.5, 127.2, 126.7, 126.1, 124.9, 123.9, 122.5, 120.6, 119.7, 114.4, 112.0, 55.4, 54.0, 52.3, 46.1, 45.0, 30.1, 18.9; HRMS (ESI-TOF) m/z: C₂₇H₂₆NO₃(M + H)⁺ calcd for 412.1907, found 412.1901.

11b-(2-(3-chlorophenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-ind

eno[2,1-c]quinolin-6-one (3al): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield:52.3 mg, 63%; white solid; mp 168.5-168.0°C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.72 (s, 1H), 7.65 (t, *J* = 7.6 Hz,

2H), 7.44-7.42 (m, 1H), 7.37-7.33 (m, 1H), 7.29 (d, J = 7.9 Hz, 1H), 7.24-7.16 (m, 3H), 7.10-7.06 (m, 1H), 6.88-6.84 (m, 2H), 4.03 (d, J = 16.9 Hz, 1H), 3.46 (d, J = 15.4 Hz, 4H), 3.17 (d, J = 15.2 Hz, 1H), 2.81 (d, J = 15.2 Hz, 1H), 1.32 (s, 3H); $^{13}C{^{1}H}MR$ (100 MHz, CDCl₃) δ : 196.2, 173.3, 147.7, 140.8, 139.8, 138.2, 134.6, 132.8, 129.6, 129.0, 128.1, 127.7, 127.3, 126.7, 126.0, 125.8, 125.0, 123.9, 122.6,

114.4, 54.1, 52.4, 45.7, 44.8, 30.1, 18.9; HRMS (ESI-TOF) m/z: C₂₆H₂₃ClNO₂ (M + H)⁺ calcd for 416.1412, found 416.1418.

5,6a-dimethyl-11b-(2-oxo-2-(o-tolyl)ethyl)-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c

]**quinolin-6-one** (**3am**): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield:44.2 mg, 56%; white solid; mp 171.0-171.5°C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.55 (d, J = 7.5 Hz, 1H),

7.34-7.31 (m, 3H), 7.28-7.24 (m, 1H), 7.20-7.18 (m, 3H), 7.13 (s, 1H), 7.11 (s, 1H), 6.91-6.85 (m, 2H), 4.03 (d, J = 17.2 Hz, 1H), 3.48 (s, 3H), 3.36 (d, J = 17.1 Hz, 1H), 3.18 (d, J = 15.3 Hz, 1H), 2.83 (d, J = 15.2 Hz, 1H), 2.21 (s, 3H), 1.37 (s, 3H); $^{13}C{^{1}H}MR$ (100 MHz, CDCl₃) δ : 201.7, 173.4, 147.8, 140.8, 139.8, 138.4, 137.4, 131.6, 130.9, 129.0, 128.2, 127.6, 127.1, 126.6, 126.1, 125.3, 124.9, 123.9, 122.4, 114.4, 54.4, 52.3, 48.8, 45.0, 30.0, 20.6, 19.0; HRMS (ESI-TOF) *m/z*: C₂₇H₂₆NO₂ (M + H)⁺ calcd for 396.1958, found 396.1966.

11b-(2-(2-chlorophenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-ind

eno[2,1-c]quinolin-6-one (3an): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield:44.2 mg, 49%; white solid; mp 165.0-165.5°C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.53 (d, *J* = 7.6 Hz, 1H), 7.31-7.28 (m,

3H), 7.20-7.12 (m, 5H), 7.02 (t, J = 6.8 Hz, 1H), 6.94 (d, J = 8.3 Hz, 1H), 6.87 (t, J = 7.5 Hz, 1H), 4.15(d, J = 17.6 Hz, 1H), 3.52 (s, 3H), 3.43 (d, J = 17.5 Hz, 1H), 3.20 (d, J = 15.3 Hz, 1H), 2.83 (d, J = 15.3 Hz, 1H), 1.37 (s, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 200.7 , 173.3, 147.5 , 140.7 , 139.7 139.6 , 131.5 , 130.3 , 130.2 , 129.3 , 128.5 , 127.7 , 127.2 , 126.8 , 126.7 , 125.6 , 124.9 , 123.9 , 122.5 , 114.4 , 54.4 , 52.4 , 50.0 , 45.0 , 30.1 , 19.1 ; HRMS (ESI-TOF) m/z: C₂₆H₂₃ClNO₂ (M + H)⁺ calcd for 416.1412, found 416.1417.

5,6a-dimethyl-11b-(2-oxo-2-(thiophen-2-yl)ethyl)-5,6a,7,11b-tetrahydro-6H-inde

no[2,1-c]quinolin-6-one (**3ao**): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield:42.6 mg,

55%; white solid; mp 135.0-135.5°C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ: 7.63 (d, J = 7.2 Hz, 1H), 7.52 (d, J = 5.2 Hz, 1H), 7.46 (t, J = 8.0 Hz, 1H), 7.35 (t, J = 6.8 Hz, 1H), 7.22-7.16 (m, 3H), 7.10-7.07 (t, J = 7.6 Hz, 1H), 7.00-6.96 (m, 1H), 6.87 (t, J = 6.0 Hz, 2H), 3.96-3.92 (m, 1H), 3.45 (d, J = 16.8 Hz, 4H), 3.15 (d, J = 16.8 Hz, 1H), 2.83-2.79 (m, 1H), 1.38 (s, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ: 190.0, 173.2, 147.6, 144.2, 140.9, 139.7, 133.6, 131.9, 129.1, 127.8, 127.7, 127.2, 126.7, 126.0, 125.0, 123.9, 122.6, 114.4, 54.3, 52.6, 46.1, 44.7, 30.1, 19.0; HRMS (ESI-TOF) m/z: C₂₄H₂₂NO₂S (M + H)⁺ calcd for 388.1366, found 388.1370.

5,6a-dimethyl-11b-(2-(naphthalen-2-yl)-2-oxoethyl)-5,6a,7,11b-tetrahydro-6H-in

deno[2,1-c]quinolin-6-one (3ap): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield:60.3 mg, 70%; white solid; mp 185.0-185.5°C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 8.27 (s, 1H), 7.89-7.85

(m, 2H), 7.81-7.78 (m, 2H), 7.71 (d, J = 7.4 Hz, 1H), 7.57-7.50 (m, 3H), 7.39 (t, J = 6.9 Hz, 1H), 7.25-7.18 (m, 2H), 7.04-7.00 (m, 1H), 6.87-6.81 (m, 2H), 4.23 (d, J = 16.9 Hz, 1H), 3.62 (d, J = 16.8 Hz, 1H), 3.48 (s, 3H), 3.20 (d, J = 15.2 Hz, 1H), 2.83 (d, J = 15.2 Hz, 1H), 1.36 (s, 3H).; ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ : 197.2, 173.5, 148.0, 140.9, 139.9, 135.3, 134.0, 132.2, 129.6, 129.4, 129.1, 128.4, 128.1, 127.6, 127.6, 127.2, 126.7, 126.6, 126.2, 124.9, 124.0, 123.7, 122.5, 114.4, 54.2, 52.4, 45.8, 44.9, 30.1, 18.9; HRMS (ESI-TOF) *m*/*z*: C₃₀H₂₆NO₂ (M + H)⁺ calcd for 432.1958, found 432.1963.

5,6a-dimethyl-11b-(2-oxobutyl)-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c]quinolin-

6-one (**3aq**): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield:48.6 mg, 73%; white solid; mp 137.0-137.5°C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.52 (d, *J* = 7.5 Hz, 1H), 7.31-7.27 (m, 1H), 7.20-7.13 (m, 4H),

6.96-6.88 (m, 2H), 3.48 (s, 3H), 3.41 (d, J = 16.5 Hz, 1H), 3.14 (d, J = 15.2 Hz, 1H), 2.97 (d, J = 16.4 Hz, 1H), 2.78 (d, J = 15.2 Hz, 1H), 2.31-2.21 (m, 1H), 2.07-1.99 (m, 1H), 1.28 (s, 3H), 0.84 (t, J = 7.3 Hz, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 208.4,

173.2, 147.6, 140.8, 139.6, 129.0, 127.6, 127.1, 126.6, 126.0, 124.9, 123.9, 122.5, 114.4, 53.91, 52.30, 48.93, 44.72, 36.91, 30.06, 18.89, 7.57; HRMS (ESI-TOF) m/z: C₂₂H₂₄NO₂ (M + H)⁺ calcd for 334.1802, found 334.1806.

5,6a-dimethyl-11b-(2-oxopentyl)-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c]quinolin

-6-one (3ar): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield:47.9 mg, 69%; white solid; mp 148.0-148.5°C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.50 (d, *J* = 7.6 Hz, 1H), 7.31-7.29 (m, 1H), 7.19-7.14 (m,

4H), 6.96-6.88 (m, 2H), 3.48 (s, 3H), 3.44 (t, J = 16.6 Hz, 4H), 3.14 (d, J = 15.3 Hz, 1H), 2.95 (d, J = 16.6 Hz, 1H), 2.79 (d, J = 15.2 Hz, 1H), 2.24-2.16 (m, 1H), 2.05-1.98 (m, 1H), 1.40-136 (m, 2H), 1.28 (s, 3H), 0.71 (t, J = 7.4 Hz, 3H); $^{13}C{^{1}H}MR$ (100 MHz, CDCl₃) δ : 208.1, 173.3, 147.7, 140.8, 139.7, 129.1, 127.7, 127.2, 126.6, 126.0, 125.0, 123.9, 122.6, 114.5, 54.0, 52.3, 49.3, 45.8, 44.9, 30.1, 19.0, 17.0, 13.5; HRMS (ESI-TOF) *m*/*z*: C₂₃H₂₆NO₂ (M + H)⁺ calcd for 348.1958, found 348.1962.

5,6a-dimethyl-11b-(2-oxo-4-phenylbutyl)-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c]

quinolin-6-one (**3as**): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield:54.8 mg, 67%; white solid; mp 130.7-131.2°C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.46 (d, J = 7.5 Hz, 1H), 7.29-7.25 (m, 1H),

7.22-7.11 (m, 7H), 6.97-6.89 (m, 4H), 3.41 (t, J = 16.4 Hz, 4H), 3.13 (d, J = 15.2 Hz, 1H), 2.92 (d, J = 16.4 Hz, 1H), 2.77 (d, J = 15.2 Hz, 1H), 2.69-2.62 (m, 2H), 2.58-2.50 (m, 1H), 2.37-2.29 (m, 1H), 1.27 (s, 3H); $^{13}C{^{1}H}MR$ (100 MHz, CDCl₃) $\delta: 207.0, 173.1, 147.4, 140.7(2C), 139.5, 129.0, 128.3, 128.1, 127.7, 127.1, 126.6, 125.9, 125.8, 124.9, 123.8, 122.6, 114.5, 53.9, 52.3, 49.4, 45.3, 44.7, 30.0, 29.4, 18.9; HRMS (ESI-TOF) <math>m/z$: C₂₈H₂₈NO₂ (M + H)⁺ calcd for 410.2115, found 410.2119.

5,6a-dimethyl-11b-(3-methyl-2-oxobutyl)-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c]

quinolin-6-one (**3a**u): by silica gel column chromatography (hexane/ethyl acetate = 12 : 1), yield:6.9 mg, 10%; white solid; mp 125.0-125.5°C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.52 (d, J = 7.6 Hz, 1H), 7.28 (s, 1H), 7.19-7.13 (m, 4H),

6.95-6.87 (m, 2H), 3.53 (t, J = 24.2 Hz, 4H), 3.14 (d, J = 15.2 Hz, 1H), 3.00 (d, J = 16.9 Hz, 1H), 2.79 (d, J = 15.3 Hz, 1H), 2.35-2.29 (m, 1H), 1.28 (s, 3H), 0.94 (d, J = 6.9 Hz, 3H), 0.79 (d, J = 6.9 Hz, 3H); ${}^{13}C{}^{1}H{}MR$ (100 MHz, CDCl₃) δ : 211.5, 173.3, 147.8, 140.9, 139.7, 129.1, 128.2, 127.6, 127.1, 126.6, 124.9, 123.9, 122.4, 114.4, 53.9, 52.3, 47.3, 44.9, 41.4, 30.0, 18.9, 18.1, 17.6; HRMS (ESI-TOF) m/z: C₂₃H₂₆NO₂ (M + H)⁺ calcd for 348.1958, found 348.1963.

11b-isobutyl-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c]quinolin-6-on

e (4au): by silica gel column chromatography (hexane/ethyl acetate = 12 : 1), yield:35.1 mg, 55%; white solid; mp 138.0-138.5°C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.45 (d, *J* = 7.5 Hz, 1H), 7.29-7.27 (m, 1H), 7.18-7.14 (m, 3H),

7.10 (d, J = 7.4 Hz, 1H), 6.95-6.90 (m, 2H), 3.45 (s, 3H), 3.09 (d, J = 15.0 Hz, 1H), 2.71 (d, J = 15.0 Hz, 1H), 2.03-1,97 (m, 1H), 1.90-1.85 (m, 1H), 1.27 (s, 3H), 0.96 (s, 1H), 0.82 (d, J = 6.7 Hz, 3H), 0.36 (d, J = 6.4 Hz, 3H); ${}^{13}C{}^{1}H{}NMR$ (100 MHz, CDCl₃) δ : 174.0, 149.1, 141.0, 139.4, 129.6, 128.1, 127.3, 126.6, 126.4, 124.7, 124.0, 123.0, 113.9, 55.8, 52.7, 45.8, 44.4, 30.0, 25.7, 24.7, 23.3, 18.4; HRMS (ESI-TOF) m/z: C₂₂H₂₆NO (M + H)⁺ calcd for 320.2009, found 320.2002.

11b-(cyclopentylmethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c]q

uinolin-6-one (**4av**): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield:54.0 mg, 78%; white solid; mp 129.0-129.5°C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.46 (d, *J* = 7.5 Hz, 1H), 7.30-7.27 (m, 1H), 7.19-7.14 (m, 3H),

7.10-7.08 (m, 1H), 6.95-6.89 (m, 2H), 3.4 (s, 3H), 3.1 (d, J = 14.9 Hz, 1H), 2.7 (d, J = 14.9 Hz, 1H), 2.1 (d, J = 5.5 Hz, 2H), 1.7-1.7 (m, 2H), 1.5-1.2 (m, 10H);

¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 174.0 , 149.0 , 141.1 , 139.5 , 129.6 , 128.2 , 127.3 , 126.6 , 126.4 , 124.7 , 124.0 , 122.9 , 113.9 , 55.9 , 52.4 , 44.4 , 43.5 , 36.3 , 35.5 , 32.5 , 30.0 , 25.6 , 24.4 , 18.3; HRMS (ESI-TOF) *m/z*: C₂₄H₂₈NO (M + H)⁺ calcd for 346.2166, found 346.2172.

11b-(cyclohexylmethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c]qu

inolin-6-one (**4aw**): by silica gel column chromatography (hexane/ethyl acetate = 12 : 1), yield:54.0 mg, 78%; white solid; mp 136.7-138.4°C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.47 (d, J = 7.5 Hz, 1H), 7.32 (t, J = 7.4 Hz, 1H), 7.22-7.16 (m,

3H), 7.05 (d, J = 7.8 Hz, 1H), 6.97-6.91 (m, 2H), 3.65-3.61 (m, 1H), 3.48 (s, 3H), 3.10 (d, J = 15.0 Hz, 1H), 2.73 (d, J = 15.3 Hz, 2H), 2.57-2.31 (m, 1H), 2.37-2.31 (m, 1H), 1.93 (d, J = 13.6 Hz, 2H), 1.77 (t, J = 15.0 Hz, 2H), 1.65 (d, J = 9.6 Hz, 2H), 1.50-1.41 (m, 3H), 1.31 (s, 3H); $^{13}C{^{1}H}MR$ (100 MHz, CDCl₃) δ : 182.3 , 173.1, 147.8, 141.0 , 139.9 , 129.6 , 127.8 , 127.0 , 126.7 , 125.1 , 123.7 , 123.2 , 114.2 , 56.2 , 54.4, 52.5 , 49.3 , 44.2 , 42.8 , 41.7 , 30.4 , 28.7 , 25.6 , 25.3 , 18.4; HRMS (ESI-TOF) *m/z*: C₂₅H₃₀NO (M + H)⁺ calcd for 360.2322, found 360.2328.

5,6a-dimethyl-11b-neopentyl-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c]quinolin-6-o

ne (**4ax**): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield:45.3 mg, 68%; white solid; mp 133.0-133.5°C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.55 (d, *J* = 7.6 Hz, 1H), 7.31-7.27 (d, *J* = 7.7 Hz, 1H), 7.15 (t, *J*

= 7.2 Hz, 3H), 7.06-7.04 (m, 1H), 6.95-6.93 (m, 1H), 6.90-6.86 (m, 1H), 3.47 (s, 3H), 3.08 (d, J = 15.0 Hz, 1H), 2.71 (d, J = 15.0 Hz, 1H), 2.28 (d, J = 15.0 Hz, 1H), 1.96 (d, J = 15.0 Hz, 1H), 1.33 (s, 3H), 0.68 (s, 9H); $^{13}C{^{1}H}MR$ (100 MHz, CDCl₃) δ : 174.1 , 150.2 , 140.7 , 139.4 , 130.5 , 127.5 , 127.3 , 126.6 , 126.3 , 124.7 , 124.0 , 122.8 , 114.1 , 56.4 , 52.9 , 48.7 , 45.4 , 31.8 , 31.4 , 30.0 , 18.9; HRMS (ESI-TOF) m/z: C₂₃H₂₈NO (M + H)⁺ calcd for 334.2166, found 334.2172.
5,6a-dimethyl-11b-phenethyl-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c]quinolin-6-

one (4ay): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield:49.2 mg, 67%; white solid; mp 143.0-143.5°C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.45 (d, *J* = 7.5 Hz, 1H), 7.26-7.20 (m, 4H), 7.15 (d, *J* = 9.5 Hz, 4H),

7.04-6.96 (m, 4H), 3.48 (s, 3H), 3.08 (d, J = 14.9 Hz, 1H), 2.74 (d, J = 15.0 Hz, 1H), 2.59-2.50 (m, 1H), 2.41-2.33 (m, 1H), 2.24-2.14 (m, 2H), 1.39 (s, 3H).; ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 173.8 , 148.2 , 141.8 , 141.1 , 139.5 , 129.2 , 128.3 , 128.1 , 127.5 , 127.1, 126.8 , 126.5 , 125.9 , 124.8 , 123.9 , 123.3 , 113.9 , 55.8 , 52.0 , 44.4 , 39.8 , 30.1 , 29.8 , 18.2; HRMS (ESI-TOF) *m/z*: C₂₆H₂₆NO (M + H)⁺ calcd for 368.2009, found 368.2014.

11b-(2-(4-methoxyphenyl)-2-oxoethyl)-2,5,6a-trimethyl-5,6a,7,11b-tetrahydro-6H

-indeno[2,1-c]quinolin-6-one (3ba): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 66.2 mg, 78%; white solid; mp 155.0-155.5 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.80 (d, J

= 8.8 Hz, 2H), 7.64 (d, J = 7.6 Hz, 1H), 7.34 (t, J = 6.4 Hz, 1H), 7.22-7.17 (m, 2H), 6.96 (s, 1H), 6.88-6.86 (m, 1H), 6.82-6.76 (m, 3H), 4.04 (d, J = 16.8 Hz, 1H), 3.81 (s, 3H), 3.45 (d, J = 22 Hz, 4H), 3.18 (d, J = 15.2 Hz, 1H), 2.80 (d, J = 15.2 Hz, 1H), 2.13 (s, 3H), 1.29 (s, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 195.5, 173.3, 163.2 , 148.2, 140.8, 137.6, 131.5, 130.2, 129.8 , 129.4, 128.1, 127.0, 126.6, 126.0, 124.8, 123.9 , 114.3 , 113.3 , 55.3, 54.0, 52.3, 45.5, 44.9, 30.1, 20.6, 18.8; HRMS (ESI-TOF) m/z: C₂₈H₂₈NO₃ (M + H)⁺ calcd for 426.2064, found 426.2069.

2-ethyl-11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahyd

ro-6H-indeno[2,1-c]quinolin-6-one (**3ca**): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 60.6 mg, 69%; white solid; mp 141.0-141.5 °C (uncorrected); ¹H NMR (400 MHz, CDC13) δ : 7.75 (d, J

= 8.8 Hz, 2H), 7.65 (d, J = 7.5 Hz, 1H), 7.36-7.32 (m, 1H), 7.21-7.16 (m, 2H), 6.95 (d,

J = 2.0 Hz, 1H), 6.90-6.88(m, 1H), 6.78 (t, J = 8.8 Hz, 3H), 4.03 (d, J = 16.8 Hz, 1H), 3.80 (s, 3H), 3.44 (t, J = 7.2 Hz, 4H), 3.16 (d, J = 15.2 Hz, 1H), 2.79 (d, J = 15.2 Hz, 1H), 2.46-2.41 (m, 2H), 1.3 (s, 3H), 1.08 (t, J = 7.6 Hz, 3H); 13C{1H}NMR (100 MHz, CDCl3) δ : 195.7, 173.3, 163.2 , 148.2, 140.9, 138.0, 137.7, 130.2, 129.9 , 128.4, 127.0, 126.8, 126.6, 126.0, 124.9, 123.9 , 114.3, 113.3, 55.4, 54.2, 52.4, 45.2, 44.9, 30.1, 27.9, 18.9, 15.3; HRMS (ESI-TOF) m/z: C₂₉H₃₀NO₃ (M + H)⁺ calcd for 440.2220, found 440.2223.

2-isopropyl-11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetra

hydro-6H-indeno[2,1-c]quinolin-6-one (3da): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 58.9 mg, 65%; white solid; mp 143.0-143.5 °C (uncorrected); ¹H NMR (400 MHz,

CDCl₃) δ : 7.77-7.74 (m, 2H), 7.66 (d, J = 7.6 Hz, 1H), 7.36-7.32 (m, 1H), 7.22-7.18 (m, 2H), 7.01 (d, J = 2.2 Hz, 1H), 6.93-6.90 (m, 1H), 6.80-6.75 (m, 3H), 4.01 (d, J = 16.4 Hz, 1H), 3.81 (s, 3H), 3.44-3.38 (m, 4H), 3.16 (d, J = 15.1 Hz, 1H), 2.79 (d, J = 15.3 Hz, 1H), 2.73-2.66 (m, 1H), 1.3 (s, 3H), 1.08 (t, J = 6.8 Hz, 6H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 195.9 , 173.3 , 163.2 , 148.1 , 142.6 , 140.9 , 137.7 , 130.2 , 130.0 , 127.2 , 127.0 , 126.5 , 125.9 , 125.1 , 124.9 , 123.9 , 114.2 , 113.3 , 55.4 , 54.3 , 52.5 , 45.0 , 44.8 , 33.1 , 30.0 , 23.9 , 23.8 , 18.9; HRMS (ESI-TOF) *m*/*z*: C₃₀H₃₂NO₃ (M + H)⁺ calcd for 454.2377, found 454.2371.

2-(tert-butyl)-11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tet

rahydro-6H-indeno[2,1-c]quinolin-6-one (3ea): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 57.9 mg, 62%; white solid; mp 123.0-123.5 °C (uncorrected); ¹H NMR (400 MHz,

CDCl₃) δ : 7.74 (d, J = 7.4 Hz, 2H), 7.66 (d, J = 7.5 Hz, 1H), 7.34 (t, J = 7.1 Hz, 1H), 7.18 (d, J = 7.3 Hz, 3H), 7.05 (d, J = 8.7 Hz, 1H), 6.76 (m, 3H), 4.00 (d, J = 16.3 Hz, 1H), 3.80 (s, 3H), 3.44-3.38 (m, 4H), 3.16 (d, J = 15.3 Hz, 1H), 2.80 (d, J = 15.2 Hz, 1H), 1.35 (s, 3H), 1.14 (s, 9H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 196.0 , 173.3 , 163.1 , 148.2 , 144.8 , 140.9 , 137.3 , 130.2 , 130.1 , 127.0 , 126.5 , 126.1 , 125.5 , 124.9 , 124.3 , 123.8 , 113.8 , 113.3 , 55.4 , 54.5 , 52.5 , 44.8 , 34.0 , 31.2 , 29.9 , 19.0 , 14.2; HRMS (ESI-TOF) m/z: C₃₁H₃₄NO₃ (M + H)⁺ calcd for 468.2533, found 468.2539.

2-methoxy-11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetra

hydro-6H-indeno[2,1-c]quinolin-6-one (3fa): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 59.0 mg, 67%; white solid; mp 163.0-163.5 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.40

(d, J = 8.8 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 7.19 (s, 1H), 7.00 (d, J = 9.0 Hz, 1H), 6.87 (d, J = 8.8 Hz, 2H), 6.55-6.76 (m, 1H), 6.55 (t, J = 3.0 Hz, 2H), 3.87-3.80(m, 5H), 3.68 (s, 3H), 3.50 (s, 3H), 3.12-3.07 (m, 1H), 2.76 (d, J = 15.0 Hz, 1H), 1.01 (s, 3H); 13C {1H} NMR (100 MHz, CDCl3) δ : 172.7 , 159.4 , 155.4 , 142.8 , 142.3, 132.0, 131.9, 128.2, 128.1, 127.6, 127.0, 126.9, 126.8, 115.7, 115.3, 113.8 , 112.2 , 61.1 , 55.4 , 52.1 , 46.6 , 30.3 , 29.7 , 22.1 , 14.1 ; HRMS (ESI-TOF) *m*/*z*: C₂₈H₂₈NO₄ (M + H)⁺ calcd for 442.2013, found 442.2017.

2-fluoro-11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahy

dro-6H-indeno[2,1-c]quinolin-6-one (3ga): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 64.4 mg, 75%; white solid; mp 176.0-176.5 °C (uncorrected); ¹H NMR (400 MHz,

CDCl₃) δ : 7.83-7.81 (m, 2H), 7.61 (d, J = 7.6 Hz, 1H), 7.38-7.34 (m, 1H), 7.23-7.21 (m, 2H), 6.92-6.88 (m, 1H), 6.85 (d, J = 2.0 Hz, 1H), 6.84-6.82 (m, 2H), 6.80-6.77 (m, 1H), 4.03 (d, J = 17.2 Hz, 1H), 3.82 (s, 3H), 3.49-3.44 (m, 4H), 3.17 (d, J = 15.3 Hz, 1H), 2.82 (d, J = 15.3 Hz, 1H), 1.3 (s, 3H); ¹⁹F NMR (282 MHz, CDCl₃) δ : -120.9 (s, 1F); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 195.3 , 173.1 , 163.4 , 158.1 (d, $J_{C-F} = 239.8$ Hz, 1C), 147.5 , 140.7 , 136.3(d, J = 2.4 Hz, 1C) , 130.2 , 129.6 , 128.4(d, $J_{C-F} = 6.1$ Hz, 1C) , 127.4 , 126.9 , 124.9 , 123.7 , 115.6 (d, $J_{C-F} = 6.7$ Hz, 1C), 115.5(d, $J_{C-F} = 8.7$ Hz, 1C) , 114.1(d, $J_{C-F} = 22.1$ Hz, 1C) , 113.4 , 55.4 , 54.1 , 52.0 , 45.3 , 44.9 ,

30.3 , 18.8 ; HRMS (ESI-TOF) m/z: C₂₇H₂₅FNO₃ (M + H)⁺ calcd for 430.1813, found 430.1818.

2-chloro-11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahy

dro-6H-indeno[2,1-c]quinolin-6-one (**3ha**): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 53.4 mg, 60%; white solid; mp 174.0-174.5 $^{\circ}$ C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ :

7.84-7.81 (m, 2H), 7.61 (d, J = 7.5 Hz, 1H), 7.38-7.34 (m, 1H), 7.25-7.21 (m, 2H), 7.12 (d, J = 2.4 Hz, 1H), 7.01-7.02(m, 1H), 6.86-6.81 (m, 3H), 4.03 (d, J = 17.3 Hz, 1H), 3.83 (s, 3H), 3.48 (d, J = 16.8 Hz, 4H), 3.17 (d, J = 15.3 Hz, 1H), 2.81 (d, J = 15.3 Hz, 1H), 1.28 (s, 3H); ${}^{13}C{}^{1}H{}NMR$ (100 MHz, CDCl₃) δ : 195.2 , 173.2 , 163.4 , 147.5 , 140.7 , 138.8 , 130.3 , 129.9, 129.5 , 128.9 , 128.3, 127.4 , 127.3 , 127.0 , 125.0 , 123.8 , 115.7 , 113.5 , 55.4 , 54.0 , 52.2 , 45.7 , 45.0 , 30.2 , 18.8; HRMS (ESI-TOF) m/z: C₂₇H₂₅ClNO₃ (M + H)⁺ calcd for 446.1517, found 446.1525.

2-bromo-11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahy

dro-6H-indeno[2,1-c]quinolin-6-one (3ia): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 67.6 mg, 69%; white solid; mp 177.6-178.4 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ :

7.84-7.81 (m, 2H), 7.61 (d, J = 7.5 Hz, 1H), 7.37 (t, J = 7.4 Hz, 1H), 7.23-7.17 (m, 4H), 6.86-6.84 (m, 2H), 6.78-6.69 (m, 1H), 4.06-4.01 (m, 1H), 3.83 (d, J = 2.6 Hz, 3H), 3.49-3.45 (m, 4H), 3.17 (d, J = 15.4 Hz, 1H), 2.82 (d, J = 12.8 Hz, 1H), 1.27 (s, 3H); ${}^{13}C{}^{1}H{MR}$ (100 MHz, CDCl₃) δ : 195.3 , 173.2 , 163.4 , 147.4 , 140.7 , 139.3 , 131.7 , 130.4 , 130.3 , 129.5 , 128.7 , 127.4 , 127.0 , 125.0 , 123.8 , 116.1 , 114.8 , 113.5 , 55.4 , 54.0 , 52.2 , 45.7 , 45.0 , 30.2 , 18.8; HRMS (ESI-TOF) *m/z*: C₂₇H₂₅BrNO₃ (M + H)⁺ calcd for 490.1013, found 490.1017.

11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a-dimethyl-6-oxo-6,6a,7,11b-tetrahydr

o-5H-indeno[2,1-c]quinoline-2-carbonitrile (3ja): by silica gel column chromatography (hexane/ethyl acetate = 10:1), yield: 41.8 mg, 48%; white solid; mp 180.1-180.8 °C (uncorrected); ¹H NMR (400 MHz,

CDCl₃) δ :7.79-7.76 (m, 2H), 7.59-7.56 (m, 1H), 7.14-7.07 (m, 2H), 7.02 (t, *J* = 8.8 Hz, 1H), 6.89-6.87 (d, *J* = 8.6 Hz, 3H), 6.82-6.79 (m, 2H), 3.99 (d, *J* = 17.2 Hz, 1H), 3.82 (s, 3H), 3.49-3.92(m, 4H), 3.15 (d, *J* = 14.4 Hz, 1H), 2.78 (d, *J* = 15.6 Hz, 1H), 1.32 (s, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 195.4 , 173.0 , 163.3 , 160.9, 143.8, 143.2, 139.8 , 130.2 , 129.8 , 129.0 , 127.6 , 126.1 , 125.0 , 122.4 , 114.5 , 113.4 , 113.3 , 112.5 , 112.3 , 55.4 , 53.6 , 52.7 , 45.3 , 44.7 , 30.1 , 18.8 ; HRMS (ESI-TOF) *m*/*z*: C₂₈H₂₅N₂O₃(M + H)⁺ calcd for 437.1860, found 437.1867.

3-methoxy-11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetra

hydro-6H-indeno[2,1-c]quinolin-6-one (3ka): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 59.9 mg, 68%; white solid; mp 143.0-143.5 $^{\circ}$ C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ :

7.81-7.78 (m, 2H), 7.60 (d, J = 7.5 Hz, 1H), 7.20-7.18 (m, 2H), 7.06 (d, J = 8.4 Hz, 1H), 6.94 (d, J = 8.9 Hz, 1H), 6.83-6.81 (m, 2H), 6.42-6.38 (m, 2H), 4.04 (d, J = 17.0 Hz, 1H), 3.82 (s, 3H), 3.70 (s, 3H), 3.47-3.39 (m, 4H), 3.17 (d, J = 15.2 Hz, 1H), 2.80 (d, J = 15.2 Hz, 1H), 1.30 (s, 3H); $^{13}C{^{1}H}MR$ (100 MHz, CDCl₃) δ : 195.7 , 173.8, 163.3 , 158.8 , 148.4 , 141.0, 140.8 , 130.3 , 130.0 , 127.0 , 126.6 , 125.0 , 123.7 , 118.8 , 113.7 , 113.4 , 107.0 , 101.1 , 55.4 , 55.2 , 53.6 , 52.5 , 45.3 , 45.0 , 30.1 , 18.8; HRMS (ESI-TOF) m/z: C₂₈H₂₈NO₄ (M + H)⁺ calcd for 442.2013, found 442.2019.

11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a,9-trimethyl-5,6a,7,11b-tetrahydro-6H

(uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.9-7.77 (m, 2H), 7.50 (d, J = 7.7 Hz,

1H), 7.20-7.18 (m, 1H), 7.13 (d, J = 7.7 Hz, 1H), 7.08-7.04 (m, 1H), 7.00 (s, 1H), 6.87-6.79 (m, 4H), 4.04 (d, J = 17.0 Hz, 1H), 3.80 (s, 3H), 3.5 (s, 3H), 3.41 (d, J = 17.0 Hz, 1H), 3.14 (d, J = 15.2 Hz, 1H), 2.75 (d, J = 15.2 Hz, 1H), 2.32 (s, 3H), 1.31 (s, 3H); $^{13}C{^{1}H}MR$ (100 MHz, CDCl₃) δ : 195.7 , 173.6, 163.2 , 145.3 , 140.9 , 139.8, 136.8 , 130.2 , 129.8 , 128.9 , 127.3(2C) , 126.6 , 125.7 , 123.6 , 122.4 , 114.3 , 113.4 , 55.4 , 53.8 , 52.4 , 45.6 , 44.9 , 30.0 , 21.2 , 18.9 ; HRMS (ESI-TOF) *m/z*: C₂₈H₂₈NO₃ (M + H)⁺ calcd for 426.2064, found 426.2069.

9-fluoro-11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahy

dro-6H-indeno[2,1-c]quinolin-6-one (**3ma**): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 42.0 mg, 49%; white solid; mp 176.0-176.5 $^{\circ}$ C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.78-7.75

(m, 2H), 7.59-7.56 (m, 1H), 7.14-7.07 (m, 2H), 7.04-7.00 (m, 1H), 6.90-6.84 (m, 3H), 6.82-6.77 (m, 2H), 4.00 (d, J = 16.9 Hz, 1H), 3.82 (s, 3H), 3.49 (s, 3H), 3.44-3.38 (m, 1H), 3.14 (t, J = 15.5 Hz, 1H), 2.80-2.69 (m, 1H), 1.32 (s, 3H); ¹⁹F NMR (282 MHz, CDCl₃) δ : -115.6(s,1F);¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 195.4 , 173.1 , 163.3 , 160.9, 143.8(d, J = 2.4 Hz, 1C), 143.2 (d, J = 8.4 Hz, 1C), 139.8 , 130.2 , 129.8 , 129.0 , 127.6 , 126.1 , 125.0 (d, J = 8.9 Hz, 1C) , 122.5 , 114.5 , 113.5 (d, J = 22.3 Hz, 1C) , 113.4 , 112.5 (d, J = 22.2Hz, 1C), 55.4 , 53.6 , 52.8 , 45.3 , 44.7 , 30.1 , 18.8; HRMS (ESI-TOF) *m*/*z*: C₂₇H₂₅FNO₃ (M + H)⁺ calcd for 430.1813, found 430.1818.

9-chloro-11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahy

dro-6H-indeno[2,1-c]quinolin-6-one (3na): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 54.3 mg, 61%; white solid; mp 171.0-171.5 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ :

7.78-7.76 (m, 2H), 7.59-7.55 (m, 1H), 7.30 (d, J = 7.8 Hz, 1H), 7.16-7.07 (m, 3H), 6.94-6.80 (m, 4H), 4.02-3.97 (m, 1H), 3.81 (s, 3H), 3.48-3.40 (m, 4H), 3.14 (d, J = 15.6 Hz, 1H), 2.78 (d, J = 15.5 Hz, 1H), 1.30 (d, J = 6.1 Hz, 3H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ : 195.3 , 173.0 , 163.3 , 146.7 , 142.9 , 139.8, 132.8 , 130.2 , 129.7 ,

128.9, 127.7, 126.8, 125.7, 125.3, 125.0, 122.5, 114.5, 113.4, 55.4, 53.8, 52.6, 45.1, 44.5, 30.1, 18.8; HRMS (ESI-TOF) m/z: C₂₇H₂₅ClNO₃ (M + H)⁺ calcd for 446.1517, found 446.1511.

9-bromo-11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahy

dro-6H-indeno[2,1-c]quinolin-6-one (3oa): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 67.5 mg, 69%; white solid; mp 163.0-163.5 °C (uncorrected); ¹H NMR (400 MHz, CDCl₃) δ : 7.82 (d,

J = 9.3 Hz, 2H), 7.60 (d, J = 7.7 Hz, 1H), 7.37 (t, J = 7.3 Hz, 1H), 7.26-7.17 (m, 4H), 6.86-6.83 (m, 2H), 6.77 (d, J = 8.8 Hz, 1H), 4.03 (d, J = 17.3 Hz, 1H), 3.84 (s, 3H), 3.47 (d, J = 15.5 Hz, 4H), 3.17 (d, J = 15.3 Hz, 1H), 2.82 (d, J = 15.3 Hz, 1H), 1.27 (s, 3H); $^{13}C{^{1}H}NMR$ (100 MHz, CDCl₃) δ : 195.3, 173.3, 163.5, 147.5, 140.7, 139.3, 131.7, 130.4, 130.3, 129.5, 128.8, 127.5, 127.1, 125.0, 123.8, 116.2, 114.9, 113.5, 55.4, 54.0, 52.2, 45.8, 45.1, 30.2, 18.8; HRMS (ESI-TOF) m/z: C₂₇H₂₅BrNO₃ (M + H)⁺ calcd for 490.1013, found 490.1016.

11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a,10-trimethyl-5,6a,7,11b-tetrahydro-6

H-indeno[2,1-c]quinolin-6-one (3pa) and 11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a,8-trim ethyl-5,6a,7,11b-tetrahyd

ro-6H-indeno[2,1-c]quinolin-6-one (3pa') mixture: Yield: 51.4 mg, 54%, and ; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.82 (d, J = 9.3 Hz, 2H), 7.44 (t, J = 7.7 Hz, 1H), 7.25-7.18 (t, J = 7.3 Hz, 1.5H), 7.10-7.00 (m, 2.5H), 6.89-6.80 (m, 4H), 4.06-4.01 (m, 1H), 3.82 (s, 3H), 3.50-3.40 (m, 4H), 3.14-3.03 (m, 1H), 2.83-2.74(m, 1H), 2.47 (s, 1.4H), 2.17 (s, 1.6H), 1.31 (s, 3H); ¹³C{¹H}NMR (100 MHz, CDCl₃) δ : 195.3, 173.3, 171.1, 163.5, 147.5, 140.7, 139.3, 131.7, 130.4, 130.3, 129.5, 128.8, 127.5, 127.1, 125.0, 123.8, 116.2, 114.9, 113.5, 60.4, 55.4, 54.2, 54.0, 52.5, 51.9, 45.6, 45.4, 44.6, 43.7, 30.1, 29.7, 21.6, 19.2, 18.9; HRMS (ESI-TOF) *m/z*: C₂₈H₂₇NO₃(M +

H)⁺ calcd for 426.6024, found 426.6028.

5-benzyl-11b-(2-(4-methoxyphenyl)-2-oxoethyl)-6a-methyl-5,6a,7,11b-tetrahydro

-6H-indeno[2,1-c]quinolin-6-one (3qa): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield: 57.5 mg, 59%; yellow oil; ¹H NMR (400 MHz,

CDCl₃) δ : 7.85 (d, J = 8.9 Hz, 2H), 7.64 (d, J = 7.6 Hz, 1H), 7.37-7.31 (m, 5H), 7.25-7.21 (m, 4H), 6.92-6.90 (m, 1H), 6.85-6.76 (m, 4H), 5.90 (d, J = 16.4 Hz, 1H), 4.76 (d, J = 16.4 Hz, 1H), 4.13 (d, J = 17.3 Hz, 1H), 3.82 (s, 3H), 3.50 (d, J = 17.3 Hz, 1H), 3.38 (d, J = 15.1 Hz, 1H), 2.94 (d, J = 15.1 Hz, 1H), 1.36 (s, 3H).; $^{13}C{^{1}H}NMR$ (100 MHz, CDCl₃) δ : 195.6 , 173.9 , 163.4 , 148.2 , 140.7 , 139.5 , 138.1 , 130.3 , 129.8 , 129.0 , 128.6 , 127.4 , 127.2 , 126.8 , 126.7 , 126.3(2C) , 125.0 , 124.0 , 122.6 , 115.3 , 113.6 , 55.5 , 54.3 , 52.6 , 47.4 , 45.7 , 45.4 , 18.9; HRMS (ESI-TOF) *m/z*: C₃₃H₃₀NO₃ (M + H)⁺ calcd for 488.2221, found 488.2228.

1,3,4-Trimethyl-3-(2-oxo-2-(p-tolyl)ethyl)-5-phenyl-1,3-dihydro-2H-benzo[b]azep

in-2-one (**3tb**): by silica gel column chromatography (hexane/ethyl acetate = 10:1), yield: 47.4 mg, 58%; yellow oil; ¹H NMR (400 MHz, CDCl₃) δ : 7.39-7.28 (m, 8H), 7.08 (d, *J* = 7.9 Hz, 3H), 6.84 (t, *J* = 7.5 Hz,

1H), 6.77 (d, J = 8.0 Hz, 1H), 3.54 (s, 3H), 2.97 (d, J = 18.5 Hz, 1H), 2.72 (d, J = 18.5 Hz, 1H), 2.33 (s, 3H), 1.93 (s, 3H), 1.69 (s, 3H); $^{13}C\{^{1}H\}NMR$ (100 MHz, CDCl₃) δ : 197.0, 172.3, 143.5, 143.0, 141.3, 139.9, 135.0, 134.6, 130.5, 130.1, 129.1, 128.9, 128.2, 127.6, 127.5, 126.8, 123.5, 121.4, 47.8, 44.0, 38.0, 23.8, 21.5, 19.9; HRMS (ESI-TOF) m/z: C₂₈H₂₈NO₂ (M + H)⁺ calcd for 410.2115, found 410.2120.

2,6-Di-tert-butyl-4-neopentylphenol (7): by silica gel column chromatography (hexane/ethyl acetate = 100:1), yield: 33.1 mg, 60%; yellow oil; ^tBu
(hexane/ethyl acetate = 100:1), yield: 33.1 mg, 60%; yellow oil; ^tH NMR (400 MHz, CDCl₃) δ : 7.13 (s, 2H), 5.12 (s, 1H), 4.33 (s, 2H), 1.43 (s, 18H), 1.30 (s, 9H); ¹³C{¹H}NMR (100 MHz,

CDCl₃) δ : 153.1, 135.6, 129.9, 124.9, 73.1, 64.7, 34.2, 30.2, 27.7; HRMS (ESI-TOF) *m*/*z*: C₁₉H₃₃O (M + H)⁺ calcd for 277.2526, found 277.2531. 2,2,6,6-tetramethylpiperidin-1-yl 4-methoxybenzoate (8): by silica gel column chromatography (hexane/ethyl acetate = 12:1), yield:45.3 mg, 68%; yellow oil; ¹H

NMR (400 MHz, CDCl₃) δ : 8.03 (d, J = 8.9 Hz, 2H), 6.94 (d, J = 8.9 Hz, 2H), 3.87 (s, 3H), 1.84-1.67 (m, 4H), 1.60-1.56 (m, 2H), 1.27(s, 6H), 1.11(s, 6H);

¹³C{¹H}NMR (100 MHz, CDCl₃) δ: 166.1, 163.2, 131.5, 121.9, 113.7, 60.3, 55.4, 39.0, 31.9, 20.8, 17.0; HRMS (ESI-TOF) m/z: $C_{17}H_{26}NO_3 (M + H)^+$ calcd for 292.1908, found 292.1913.

1-(4-Methoxyphenyl)-3,3-diphenylprop-2-en-1-one (10): by silica gel column OMe chromatography (hexane/ethyl acetate = 12:1), yield:45.3mg, 68%; white solid; mp $110.0-110.5^{\circ}C$ (uncorrected); Ph \cap ¹H NMR (400 MHz, CDCl₃) δ : 7.91 (d, J = 8.8 Hz, 2H),

7.37 (d, J = 7.9 Hz, 4H), 7.30-7.20 (m, 6H), 6.86 (d, J = 8.9 Hz, 2H), 4.12 (s, 1H), 3.85 (s, 3H); $^{13}C\{^{1}H\}NMR$ (100 MHz, CDCl_3) δ : 195.6 , 163.0 , 143.7 , 131.5 , 130.7 , 127.5, 127.4, 127.0, 113.2, 86.4, 79.7, 55.4; HRMS (ESI-TOF) m/z: C₂₂H₁₉O₂ (M + H)⁺ calcd for 315.1380, found 315.1385.

4. References

Ph

[1] H.-W. Wang, B.-B. Wang, S. Sun, J. Cheng, Org. Chem. Front., 2018, 5,

2547-2551.

5. X-Ray Crystallographic Data

A single crystal of **3ag** suitable for X-ray crystallography was obtained by crystallization via evaporation from its PE/DCM solution.

Figure S3. X-Ray crystallographic data of **3ag**. Thermal ellipsoids are shown at the 30% level. Table S2. Crystal data and structure refinement for **3ag**

Bond precision:	C-C = 0.0018 A	Wavelength=1.54184		
Cell:	a=7.7575(2)	b=11.8553(3)	c=12.4714(3)	
	alpha=68.379(2)	beta=88.015(2)	gamma=75.886(2)	
Temperature:	100 K			
	Calculated	Reported		
Volume	1032.14(5)	1032.13(5)		
Space group	P -1	P -1		
Hall group	-P 1	-P 1		
Moiety formula	$C_{26}H_{22}CINO_2$	$C_{26}H_{22}ClNO_2$		
Sum formula	$C_{26}H_{22}CINO_2$	$C_{26}H_{22}ClNO_2$		
Mr	415.90	423.97		
Dx,g cm ⁻³	1.338	1.364		
Z	2	2		
$Mu (mm^{-1})$	1.816	1.795		
F000	436.0	450.0		
F000'	437.88			
h,k,lmax	9,14,15	9,14,15		
Nref	4336	4123		
Tmin,Tmax	0.760,0.764	0.755,1.000		
Tmin'	0.026			
Correction method= # Reported T		Limits: Tmin=0.755	Tmax=1.000	
AbsCorr = MULT	ΓI-SCAN			
Data completeness= 0.951		Theta(max)= 76.310		
R(reflections)= 0.0315(3990)		wR2(reflections) = 0.0	wR2(reflections) = 0.0807(4123)	
S = 1.040		Npar= 274		

7. Copies of NMR Spectra

11b-(2-(4-ethylphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-inde no[2,1-c]quinolin-6-one (3ac)

11b-(2-(4-isopropylphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-i ndeno[2,1-c]quinolin-6-one (3ad)

11b-(2-(4-(tert-butyl)phenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H -indeno[2,1-c]quinolin-6-one (3ae)

11b-(2-(4-chlorophenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-ind eno[2,1-c]quinolin-6-one (3ag)

11b-(2-(4-bromophenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-ind eno[2,1-c]quinolin-6-one (3ah)

5,6a-dimethyl-11b-(2-oxo-2-phenylethyl)-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c] quinolin-6-one (3ai)

5,6a-dimethyl-11b-(2-oxo-2-(4-(trifluoromethyl)phenyl)ethyl)-5,6a,7,11b-tetrahyd ro-6H-indeno[2,1-c]quinolin-6-one (3aj)

11b-(2-(3-methoxyphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-i ndeno[2,1-c]quinolin-6-one (3ak)

11b-(2-(2-chlorophenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-ind eno[2,1-c]quinolin-6-one (3an)

5,6a-dimethyl-11b-(2-oxo-2-(thiophen-2-yl)ethyl)-5,6a,7,11b-tetrahydro-6H-inden o[2,1-c]quinolin-6-one (3ao)

5,6a-dimethyl-11b-(2-(naphthalen-2-yl)-2-oxoethyl)-5,6a,7,11b-tetrahydro-6H-ind eno[2,1-c]quinolin-6-one (3ap)

5,6a-dimethyl-11b-(2-oxobutyl)-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c]quinolin-6-one (3aq)

5,6a-dimethyl-11b-(2-oxopentyl)-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c]quinolin -6-one (3ar)

5,6a-dimethyl-11b-(2-oxo-4-phenylbutyl)-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c] quinolin-6-one (3as)

5,6a-dimethyl-11b-(3-methyl-2-oxobutyl)-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c] quinolin-6-one (3au)

11b-isobutyl-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c]quinolin-6-on e (4au)

S89

11b-(cyclopentylmethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c]q uinolin-6-one (4av)

11b-(cyclohexylmethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c]qui nolin-6-one (4aw)

5,6a-dimethyl-11b-neopentyl-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c]quinolin-6-o ne (4ax)

S95

5,6a-dimethyl-11b-phenethyl-5,6a,7,11b-tetrahydro-6H-indeno[2,1-c]quinolin-6-o ne (4ay)

11b-(2-(4-methoxyphenyl)-2-oxoethyl)-2,5,6a-trimethyl-5,6a,7,11b-tetrahydro-6H -indeno[2,1-c]quinolin-6-one (3ba)

S99

2-ethyl-11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahyd ro-6H-indeno[2,1-c]quinolin-6-one (3ca)

2-(tert-butyl)-11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tet rahydro-6H-indeno[2,1-c]quinolin-6-one (3ea)

95-95-95

S110

2-chloro-11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahy dro-6H-indeno[2,1-c]quinolin-6-one (3ha)

2-bromo-11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a-dimethyl-5,6a,7,11b-tetrahy dro-6H-indeno[2,1-c]quinolin-6-one (3ia)

S116

11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a,9-trimethyl-5,6a,7,11b-tetrahydro-6H -indeno[2,1-c]quinolin-6-one (3la)

11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a,10-trimethyl-5,6a,7,11b-tetrahydro-6 H-indeno[2,1-c]quinolin-6-one (3pa) and 11b-(2-(4-methoxyphenyl)-2-oxoethyl)-5,6a,8-trimethyl-5,6a,7,11b-tetrahydro-6H -indeno[2,1-c]quinolin-6-one (3pa') mixture

1,3,4-Trimethyl-3-(2-oxo-2-(p-tolyl)ethyl)-5-phenyl-1,3-dihydro-2H-benzo[b]azep in-2-one (3tb)

2,6-Di-tert-butyl-4-neopentylphenol (7)

S135

2,2,6,6-tetramethylpiperidin-1-yl-4-methoxybenzoate (8)

1-(4-Methoxyphenyl)-3,3-diphenylprop-2-en-1-one (10)

