Construction of Thioglycoside Bond via asymmetric organocatalyzed sulfa-Michael/Aldol reaction: Access to 4'thionucleosides

Tao Wei, Ming-Sheng Xie* and Hai-Ming Guo*

School of Environment, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.

E-mail: xiemingsheng@htu.edu.cn, ghm@htu.edu.cn

Contents

1. General information	
2. The preparation of starting materials	
3. General procedure for the reaction	
4. Scale-up synthesis and transformation of products	
5. X-ray data of 3x	
6. Characterization of compounds	
7. Copies of ¹ H , ¹³ C NMR and ¹⁹ F NMR spectra	
8. Reference	

1. General information

¹H NMR and ¹³C NMR spectra were recorded on Bruker Avance III HD 600 or Avance 400 MHz spectrometer. Chemical shifts are recorded in ppm relative to tetramethylsilane with the solvent resonance as the internal standard. Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet), coupling constants (J) are in Hertz (Hz), and integration. Enantiomer excesses were determined by chiral HPLC analysis on Chiralcel IA/AS-H/ID/OD-H/IE/IG in comparison with the authentic racemates. Chiral HPLC analysis was recorded on Thermo Scientific Dionex Ultimate 3000 and Agilent Technologies 1260 Infinity. Optical rotations were recorded on Autopol Automatic Polarimeter, and were reported as follows: [α]_D^T (c: g/100 mL, in CH₂Cl₂). High resolution mass spectra (HRMS) was recorded on an ABI/Sciex QStar Mass Spectrometer (ESI). Single crystal X-ray crystallography data were obtained on Supernova Atlas S2 CCD detector. Melting point (m.p.) data were obtained on X-5 micro melting point apparatus. For column chromatography, silica gel (200-300 mesh) was used as the stationary phase. Unless stated otherwise, all the solvent and reagents were purchased from commercial suppliers and used without further purification.

2. The preparation of starting materials

Synthesis of Variously (E)- β -heteroaryl Propenyl Ketone (1a-1aa)¹: Method A:

General Procedure for the Synthesis of 1a-1d, 1j-1ad:

Purine, benzimidazole, imidazoles, (2.0 mmol), K₂CO₃ (1.0 mmol, 138 mg) and CH₃CN (8.0 mL) were mixed in a 15 mL flask. The mixture was stirred for 10 min at 80 °C, afterwards the acetylenic ketone (2.2 mmol) was added. After the reaction was completed, which was determined by TLC, the resulting mixture was filtered, and evaporated under reduced pressure. The mixture was directly purified by flash chromatography on silica gel (Pet/EtOAc = 7:1 - 3:1) to afford the products (*E*)- β -heteroaryl acrylates.

Method B:

General Procedure for the Synthesis of 1e-1i:

Purine, (2.0 mmol), sodium *tert*-butoxide (1.0 mmol) and DMF (5 mL) were mixed in a 15 mL flask. The mixture was stirred for 30 min at ambient temperature and then acetylenic ketone (2.2 mmol) was added. The reaction was complete after 6-12 h, as monitored by TLC, and the resulting mixture was partitioned between water and ethyl acetate, and the separated aqueous layer extracted with ethyl acetate (10 mL×3). The combined organic layers were washed with brine (100 mL×3), dried over anhydrous MgSO₄, filtered, and evaporated under reduced pressure. The mixture was directly purified by flash chromatography on silica gel (Pet/EtOAc = 7:1 - 1:1) to afford the products (*E*)- β -heteroaryl acrylates.

3. General procedure for the reaction

The synthetic procedure of **3a**: (*E*)-1-(6-chloro-9*H*-purin-9-yl)-4,4-dimethylpent-1-en-3-one **1a** (13.2 mg, 0.05 mmol), **2** (4.8 mg, 0.03 mmol), **C2** (1.58 mg, 5 mol %) in a reaction vessel. DCM (3.0 mL) was then added and the reaction mixture was stirred in oil both at 50 °C for 48 h. Then the resulting mixture was cooled down to room temperature. The solvent was removed under reduced pressure. The residue was purified by column chromatography on a silica gel (eluent: Pet/EtOAc = 2:1-1:1) to give the pure product **3a**.

4. Scale-up synthesis and transformation of products

Scale-up Synthesis: To a round-bottom flask equipped with a stir bar was charged with (*E*)-1-(6-chloro-9*H*-purin-9-yl)-4,4-dimethylpent-1-en-3-one **1s** (1.10 g, 3.32 mmol), **2** (0.30 g, 1.99 mmol), **C2** (105 mg, 5 mol%) in a reaction vessel. DCM (100 mL) was then added and the reaction mixture was stirred in oil both at 50 °C for 48 h. Then the resulting mixture was cooled down to room temperature. The solvent was removed under reduced pressure. The residue was purified by column chromatography on a silica gel (eluent: Pet/EtOAc = 2:1 - 1:1) to give the pure product **3s**.

According to the literature,² In a test tube, **3s** (0.05 mmol, 20.9 mg, 90% ee) was dissolved in anhydrous CH_2Cl_2 (1.0 mL), DAST (2.3 equiv., 0.13 mmol, 21.0 mg) was added under N_2 atmosphere. The resulting solution was stirred at room temperature for 1.5 h. After the reaction was completed, which was determined by TLC, the mixture was directly purified by flash chromatography on silica gel was purified by silica gel flash chromatography (Pet/EtOAc = 1:2) to yield the product **5a** as a colorless oil (75% yield, 15.8 mg, 90% ee).

According to the literature,³ In a test tube, **3s** (0.05 mmol, 20.9 mg, 90% ee) was dissolved in CH₂Cl₂ (1.0 mL) and the reaction mixture was stirred at the room temperature. Then, *m*-CPBA (2.0 equiv, 0.1 mmol, 17.2 mg) was added. The reaction mixture was stirred overnight, After the reaction was completed, which was determined by TLC, the mixture was directly purified by flash chromatography on silica gel (Pet/EtOAc = 1:2) to afford product **5b** as a white solid (85% yield, 19.2 mg, 90% ee).

5. X-ray data of 3x

Table S1 Crystal data and structure refinement for 3x.

Identification code	3x	
Empirical formula	$C_{17}H_{22}N_2O_2S$	
Formula weight	318.42	
Temperature/K	293(2)	
Crystal system	monoclinic	
Space group	P21	
a/Å	10.90480(10)	
b/Å	14.2184(2)	
c/Å	11.99560(10)	
α/°	90	
β/°	110.3770(10)	
γ/°	90	
Volume/Å ³	1743.51(3)	
Ζ	4	
$\rho_{calc}g/cm^3$	1.213	
μ/mm^{-1}	1.713	
F(000)	680.0	
Crystal size/mm ³	$0.14 \times 0.12 \times 0.09$	
Radiation	Cu Ka ($\lambda = 1.54184$)	
20 range for data collection/° 7.862 to 142.782		
Index ranges	$-13 \le h \le 13, -16 \le k \le 17, -14 \le l \le 14$	
Reflections collected	44786	
Independent reflections	6391 [$R_{int} = 0.0746$, $R_{sigma} = 0.0345$]	
Data/restraints/parameters	6391/1/407	
Goodness-of-fit on F ²	1.137	
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0732, wR_2 = 0.2000$	
Final R indexes [all data]	$R_1 = 0.0768, wR_2 = 0.2085$	
Largest diff. peak/hole / e Å	³ 0.26/-0.55	
Flack/Hooft parameter	0.01(3)/0.01(6)	

6. Characterization of compounds

(E)-1-(6-chloro-9H-purin-9-yl)-4,4-dimethylpent-1-en-3-one (1a)

Pale-yellow solid, m.p. = 233.2-236.6 °C, 56% yield.

 $R_f = 0.13$ (Pet/EtOAc, 5/1, v/v).

¹**H NMR** (400 MHz, CDCl₃) δ 8.89 (s, 1H), 8.32 (s, 1H), 8.09 (d, J = 14.0 Hz, 1H), 7.92 (d, J = 14.0 Hz,

1H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 203.7, 153.3, 152.2, 151.6, 144.6, 133.1, 132.1, 114.1, 43.8, 26.2.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{12}H_{14}CIN_4O$ m/z 265.0851, found 265.0845.

(E)-1-(6-bromo-9H-purin-9-yl)-4,4-dimethylpent-1-en-3-one (1b)

Pale-yellow solid, m.p. 238.1-241.3 °C, 62% yield.

 $R_f = 0.14$ (Pet/EtOAc, 5/1, v/v).

¹**H NMR** (600 MHz, CDCl₃) δ 8.85 (s, 1H), 8.32 (s, 1H), 8.07 (d, J = 13.8 Hz, 1H), 7.92 (d, J = 13.8 Hz,

1H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 203.8, 153.2, 150.3, 144.5, 144.2, 135.7, 132.2, 114.1, 43.8, 26.2.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{12}H_{14}BrN_4O$ 309.0346, found 309.0342.

(E)-1-(6-iodo-9H-purin-9-yl)-4,4-dimethylpent-1-en-3-one (1c)

Pale-yellow solid, m.p. 247.5-250.9 °C, 57% yield.

 $R_f = 0.13$ (Pet/EtOAc, 5/1, v/v).

¹**H NMR** (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.33 (s, 1H), 8.06 (d, J = 14.0 Hz, 1H), 7.92 (d, J = 14.0 Hz,

1H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 203.8, 153.2, 147.9, 144.0, 144.6, 132.3, 123.0, 114.1, 43.8, 26.2.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{12}H_{14}IN_4O$ 357.0207, found 357.0200.

tert-butyl(E)-(tert-butoxycarbonyl)(9-(4,4-dimethyl-3-oxopent-1-en-1-yl)-9H-purin-6-yl) carbamat

e (1d)

white solid, m.p. 37.6-46.4 °C, 39% yield.

 $R_f = 0.11$ (Pet/EtOAc, 8/1, v/v).

¹**H NMR** (400 MHz, CDCl₃) δ 8.98 (s, 1H), 8.23 (s, 1H), 8.08 (d, J = 14.0 Hz, 1H), 7.93 (d, J = 14.0 Hz,

1H), 1.46 (s, 18H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 204.0, 153.4, 150.4, 144.0, 132.4, 113.4, 84.2, 43.8, 27.9, 26.3.

HRMS (ESI-TOF) m/z: [M+H] ⁺ calcd for C₂₂H₃₂N₅O₅ 468.2217, found 468.2209.

(E)-1-(6-methoxy-9H-purin-9-yl)-4,4-dimethylpent-1-en-3-one (1e)

Pale-yellow solid, m.p. 178.5-182.8 °C, 49% yield.

 $R_{f} = 0.10$ (Pet/EtOAc, 3/1, v/v).

¹**H NMR** (600 MHz, CDCl₃) δ 9.22 (s, 1H), 9.13 (s, 1H), 8.27 (s, 1H), 8.10 (d, *J* = 13.8 Hz, 1H), 7.97

(d, J = 14.4 Hz, 1H), 1.28 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 204.1, 153.9, 151.3, 149.5, 144.8, 135.4, 132.4, 113.4, 43.8, 29.8, 26.3.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{12}H_{15}N_4O$ 231.1240, found 231.1239.

(E)-1-(6-methoxy-9H-purin-9-yl)-4,4-dimethylpent-1-en-3-one (1f)

white solid, m.p. 196.7-201.2 °C, 65% yield.

 $R_f = 0.11$ (Pet/EtOAc, 5/1, v/v).

¹**H NMR** (400 MHz, CDCl₃) δ 8.66 (s, 1H), 8.11 (s, 1H), 8.08 (d, J = 14.0 Hz, 1H), 7.88 (d, J

1H), 4.22 (s, 3H) 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 204.1, 161.5, 153.5, 151.9, 141.7, 132.8, 113.0, 54.6, 43.8, 26.3.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{13}H_{17}N_4O_2$ 261.1346, found 261.1340.

(E)-1-(6-amino-9H-purin-9-yl)-4,4-dimethylpent-1-en-3-one (1g)

Pale-yellow solid, m.p. 227.7-230.0 °C, 42% yield.

 $R_{\rm f} = 0.15$ (EtOAc).

¹**H NMR** (400 MHz, DMSO-*d*₆) δ8.72 (s, 1H), 8.28 (s, 1H), 8.11 (d, *J* = 14.0 Hz, 1H), 7.79 (d, *J* = 14.0

Hz, 1H), 7.51 (br, 1H), 1.18 (s, 9H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 203.3, 156.2, 153.8, 149.3, 140.0, 132.9, 119.3, 110.5, 43.0, 25.8.

HRMS (ESI-TOF): [M+Na]⁺ calcd for C₁₂H₁₅N₅NaO 268.1169 found 268.1168.

(E)-1-(6-chloro-2-fluoro-9H-purin-9-yl)-4,4-dimethylpent-1-en-3-one (1h)

Pale-yellow solid, m.p. 196.7-201.2 °C, 52% yield.

 $R_f = 0.11$ (Pet/EtOAc, 5/1, v/v).

¹**H NMR** (400 MHz, CDCl₃) δ 8.29 (s, 1H), 8.01 (d, *J* = 14.0 Hz, 1H), 7.76 (d, *J* = 14.0 Hz, 1H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 203.5, 159.0, 156.8, 154.1, 145.1 (d, *J*_{C-F} = 4.0 Hz, 1H), 131.7, 125.8, 114.5, 113.8, 43.9, 26.4, 26.1.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{12}H_{13}ClFN_4O$ 283.0756, found 283.0751.

(E)-1-(2-amino-6-chloro-9H-purin-9-yl)-4,4-dimethylpent-1-en-3-one (1i)

Pale-yellow solid, m.p. 234.1-237.0 °C, 52% yield.

 $R_{\rm f} = 0.15$ (EtOAc).

¹**H NMR** (400 MHz, DMSO- d_6) δ 8.70 (s, 1H), 7.99 (d, J = 14.0 Hz, 1H), 7.69 (d, J = 14.4 Hz, 1H), 7.27

(br, 1H), 1.18 (s, 9H).

¹³C NMR (100 MHz, DMSO-*d*₆) δ 203.3, 160.4, 153.5, 150.0, 141.2, 132.1, 123.8, 110.7, 39.9, 25.7. HRMS (ESI-TOF): [M+Na]⁺ calcd for C₁₂H₁₄ClN₅NaOS 302.0779 found 302.0775.

(E)-9-(4,4-dimethyl-3-oxopent-1-en-1-yl)-1,3-dimethyl-3,9-dihydro-1H-purine-2,6-dione (1j)

Pale-yellow solid, m.p. 216.1-219.0 °C, 53% yield.

 $R_f = 0.13$ (Pet/EtOAc, 2/1, v/v).

¹**H NMR** (400 MHz, CDCl₃) δ 8.09 (d, J = 13.6 Hz, 1H), 7.96 (s, 1H), 7.79 (d, J = 14.0 Hz, 1H), 3.62 (s,

3H), 3.44 (s, 3H), 1.23 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 203.7, 154.7, 151.4, 150.8, 141.9, 133.8, 114.4, 43.8, 30.3, 28.8, 26.2.
HRMS (ESI-TOF): [M+Na]⁺ calcd for C₁₄H₁₈N₄NaO₃ 313.1271 found 313.1269.

(E)-1-(4-chloro-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-4,4-dimethylpent-1-en-3-one (1k)

White solid, m.p. 162.8-166.3 °C, 70% yield.

 $R_f = 0.14$ (Pet/EtOAc, 6/1, v/v).

¹**H NMR** (400 MHz, CDCl₃) δ 8.73 (s, 1H), 8.32 (d, J = 14.0 Hz, 1H), 7.51 (d, J = 4.0 Hz, 1H), 7.31 (d,

J = 14.0 Hz, 1H), 6.75 (d, *J* = 4.0 Hz, 1H), 1.23 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 203.8, 152.9, 152.3, 152.0, 134.6, 126.9, 119.5, 109.6, 103.7, 43.5, 26.4.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{13}H_{15}CIN_3O$ 264.0898, found 264.0893.

(E)-1-(6-chloro-9H-purin-9-yl)-4,4-dimethylhex-1-en-3-one (11)

white solid, m.p. 155.3-157.0 °C, 68% yield.

 $R_f = 0.14$ (Pet/EtOAc, 5/1, v/v).

¹**H NMR** (600 MHz, CDCl₃) δ 8.90 (s, 1H), 8.33 (s, 1H), 8.09 (d, J = 13.8 Hz, 1H), 7.91 (d, J

1H), 1.70 (q, *J* = 7.8 Hz, 2H), 1.22 (s, 6H), 0.85 (t, *J* = 7.8 Hz, 3H).

¹³**C NMR** (150 MHz, CDCl₃) δ 203.7, 153.3, 152.1, 151.5, 144.7, 133.1, 132.1, 114.2, 47.6, 32.4, 23.6,

9.2.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{13}H_{16}CIN_4O$ 279.1007, found 279.0999.

(E)-1-(6-chloro-9H-purin-9-yl)-4,4-dimethylhept-1-en-3-one (1m)

white solid; m.p. 130.3-135.5 °C; 69% yield.

 $R_f = 0.12$ (Pet/EtOAc, 5/1, v/v).

¹**H NMR** (600 MHz, CDCl₃) δ 8.90 (s, 1H), 8.32 (s, 1H), 8.08 (d, J = 13.8 Hz, 1H), 7.91 (d, J = 13.8 Hz,

1H), 1.60-1.63 (m, 2H), 1.24-1.26 (m, 2H), 1.23 (s, 6H), 0.91 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (150 MHz, CDCl₃) δ 203.7, 153.3, 152.1, 151.5, 144.6, 133.1, 132.0, 114.2, 47.4, 42.2, 24.1, 18.2, 14.8.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{14}H_{18}CIN_4O$ 293.1164, found 293.1159.

(E)-1-(6-chloro-9H-purin-9-yl)-4,4-dimethyloct-1-en-3-one (1n)

white solid, m.p. 130.3-135.5 °C, 75% yield.

 $R_{f} = 0.12$ (Pet/EtOAc, 5/1, v/v).

¹H NMR (600 MHz, CDCl₃) δ 8.89 (s, 1H), 8.35 (s, 1H), 8.10 (d, *J* = 13.8 Hz, 1H), 7.92 (d, *J* = 13.8 Hz, 1H), 1.62-1.65 (m, 2H), 1.26-1.31 (m, 2H), 1.22 (s, 6H), 1.16-1.20 (m, 2H), 0.86 (t, *J* = 7.2 Hz, 3H).
¹³C NMR (150 MHz, CDCl₃) δ 203.8, 153.3, 152.1, 151.5, 144.7, 133.1, 132.1, 114.2, 47.3, 39.6, 27.1, 24.1, 23.4, 14.1.

HRMS (ESI-TOF): [M+H]⁺ calcd for C₁₅H₂₀ClN₄O 307.1320, found 307.1320.

(E)-1-(6-chloro-9H-purin-9-yl)-4,4-dimethylhepta-1,6-dien-3-one (10)

White solid, m.p. 110.9-114.5 °C, 71% yield.

 $R_f = 0.12$ (Pet/EtOAc, 5/1, v/v).

¹**H NMR** (600 MHz, CDCl₃) δ 8.89 (s, 1H), 8.35 (s, 1H), 8.09 (d, J = 13.8 Hz, 1H), 7.94 (d, J = 13.8 Hz,

1H), 5.67-5.74 (m, 1H), 5.05-5.09 (m, 2H), 2.39 (d, *J* = 7.2 Hz, 2H), 1.24 (s, 6H).

 $^{13}C \text{ NMR} (150 \text{ MHz}, \text{CDCl}_3) \\ \delta 203.0, 153.3, 152.2, 151.6, 144.7, 133.7, 133.1, 132.2, 118.6, 114.3, 47.2, 133.1, 132.2, 133.1, 132.2, 133.1, 132.2, 133.1, 132.2, 133.1, 132.2, 133.1, 133.$

43.8, 23.9.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{14}H_{16}CIN_4O$ 291.1007, found 291.1003.

(E)-1-(6-chloro-9H-purin-9-yl)-4,4-diethylhex-1-en-3-one (1p)

White solid, m.p. 185.5-188.1 °C, 62% yield.

 $R_f = 0.18$ (Pet/EtOAc, 5/1, v/v).

¹**H NMR** (400 MHz, CDCl₃) δ 8.90 (s, 1H), 8.33 (s, 1H), 8.10 (d, J = 13.6 Hz, 1H), 7.94 (d, J = 14.0 Hz,

1H), 1.70 (q, *J* = 7.6 Hz, 6H), 0.78 (t, *J* = 7.6 Hz, 9H).

 $^{13}C \text{ NMR} (100 \text{ MHz}, \text{CDCl}_3) \\ \delta \\ 203.9, 153.3, 152.1, 151.6, 144.7, 133.1, 131.9, 114.5, 54.5, 25.1, 8.3.$

HRMS (ESI-TOF): $[M+Na]^+$ calcd for $C_{15}H_{19}CIN_4$ Na O 329.1140, found 329.1139.

(E)-3-(6-chloro-9H-purin-9-yl)-1-(1-methylcyclohexyl)prop-2-en-1-one (1q)

White solid, m.p. 172.2-176.7 °C, 86% yield.

 $R_{f} = 0.14$ (Pet/EtOAc, 5/1, v/v).

¹**H NMR** (600 MHz, CDCl₃) δ 8.90 (s, 1H), 8.32 (s, 1H), 8.09 (d, J = 13.8 Hz, 1H), 7.92 (d, J = 13.8 Hz,

1H), 2.04-2.07 (m, 2H), 1.58-1.62 (m, 2H), 1.48-1.51 (m, 1H), 1.36-1.44 (m, 5H), 1.20 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 203.8, 153.3, 152.1, 151.5, 144.6, 133.1, 132.1, 114.3, 47.8, 34.6, 26.0, 23.0.

HRMS (ESI-TOF): [M+H]⁺ calcd for C₁₅H₁₈ClN₄O 305.1164, found 305.1157.

(E)-3-(6-chloro-9H-purin-9-yl)-1-(1-methylcyclopentyl)prop-2-en-1-one (1r)

white solid, m.p. 182.1-182.9 °C, 81% yield.

 $R_{f} = 0.13$ (Pet/EtOAc, 5/1, v/v).

¹**H NMR** (400 MHz, CDCl₃) δ 8.89 (s, 1H), 8.31 (s, 1H), 8.10 (d, *J* = 14.0 Hz, 1H), 7.82 (d, *J* = 14.0 Hz,

1H), 2.13-2.19 (m, 2H), 1.69-1.79 (m, 4H), 1.52-1.55 (m, 2H), 1.32 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 202.9, 153.3, 152.2, 144.5, 133.1, 131.9, 115.2, 55.2, 36.5, 25.6, 24.5.

HRMS (ESI-TOF): [M+H]⁺ calcd for C₁₄H₁₆ClN₄O 291.1007, found 291.0998.

(E)-1-((3r,5r,7r)-adamantan-1-yl)-3-(6-chloro-9H-purin-9-yl)prop-2-en-1-one (1s)

white solid, m.p. 280.8-283.0 °C, 75% yield.

 $R_f = 0.12$ (Pet/EtOAc, 5/1, v/v).

¹**H NMR** (600 MHz, CDCl₃) δ 8.92 (s, 1H), 8.31 (s, 1H), 8.07 (d, J = 13.8 Hz, 1H), 7.91 (d, J = 14.4 Hz,

1H), 2.11-2.15 (m, 3H), 1.87-1.95 (m, 6H), 1.73-1.83 (m, 6H).

¹³C NMR (150 MHz, CDCl₃) δ 203.3, 153.4, 144.6, 133.1, 132.1, 113.7, 46.1, 38.0, 36.6, 29.9, 29.9, 28.0.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{18}H_{20}CIN_4O$ 343.1320, found 343.1313.

(E)-1-(1H-benzo[d]imidazol-1-yl)-4,4-dimethylpent-1-en-3-one (1t)

White solid, m.p. 151.9-155.6 °C, 76% yield.

 $R_f = 0.10$ (Pet/EtOAc, 4/1, v/v).

¹**H NMR** (600 MHz, CDCl₃) δ 8.24 (s, 1H), 8.15 (d, *J* = 13.8 Hz, 1H), 7.85 (d, *J* = 7.8 Hz, 1H), 7.63 (d,

J = 7.8 Hz, 1H), 7.38-7.45 (m, 2H), 6.97 (d, *J* = 13.8 Hz, 1H), 1.27 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 203.6, 144.7, 141.7, 134.6, 132.5, 125.1, 124.5, 121.4, 111.2, 108.2, 43.6, 26.5.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{14}H_{17}N_2O$ 229.1335, found 229.3025.

(E)-1-(2-chloro-1H-benzo[d]imidazol-1-yl)-4,4-dimethylpent-1-en-3-one (1u)

White solid, m.p. 151.9-155.6 °C, 68% yield.

 $R_f = 0.10$ (Pet/EtOAc, 4/1, v/v).

¹**H NMR** (600 MHz, CDCl₃) δ 8.17 (d, *J* = 14.4 Hz, 1H), 7.71(d, *J* = 7.8 Hz, 1H), 7.59 (d, *J* = 8.4 Hz,

1H), 7.34-7.42 (m, 2H), 7.09 (d, *J* = 13.8 Hz, 1H), 1.26 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 203.4, 142.4, 141.4, 134.1, 133.3, 125.0, 124.8, 120.5, 111.8, 111.0, 43.6, 26.4.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{14}H_{16}CIN_2O$ 263.0946, found 263.0947.

(E)-1-(2-bromo-1H-benzo[d]imidazol-1-yl)-4,4-dimethylpent-1-en-3-one (1v)

White solid, m.p. 113.6-117.1 °C, 52% yield.

 $R_f = 0.10$ (Pet/EtOAc, 4/1, v/v).

¹**H NMR** (400 MHz, CDCl₃) δ 8.19 (d, *J* = 14.0 Hz, 1H), 7.71-7.77 (m, 1H), 7.59-7.64 (m, 1H), 7.33-7.43 (m, 2H), 7.11 (d, *J* = 14.0 Hz, 1H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 203.4, 144.1, 135.5, 133.7, 131.1, 125.0, 124.7, 120.5, 111.8, 111.2, 43.6, 26.4.

HRMS (ESI-TOF): [M+Na]⁺ calcd for C₁₄H₁₆BrN₂NaO 329.0260 found 329.0252.

(E)-1-(2-ethyl-1H-benzo[d]imidazol-1-yl)-4,4-dimethylpent-1-en-3-one (1w)

White solid, m.p. 99.8-102.5 °C, 76% yield.

 $R_f = 0.12$ (Pet/EtOAc, 4/1, v/v).

¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 14.0 Hz, 1H), 7.72-7.78 (m, 1H), 7.56-7.63 (m, 1H), 7.29-7.38 (m, 2H), 7.00 (d, J = 14.0 Hz, 1H), 3.02 (q, J = 7.6 Hz, 2H), 1.48 (t, J = 7.6 Hz, 3H), 1.26 (s, 9H).
¹³C NMR (100 MHz, CDCl₃) δ 204.0, 157.3, 143.7, 135.0, 133.3, 124.1, 124.1, 120.3, 112.1, 109.2, 43.5, 26.5, 21.8, 11.6.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{15}H_{19}N_2O$ 243.1492 found 243.1484.

(E)-4,4-dimethyl-1-(2-methyl-1H-benzo[d]imidazol-1-yl) pent-1-en-3-one (1x)

White solid, m.p. 73.3-76.9 °C, 58% yield.

 $R_f = 0.12$ (Pet/EtOAc, 4/1, v/v).

¹**H NMR** (600 MHz, CDCl₃) δ 8.24 (d, *J* = 13.8 Hz, 1H), 7.65-7.69 (m, 1H), 7.53-7.58 (m, 1H), 7.27-

7.33 (m, 2H), 6.96 (d, *J* = 13.8 Hz, 1H), 2.68 (s, 3H), 1.24 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) & 203.8, 152.8, 143.6, 135.1, 133.1, 124.1, 124.0, 120.1, 111.9, 109.0, 43.4,

26.4, 14.9.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{16}H_{21}N_2O$ 257.1648 found 257.1650.

(E)-4,4-dimethyl-1-(2-phenyl-1H-benzo[d]imidazol-1-yl)pent-1-en-3-one (1y)

White solid, m.p. 157.8-161.8 °C, 66% yield.

 $R_{f} = 0.20$ (Pet/EtOAc, 5/1, v/v).

¹**H NMR** (600 MHz, CDCl₃) δ 7.97 (d, J = 13.8 Hz, 1H), 7.53-7.60 (m, 2H), 7.45-7.50 (m, 3H), 7.40 (s,

1H), 7.22 (s, 1H), 6.67 (d, *J* = 13.8 Hz, 1H), 1.19 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 203.5, 150.1, 136.4, 130.9, 129.9, 129.7, 129.2, 129.0, 116.6, 109.9, 43.5,

26.3.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{20}H_{21}N_2O$ 305.1648 found 305.1645.

(E)-4,4-dimethyl-1-(2-(trifluoromethyl)-1H-benzo[d]imidazol-1-yl)pent-1-en-3-one (1z)

F₃C-

White solid, m.p. 76.9-80.9 °C, 63% yield.

 $R_f = 0.40$ (Pet/EtOAc, 5/1, v/v).

¹**H NMR** (400 MHz, CDCl₃) δ 8.15 (dq, J = 1.2, 14.0 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.69 (d, J = 8.4

Hz, 1H), 7.53-7.58 (m, 1H), 7.46-7.51 (m, 1H), 7.14 (d, *J* = 13.6 Hz, 1H), 1.27 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 202.9, 141.8, 133.8 (q, *J*_{C-F}= 12.0 Hz, 1H), 133.5 (q, *J*_{C-F}= 8.0 Hz, 1H),

127.2, 125.4, 122.7, 114.5, 112.7, 43.7, 27.1, 26.2.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{15}H_{16}F_3N_2O$ 297.1209 found 297.1206.

(E)-1-(5,6-dimethyl-1H-benzo[d]imidazol-1-yl)-4,4-dimethylpent-1-en-3-one (1aa)

white solid, m.p. 174.2-177.9 °C, 54% yield.

 $R_f = 0.10$ (Pet/EtOAc, 3/1, v/v).

¹**H NMR** (600 MHz, CDCl₃) δ 8.12 (s, 1H), 8.10 (d, *J* = 14.4 Hz, 1H), 7.57 (s, 1H), 7.36 (s, 1H), 6.90 (d, *J* = 13.8 Hz, 1H), 2.42 (s, 3H), 2.37 (s, 3H), 1.26 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 203.7, 143.2, 141.0, 134.8, 134.3, 133.4, 130.9, 121.3, 111.5, 107.5, 43.5, 26.5, 20.9, 20.4.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{16}H_{21}N_2O$ 257.1648 found 257.1652.

(E)-1-(3H-imidazo[4,5-c]pyridin-3-yl)-4,4-dimethylpent-1-en-3-one (1ab)

White solid, m.p. 203.0-207.1 °C, 62% yield.

 $R_{f} = 0.10$ (Pet/EtOAc, 2/1, v/v).

¹**H NMR** (600 MHz, CDCl₃) δ 9.18 (s, 1H), 8.61 (d, *J* = 5.4 Hz, 1H), 8.29 (s, 1H), 8.11 (d, *J* = 13.8 Hz,

1H), 7.57 (d, *J* = 5.4 Hz, 1H), 7.00 (d, *J* = 14.4 Hz, 1H), 1.27 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 203.1, 144.6, 144.2, 142.5, 141.4, 137.5, 133.6, 110.2, 106.5, 43.7, 26.4.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{13}H_{16}N_3O$ 230.1288 found 230.1283.

(E)-4,4-dimethyl-1-(2-phenyl-1*H*-imidazol-1-yl)pent-1-en-3-one (1ac)

White solid, m.p. 85.1-88.3 °C, 71% yield.

 $R_f = 0.10$ (Pet/EtOAc, 5/1, v/v).

¹**H NMR** (600 MHz, CDCl₃) δ 7.97 (d, *J* = 13.8 Hz, 1H), 7.54-7.58 (m, 2H), 7.46-7.52 (m, 3H), 7.40 (s,

1H), 7.22 (s, 1H), 6.67 (d, *J* = 13.8 Hz, 1H), 1.19 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 203.5, 150.1, 136.4, 130.9, 129.9, 129.7, 129.2, 129.0, 116.6, 109.9, 43.5,

26.3.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{16}H_{19}N_2O$ 255.1492 found 255.1484.

(E)-1-(4, 5-diphenyl-1H-imidazol-1-yl)-4, 4-dimethylpent-1-en-3-one (1ad)

White soild, m.p. 222.6-225.4 °C, 65% yield.

 $R_f = 0.10$ (Pet/EtOAc, 5/1, v/v).

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.62 (d, *J* = 14.4 Hz, 1H), 7.46-7.52 (m, 5H), 7.32-7.39 (m, 2H), 7.16-7.25 (m, 3H), 6.54 (d, *J* = 14.0 Hz, 1H), 1.12 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 203.4, 135.4, 134.8, 131.2, 129.6, 129.6, 129.3, 128.4, 127.3, 127.1, 110.0, 43.4, 26.2.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{22}H_{23}N_2O$ 331.1805 found 331.1799.

1-((2*R*, 3*S*, 4*S*)-2-(6-chloro-9*H*-purin-9-yl)-4-hydroxytetrahydrothiophen-3-yl)-2, 2-dimethylpro pan-1-one (3a)

Pale yellow gum, 15.8 mg, 93% yield.

 $R_{f} = 0.10$ (Pet/EtOAc, 2/1, v/v).

 $[\alpha]_D^{22} = -85.1$ (c = 0.53, CH₂Cl₂).

HPLC CHIRALCEL IE, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 18.332 min (major), 25.393 min (minor), 91% ee, >20:1 dr.

¹**H NMR** (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.23 (s, 1H), 6.66 (d, *J* = 8.4 Hz, 1H), 4.94-4.98 (m, 1H), 4.64 (dd, *J* = 3.6, 8.0 Hz, 1H), 3.98 (dd, *J* = 3.2, 11.6 Hz, 1H), 3.27 (dd, *J* = 1.6, 11.6 Hz, 1H), 0.93 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 212.5, 152.1, 151.8, 151.2, 145.0, 132.9, 77.0, 64.8, 59.2, 45.1, 43.5, 25.6.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{14}H_{18}CIN_4O_2S$ 341.0834 found 341.0833.

1-((2R, 3S, 4S)-2-(6-bromo-9H-purin-9-yl)-4-hydroxytetrahydrothiophen-3-yl)-

2,2-dimethylpropan-1-one (3b)

Pale yellow solid, m.p. 129.2-134.6 °C, 18.5 mg, 96% yield.

 $R_{f} = 0.12$ (Pet/EtOAc, 2/1, v/v).

 $[\alpha]_D^{22} = -79.1$ (c = 0.92, CH₂Cl₂).

HPLC CHIRALCEL IE, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 18.578 min (major), 31.713 min (minor), 90% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 8.73 (s, 1H), 8.23 (s, 1H), 6.64 (d, *J* = 8.4 Hz, 1H), 4.96 (s, 1H), 4.63 (dd, *J* = 3.6, 8.4 Hz, 1H), 3.98 (dd, *J* = 3.0, 11.4 Hz, 1H), 3.27 (dd, *J* = 1.8, 12.0 Hz, 1H), 3.01 (s, 1H), 0.94 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 212.6, 152.0, 149.9, 144.8, 144.0, 135.5, 77.0, 64.9, 59.2, 45.2, 43.6, 25.6.

HRMS (ESI-TOF): [M+Na]⁺ calcd for C₁₄H₁₇BrN₄NaO₂S 407.0148 found 407.0150.

1-((2R, 3S, 4S)-4-hydroxy-2-(6-iodo-9H-purin-9-yl)tetrahydrothiophen-3-yl)-2,2-dimethylpropan-1-one (3c)

Colorless oil, 21 mg, 96% yield.

 $R_f = 0.12$ (Pet/EtOAc, 2/1, v/v).

 $[\alpha]_D^{22} = -67.8 (c = 0.70, CH_2Cl_2).$

HPLC CHIRALCEL IC, n-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, $\lambda = 256$ nm, retention time: 17.593 min (minor), 19.765 min (major), 88% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 8.65 (s, 1H), 8.21 (s, 1H), 6.61 (d, *J* = 7.8 Hz, 1H), 4.95 (s, 1H), 4.64 (dd, *J* = 4.2, 8.1 Hz, 1H), 3.98 (dd, *J* = 3.0, 12.0 Hz, 1H), 3.27 (dd, *J* = 1.8, 11.4 Hz, 1H), 2.97 (d, *J* = 6.0 Hz, 1H), 0.94 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 212.7, 152.0, 147.4, 144.2, 139.8, 123.0, 77.1, 59.2, 45.2, 43.6, 25.6.

HRMS (ESI-TOF): [M+Na]⁺ calcd for C₁₄H₁₇IN₄NaO₂S 455.0009 found 455.0006.

Racemic sample of 3c

tert-butyl (tert-butoxycarbonyl)(9-((2R, 3S, 4S)-4-hydroxy-3-pivaloyltetrahydrothiophen-2-yl)-

9H-purin-6-yl)carbamate (3d)

White solid, m.p. 52.5-55.4 °C, 21.1 mg, 81% yield.

 $R_f = 0.14$ (Pet/EtOAc, 2/1, v/v).

 $[\alpha]_D^{22} = -68.2 (c = 0.22, CH_2Cl_2).$

HPLC CHIRALCEL IF, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 10.440 min (major), 13.827 min (minor), 91% ee, >20:1 dr.

¹**H NMR** (400 MHz, CDCl₃) δ 8.87 (s, 1H), 8.13 (s, 1H), 6.62 (d, J = 8.4 Hz, 1H), 4.89-4.97 (m, 1H), 4.69 (dd, J = 3.6, 8.0 Hz, 1H), 3.97 (dd, J = 3.0, 11.4 Hz, 1H), 3.27 (dd, J = 1.6, 11.6 Hz, 1H), 2.99 (d, J= 6.0 Hz, 1H), 1.42 (s, 18H), 0.91 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 213.1, 152.7, 152.2, 151.0, 150.3, 144.3, 130.1, 84.0, 77.0, 64.7, 58.9, 45.2, 43.5, 27.9, 25.5.

HRMS (ESI-TOF): [M+Na]⁺ calcd for C₂₄H₃₅N₅NaO₆S 544.2200 found 544.2200.

1-((2R, 3S, 4S)-4-Hydroxy-2-(9H-purin-9-yl)tetrahydrothiophen-3-yl)-2,2-dimethylpropan-1-one

(3e)

Colorless oil, 21.1 mg, 84% yield.

 $R_f = 0.10$ (Pet/EtOAc, 1/1, v/v).

 $[\alpha]_D^{22} = -54.0 \text{ (c} = 0.67, CH_2Cl_2).$

HPLC CHIRALCEL IA, n-hexane/2-propanol = 70/30, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 10.348 min (major), 14.007 min (minor), 87% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 9.15 (s, 1H), 9.01 (s, 1H), 8.16 (s, 1H), 6.65 (d, *J* = 7.8 Hz, 1H), 4.92-4.96 (m, 1H), 4.71 (dd, J = 3.6, 7.8 Hz, 1H), 4.00 (dd, J = 3.0, 12.0 Hz, 1H), 3.28 (dd, J = 1.2, 11.4 Hz, 1H), 2.97 (br, 1H), 0.91 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 213.0, 152.7, 150.9, 149.4, 145.0, 135.3, 77.0, 64.5, 58.9, 45.2, 43.5, 25.6.

HRMS (ESI-TOF): [M+Na]⁺ calcd for C₁₄H₁₈N₄NaO₂S 329.1043 found 329.1037.

Racemic sample of 3e

1-((2*R*, 3*S*, 4*S*)-4-Hydroxy-2-(6-methoxy-9*H*-purin-9-yl)tetrahydrothiophen-3-yl)-2,2-dimethylpr opan-1-one (3f)

Colorless oil, 15.3 mg, 91% yield.

 $R_{f} = 0.12$ (Pet/EtOAc, 1/1, v/v).

 $[\alpha]_D^{22} = -51.2$ (c = 1.43, CH₂Cl₂).

HPLC CHIRALCEL IA, n-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 13.910 min (major), 17.356 min (minor), 80% ee, >20:1 dr.

¹**H NMR** (400 MHz, CDCl₃) δ 8.56 (s, 1H), 7.97 (s, 1H), 6.57 (d, *J* = 8.0 Hz, 1H), 4.86-4.93 (m, 1H), 4.70 (dd, *J* = 3.6, 8.4 Hz, 1H), 4.18 (s, 3H), 3.98 (dd, *J* = 3.0, 11.4 Hz, 1H), 3.26 (dd, *J* = 1.2, 11.4 Hz, 1H), 3.07 (br, 1H), 0.91 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 213.5, 161.4, 152.4, 151.4, 141.9, 122.9, 77.1, 64.7, 58.7, 54.4, 45.2, 43.5, 25.4.

HRMS (ESI-TOF): $[M+Na]^+$ calcd for $C_{15}H_{20}N_4NaO_3S$ 359.1148 found 359.1150.

1-((2R,3S,4S)-2-(6-Amino-9H-purin-9-yl)-4-hydroxytetrahydrothiophen-3-yl)-2,2-

dimethylpropan-1-one (3g)

Light yellow oil, 15.1 mg, 94% yield.

 $R_{\rm f} = 0.10$ (EtOAc).

 $[\alpha]_D^{24} = -27.6 \ (c = 0.32, CH_2Cl_2).$

HPLC CHIRALCEL IA, n-hexane/2-propanol = 60/40, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 14.127 min (minor), 16.215 min (major), 68% ee, >20:1 dr.

¹H NMR (400 MHz, CD₃OD) δ 8.28 (s, 1H), 8.21 (s, 1H), 6.75 (d, *J* = 9.2 Hz, 1H), 4.98-5.03 (m, 1H),
4.70 (dd, *J* = 3.6, 8.8 Hz, 1H), 3.93 (dd, *J* = 3.6, 11.2 Hz, 1H), 3.09 (dd, *J* = 1.6, 11.2 Hz, 1H), 0.97 (s,
9H).

¹³C NMR (100 MHz, CD₃OD) δ 211.6, 157.4, 153.7, 150.4, 142.3, 76.8, 64.2, 61.0, 45.7, 43.1, 26.0.
 HRMS (ESI-TOF): [M+Na]⁺ calcd for C₁₄H₁₉N₅NaO₂S 344.1152 found 344.1150.

1-((2R, 3S, 4S)-2-(6-Chloro-2-fluoro-9H-purin-9-yl)-4-hydroxytetrahydrothiophen-3-yl)-2,2-

dimethylpropan-1-one (3h)

Light yellow oil, 16.1 mg, 90% yield.

 $R_f = 0.13$ (Pet/EtOAc, 1/1, v/v).

 $[\alpha]_D^{22} = -70.6 \text{ (c} = 0.74, \text{CH}_2\text{Cl}_2\text{)}.$

HPLC CHIRALCEL IE, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 11.898 min (major), 14.018 min (minor), 87% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 8.15 (s, 1H), 6.58 (d, *J* = 7.8 Hz, 1H), 4.97 (s, 1H), 4.53 (dd, *J* = 3.6, 7.8 Hz, 1H), 4.18 (s, 3H), 3.97 (dd, *J* = 3.0, 12.0 Hz, 1H), 3.26 (dd, *J* = 1.8, 12.0 Hz, 1H), 2.85 (br, 1H), 0.99 (s, 9H).

¹³**C NMR** (150 MHz, CDCl₃) δ 212.2, 157.8, 156.3, 153.7 (d, $J_{C-F} = 16.5$ Hz), 152.9 (d, $J_{C-F} = 16.5$ Hz), 145.5 (d, $J_{C-F} = 3.0$ Hz), 131.6 (d, $J_{C-F} = 6.0$ Hz), 77.0, 64.9, 59.2, 45.1, 43.7, 25.7.

¹⁹F NMR (565 MHz, CDCl₃) δ -47.9.

HRMS (ESI-TOF): $[M+Na]^+$ calcd for $C_{14}H_{16}CIFN_4NaO_2S$ 381.0564 found 381.0563.

1-((2R,3S,4S)-2-(2-Amino-6-chloro-9H-purin-9-yl)-4-hydroxytetrahydrothiophen-3-yl)-2,2-

dimethylpropan-1-one (3i)

Light yellow oil, 16.2 mg, 91% yield.

 $R_f = 0.10$ (Pet/EtOAc, 1/1, v/v).

 $[\alpha]_D^{24} = -35.0 \ (c = 0.44, CH_2Cl_2).$

HPLC CHIRALCEL IE, n-hexane/2-propanol = 60/40, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 12.930 min (minor), 14.753 min (major), 95% ee, >20:1 dr.

¹**H NMR** (400 MHz, CDCl₃) δ 7.91 (s, 1H), 6.48 (d, J = 8.0 Hz, 1H), 5.34 (s, 2H), 4.88 (s, 1H), 4.40 (dd,

J = 3.6, 8.4 Hz, 1H), 3.84 (dd, *J* = 3.2, 11.6 Hz, 1H), 3.27 (s, 1H), 3.24 (dd, *J* = 1.6, 11.6 Hz, 1H), 0.96

(s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 213.1, 159.1, 153.3, 151.9, 141.6, 126.0, 76.8, 63.9, 59.0, 45.2, 43.3, 25.5.

HRMS (ESI-TOF): [M+Na]⁺ calcd for C₁₄H₁₈ClN₅NaO₂S 378.0762 found 378.0759.

Racemic sample of 3i

9-((2R,3S,4S)-4-Hydroxy-3-pivaloyltetrahydrothiophen-2-yl)-1,3-dimethyl-3,9-dihydro-1H-

purine-2,6-dione (3j)

Colorless oil, 15.4 mg, 84% yield.

 $R_{f} = 0.20$ (Pet/EtOAc, 1/1, v/v).

 $[\alpha]_D^{24} = -21.5 \text{ (c} = 0.38, CH_2Cl_2).$

HPLC CHIRALCEL IE, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 31.978 min (major), 46.225 min (minor), 71% ee, >20:1 dr.

¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (s, 1H), 6.46 (d, J = 9.2 Hz, 1H), 4.90 (dd, J = 3.2, 8.8 Hz, 1H), 4.83-

4.88 (m, 1H), 4.08-4.14 (m, 1H), 3.84 (dd, *J* = 3.2, 11.6 Hz, 1H), 3.57 (s, 3H), 3.45 (s, 3H), 3.14 (dd, *J*

= 1.6, 11.2 Hz, 1H), 2.90 (d, *J* = 4.8 Hz, 1H), 0.99 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 213.9, 155.0, 151.5, 151.1, 142.4, 106.4, 77.1, 67.1, 59.2, 45.2, 43.1, 30.1, 28.7, 25.5.

HRMS (ESI-TOF): $[M+Na]^+$ calcd for $C_{16}H_{22}N_4NaO_4S$ 389.1254 found 389.1250.

1-((2R, 3S, 4S)-2-(4-Chloro-7H-pyrrolo[2,3-d]pyrimidin-7-yl)-4-hydroxytetrahydrothiophen-3-

yl)-2,2-dimethylpropan-1-one (3k)

Colorless oil, 17.9 mg, 90% yield.

 $R_{f} = 0.12$ (Pet/EtOAc, 1/1, v/v).

 $[\alpha]_D^{22} = -48.6 \text{ (c} = 0.76, CH_2Cl_2).$

HPLC CHIRALCEL IF, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 14.480 min (major), 16.372 min (minor), 88% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 8.65 (s, 1H), 7.44 (d, *J* = 3.6 Hz, 1H), 6.75 (d, *J* = 8.4 Hz, 1H), 6.62 (d, *J* = 3.6 Hz, 1H), 4.79-4.84 (m, 1H), 4.42 (dd, *J* = 3.6, 8.4 Hz, 1H), 3.85 (dd, *J* = 3.0, 11.4 Hz, 1H), 3.26 (dd, *J* = 1.2, 11.7 Hz, 1H), 3.23 (br, 1H), 0.84 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 214.2, 152.7, 151.1, 150.9, 128.2, 118.7, 100.9, 65.6, 59.0, 45.3, 43.0, 25.2.

HRMS (ESI-TOF): [M+Na]⁺ calcd for C₁₅H₁₈ClN₃NaO₂S 362.0700 found 362.0692.

1-((2R, 3S, 4S)-2-(6-Chloro-9H-purin-9-yl)-4-hydroxytetrahydrothiophen-3-yl)-2,2-dimethylbutan

-1-one (3l)

Colorless oil, 16.9 mg, 95% yield.

 $R_{f} = 0.12$ (Pet/EtOAc, 1/1, v/v).

 $[\alpha]_D^{22} = -58.4$ (c = 0.90, CH₂Cl₂).

HPLC CHIRALCEL IA, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 10.493 min (major), 12.543 min (minor), 88% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 8.78 (s, 1H), 8.20 (s, 1H), 6.68 (d, *J* = 7.8 Hz, 1H), 4.95 (s, 1H), 4.69 (dd, *J* = 3.0, 7.8 Hz, 1H), 3.99 (dd, *J* = 3.0, 11.6 Hz, 1H), 3.26 (dd, *J* = 1.2, 11.4 Hz, 1H), 3.10 (br, 1H), 1.24-1.38 (m, 2H), 0.94 (s, 3H), 0.85 (s, 1H), 0.47 (q, *J* = 7.2 Hz, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 212.8, 152.1, 151.8, 151.2, 145.0, 132.9, 64.9, 59.0, 48.9, 43.6, 31.6, 23.2, 22.6, 8.6.

HRMS (ESI-TOF): [M+Na]⁺ calcd for C₁₅H₁₉ClN₄NaO₂S 377.0809 found 377.0809.

1-((2R, 3S, 4S)-2-(6-Chloro-9H-purin-9-yl)-4-hydroxytetrahydrothiophen-3-yl)-2,2-dimethylpentan-1-

one (3m)

Colorless oil, 15.9 mg, 86% yield.

 $R_{f} = 0.13$ (Pet/EtOAc, 1/1, v/v).

 $[\alpha]_D^{22} = -85.3$ (c = 0.63, CH₂Cl₂).

HPLC CHIRALCEL IF, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 15.738 min (major), 21.033 min (minor), 88% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 8.79 (s, 1H), 8.17 (s, 1H), 6.62 (d, *J* = 8.4 Hz, 1H), 4.90-4.94 (m, 1H), 4.70 (dd, *J* = 3.6, 8.4 Hz, 1H), 4.00 (dd, *J* = 3.0, 12.0 Hz, 1H), 3.27 (dd, *J* = 1.2, 11.4 Hz, 1H), 2.95 (d, *J* = 6.0 Hz, 1H), 1.21-1.27 (m, 1H), 1.13-1.19 (m, 1H), 0.98 (s, 3H), 0.93-0.96 (m, 1H), 0.87 (s, 3H), 0.57-0.64 (m, 1H), 0.53 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 212.8, 152.1, 151.9, 151.2, 145.0, 133.0, 77.0, 64.9, 58.8, 48.8, 43.6, 41.4, 23.8, 23.1, 17.8, 14.3.

HRMS (ESI-TOF): [M+Na]⁺ calcd for C₁₆H₂₁ClN₄NaO₂S 391.0966 found 391.0964.

1-((2R, 3S, 4S)-2-(6-Chloro-9H-purin-9-yl)-4-hydroxytetrahydrothiophen-3-yl)-2,2-dimethylhexan-1-

one (3n)

Colorless oil, 17.6 mg, 92% yield.

 $R_f = 0.18$ (Pet/EtOAc, 1/1, v/v).

 $[\alpha]_D^{22} = -35.8$ (c = 0.54, CH₂Cl₂)

HPLC CHIRALCEL IE, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 14.435 min (major), 18.947 min (minor), 88% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 8.79 (s, 1H), 8.17 (s, 1H), 6.67 (d, *J* = 8.4, 1H), 4.94 (s, 1H), 4.72 (dd, *J* = 3.6, 8.4 Hz, 1H), 4.00 (dd, *J* = 3.0, 11.4 Hz, 1H), 3.26 (dd, *J* = 1.2, 11.4 Hz, 1H), 2.95 (d, *J* = 4.8 Hz, 1H), 1.22-1.28 (m, 2H), 1.14-1.20 (m, 1H), 1.00 (s, 3H), 0.90-0.97 (m, 1H), 0.88 (s, 3H), 0.71-0.80 (m, 1H), 0.63 (t, *J* = 7.2 Hz, 1H), 0.45-0.53 (m, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 212.8, 152.1, 151.9, 151.2, 145.0, 133.0, 77.0, 64.9, 58.9, 48.6, 43.6, 39.1, 29.8, 26.6, 24.0, 23.1, 23.1, 13.8.

HRMS (ESI-TOF): [M+H]⁺ calcd for C₁₇H₂₄ClN₄O₂S 383.1303 found 383.1304.

1-((2R, 3S, 4S)-2-(6-Chloro-9H-purin-9-yl)-4-hydroxytetrahydrothiophen-3-yl)-2,2-dimethylpent-

4-en-1-one (30)

Colorless oil, 17.8 mg, 97% yield.

 $R_f = 0.3$ (Pet/EtOAc, 5/1, v/v).

 $[\alpha]_D^{22} = -73.8 (c = 0.69, CH_2Cl_2).$

HPLC CHIRALCEL IE, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 16.237 min (major), 21.788 min (minor), 90% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 8.78 (s, 1H), 8.17 (s, 1H), 6.68 (d, J = 7.8 Hz, 1H), 5.31-5.40 (m, 1H), 5.00 (s, 1H), 4.68-4.78 (m, 2H), 4.65 (dd, J = 3.6, 7.8 Hz, 1H), 4.02 (dd, J = 3.0, 11.4 Hz, 1H), 3.25 (dd, J = 1.2, 11.4 Hz, 1H), 2.90 (d, J = 6.6 Hz, 1H), 2.03-2.14 (m, 2H), 0.97 (s, 3H), 0.95 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 211.9, 152.1, 151.9, 151.2, 145.0, 133.0, 132.8, 118.6, 76.9, 64.6, 59.8, 48.3, 43.7, 43.5, 23.6, 23.5.

HRMS (ESI-TOF): [M+Na]⁺ calcd for C₁₆H₁₉ClN₄NaO₂S 389.0809 found 389.0804.

1-((2R, 3S, 4S)-2-(6-Chloro-9H-purin-9-yl)-4-hydroxytetrahydrothiophen-3-yl)-2,2-diethylbutan-

1-one (3p)

White solid, m.p. 125.1-128.6 °C, 16.3 mg, 85% yield.

 $R_{f} = 0.32$ (Pet/EtOAc, 10/1, v/v).

 $[\alpha]_D^{22} = -42.6 \text{ (c} = 0.52, \text{CH}_2\text{Cl}_2\text{)}.$

HPLC CHIRALCEL IE, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 18.068 min (major), 21.178 min (minor), 88% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 8.80 (s, 1H), 8.12 (s, 1H), 6.65 (d, *J* = 7.8 Hz, 1H), 4.88-4.92 (m, 2H), 4.02 (dd, *J* = 3.0, 11.4 Hz, 1H), 3.25 (dd, *J* = 1.2, 11.4 Hz, 1H), 2.93 (br, 1), 1.42-1.50 (m, 3H), 1.30-1.37 (m, 3H), 0.43 (t, *J* = 7.8 Hz, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 213.5, 152.1, 151.9, 151.2, 145.1, 133.0, 77.1, 65.3, 58.1, 56.2, 43.8, 24.7, 7.8.

HRMS (ESI-TOF): [M+Na]⁺ calcd for C₁₇H₂₃ClN₄NaO₂S 405.1122 found 405.1120.

((2*R*, 3*S*, 4*S*)-2-(6-Chloro-9*H*-purin-9-yl)-4-hydroxytetrahydrothiophen-3-yl)(1-methylcyclohexyl) methanone (3q)

Colorless oil, 16.6 mg, 87% yield.

 $R_f = 0.18$ (Pet/EtOAc, 2/1, v/v).

 $[\alpha]_D^{22} = -82.7 (c = 0.57, CH_2Cl_2).$

HPLC CHIRALCEL IE, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 20.653 min (major), 29.555 min (minor), 91% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 8.78 (s, 1H), 8.18 (s, 1H), 6.65 (d, *J* = 8.4 Hz, 1H), 4.90-4.94 (m, 1H), 4.68 (dd, *J* = 3.6, 8.4 Hz, 1H), 3.99 (dd, *J* = 3.0, 11.4 Hz, 1H), 3.27 (dd, *J* = 1.2, 11.4 Hz, 1H), 3.01 (d, *J* = 6.0 Hz, 1H), 1.72-1.79 (m, 1H), 1.52-1.58 (m, 1H), 1.42-1.50 (m, 1H), 1.23-1.29 (m, 5H), 1.10-1.15 (m, 1H), 0.91-1.01(m, 1H), 0.74 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 213.1, 152.1, 151.9, 151.2, 144.9, 132.9, 77.1, 65.1, 58.7, 49.0, 43.7, 34.0, 33.7, 25.6, 22.6, 22.3.

HRMS (ESI-TOF): [M+Na]⁺ calcd for C₁₇H₂₁ClN₄NaO₂S 403.0966 found 403.0959.

((2*R*, 3*S*, 4*S*)-2-(6-Chloro-9*H*-purin-9-yl)-4-hydroxytetrahydrothiophen-3-yl)(1-methylcyclopenty l)methanone (3*r*)

Colorless oil, 15.6 mg, 85% yield.

 $R_f = 0.21$ (Pet/EtOAc, 1/1, v/v).

 $[\alpha]_D^{22} = -66.4 \ (c = 0.59, CH_2Cl_2).$

HPLC CHIRALCEL IE, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 20.998 min (major), 28.325 min (minor), 87% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 8.77 (s, 1H), 8.23 (s, 1H), 6.67 (d, *J* = 8.4 Hz, 1H), 4.96 (s, 1H), 4.57 (dd, *J* = 3.6, 7.8 Hz, 1H), 3.97 (dd, *J* = 3.0, 12.0 Hz, 1H), 3.27 (dd, *J* = 1.8, 12.0 Hz, 1H), 3.13 (br, 1H), 1.76-1.82 (m, 1H), 1.44-1.63 (m, 4H), 1.34-1.42 (m, 1H), 1.19-1.29 (m, 2H), 0.97 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 211.8, 152.1, 151.8, 151.2, 145.0, 132.9, 64.7, 60.0, 56.5, 43.5, 35.8, 35.7, 24.8, 24.6, 23.3.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{16}H_{20}ClN_4O_2S$ 367.0990 found 367.0989.

((3*S*, 5*S*, 7*S*)-Adamantan-1-yl)((2R,3S,4S)-2-(6-chloro-9*H*-purin-9-yl)-4-hydroxytetrahydrothioph en-3-yl)methanone (3s)

Colorless oil, 19.1mg, 91% yield.

 $R_{f} = 0.19$ (Pet/EtOAc, 1/1, v/v).

 $[\alpha]_D^{22} = -45.3$ (c = 1.1, CH₂Cl₂).

HPLC CHIRALCEL IE, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 27.793 min (minor), 29.548 min (major), 92% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 8.78 (s, 1H), 8.23 (s, 1H), 6.68 (d, *J* = 8.4 Hz, 1H), 4.92-4.97 (m, 1H), 4.62 (dd, *J* = 3.6, 7.8 Hz, 1H), 3.98 (dd, *J* = 3.6, 12.0 Hz, 1H), 3.26 (dd, *J* = 1.2, 11.4 Hz, 1H), 3.03 (br, 1H), 1.88-1.95 (m, 3H), 1.60-1.70 (m, 3H), 1.46-1.57 (m, 9H), 1.19-1.29 (m, 2H), 0.97 (s, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 212.0, 152.1, 151.8, 151.2, 144.98, 144.96, 132.9, 76.9, 64.6, 58.7, 47.3, 43.6, 37.2, 36.2, 27.5.

HRMS (ESI-TOF): [M+Na]⁺ calcd for C₂₀H₂₄ClN₄NaO₂S 419.1303 found 419.1299.

1-((2R, 3S, 4S)-2-(1H-Benzo[d]imidazol-1-yl)-4-hydroxytetrahydrothiophen-3-yl)-2,2-

dimethylpro pan-1-one (3t)

White solid, m.p. 161.0-164.8 °C, 12.8 mg, 84% yield.

 $R_{f} = 0.08$ (Pet/EtOAc, 1/1, v/v).

 $[\alpha]_D^{22} = -2.7$ (c = 0.78, CH₂Cl₂).

HPLC CHIRALCEL ID, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 13.078 min (major), 17.572 min (minor), 95% ee, >20:1 dr.

¹H NMR (600 MHz, CDCl₃) δ 8.14 (s, 1H), 7.75-7.79 (m, 1H), 7.46-7.50 (m, 1H), 7.26-7.32 (m, 2H),
6.63 (d, *J* = 9.0 Hz, 1H), 4.75-4.78 (m, 1H), 4.04 (dd, *J* = 3.0, 9.6 Hz, 1H), 3.75 (dd, *J* = 3.0, 12.6 Hz,
1H), 3.31 (dd, *J* = 1.8, 12.0 Hz, 1H), 0.75 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 214.7, 144.4, 142.1, 132.7, 123.6, 123.0, 121.0, 111.0, 76.2, 65.1, 59.8, 45.4, 42.2, 24.9.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{16}H_{21}N_2O_2S$ 305.1318 found 305.1318.

1-((2R, 3S, 4S)-2-(2-Chloro-1H-benzo[d]imidazol-1-yl)-4-hydroxytetrahydrothiophen-3-yl)-2,2-

dimethylpropan-1-one (3u)

Colorless oil, 14.6 mg, 86% yield.

 $R_f = 0.24$ (Pet/EtOAc, 2/1, v/v).

 $[\alpha]_D^{22} = -22.8 \ (c = 0.96, CH_2Cl_2).$

HPLC CHIRALCEL ID, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 7.493 min (major), 8.555 min (minor), 95% ee, >20:1 dr.

¹**H NMR** (400 MHz, CDCl₃) δ 7.67-7.71 (m, 1H), 7.59-7.64 (m, 1H), 7.27-7.37 (m, 2H), 6.82 (d, *J* = 9.6 Hz, 1H), 4.72-4.78 (m, 1H), 4.32 (dd, *J* = 3.2, 9.6 Hz, 1H), 3.75 (dd, *J* = 3.2, 11.6 Hz, 1H), 3.42 (br, 1H), 3.35 (dd, *J* = 1.2, 11.6 Hz, 1H), 0.80 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 214.6, 142.2, 140.2, 123.7, 123.5, 120.4, 111.2, 76.4, 65.1, 56.2, 45.5, 42.9, 24.9, 18.6.

HRMS (ESI-TOF): [M+Na]⁺ calcd for C₁₆H₁₉ClN₂NaO₂S 361.0748 found 361.0745.

Racemic sample of 3u

1-((2R, 3S, 4S)-2-(2-Bromo-1H-benzo[d]imidazol-1-yl)-4-hydroxytetrahydrothiophen-3-yl)-2,2-

dimethylpropan-1-one (3v)

Colorless oil, 16.6 mg, 87% yield.

 $R_f = 0.27$ (Pet/EtOAc, 2/1, v/v).

 $[\alpha]_D^{22} = -24.2$ (c = 0.76, CH₂Cl₂).

HPLC CHIRALCELID-H, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 8.417 min (major), 9.680 min (minor), 94% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 7.71 (d, *J* = 7.2 Hz, 1H), 7.65 (s, 1H), 7.27-7.35 (m, 2H), 7.26-7.32 (m, 2H), 6.83 (d, J = 9.6 Hz, 1H), 4.76 (s, 1H), 4.34 (d, J = 7.2 Hz, 1H), 3.75 (dd, J = 3.0, 12.0 Hz, 1H), 3.50 (br, 1H), 3.36 (d, J = 12.0 Hz, 1H), 0.78 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 214.6, 171.3, 143.9, 123.6, 123.4, 120.4, 111.2, 76.4, 66.3, 60.5, 56.0, 45.5, 42.9, 24.8, 21.2, 14.3.

HRMS (ESI-TOF): [M+Na]⁺ calcd for C₁₆H₁₉BrN₂NaO₂S 405.0243 found 405.0245.

Racemic sample of 3v

1-((2R, 3S, 4S)-2-(2-Ethyl-1H-benzo[d]imidazol-1-yl)-4-hydroxytetrahydrothiophen-3-yl)-2,2-

dimethylpropan-1-one (3w)

White solid, m.p. 201.9-205.2 °C, 11.8 mg, 71% yield.

 $R_f = 0.12$ (Pet/EtOAc, 1/1, v/v).

 $[\alpha]_D^{22} = -55.7 (c = 0.38, CH_2Cl_2).$

HPLC CHIRALCEL OD-H, n-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 5.813 min (minor), 7.348 min (major), 94% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 7.70-7.74 (m, 1H), 7.61-7.67 (m, 1H), 7.23-7.29 (m, 2H), 6.69 (d, *J* = 9.6 Hz, 1H), 4.76 (s, 1H), 4.43 (dd, *J* = 3.0, 10.2 Hz, 1H), 3.77 (dd, *J* = 3.0, 12.0 Hz, 1H), 3.34 (d, *J* = 12.0 Hz, 1H), 2.82-2.85 (m, 2H), 1.41 (t, *J* = 7.2 Hz, 1H), 0.75 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 215.5, 156.2, 143.5, 122.6, 122.5, 120.3, 111.5, 76.0, 64.3, 58.6, 56.2, 45.5, 42.5, 24.9, 20.9, 18.6, 12.0.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{18}H_{25}N_2O_2S$ 333.1631 found 333.1630.

1-((2R, 3S, 4S)-4-Hydroxy-2-(2-methyl-1H-benzo[d]imidazol-1-yl)tetrahydrothiophen-3-yl)-2,2-

dimethylpropan-1-one (3x)

White solid, m.p. 199.7-204.5 °C, 13.7 mg, 86% yield.

 $R_f = 0.10$ (Pet/EtOAc, 1/1, v/v).

 $[\alpha]_D^{22} = -55.5 \text{ (c} = 0.61, \text{CH}_2\text{Cl}_2).$

HPLC CHIRALCELID-H, n-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 13.162 min (major), 17.343 min (minor), 94% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 7.61-7.70 (m, 2H), 7.23-7.28 (m, 2H), 6.68 (d, *J* = 9.6 Hz, 1H), 4.77 (s, 1H), 4.37 (dd, *J* = 3.0, 10.2 Hz, 1H), 3.76 (dd, *J* = 3.0, 11.4 Hz, 1H), 3.50 (br, 1H), 3.33 (d, *J* = 11.4 Hz, 1H), 2.54 (s, 3H), 0.75 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 215.1, 151.7, 143.4, 132.8, 122.7, 122.5, 120.1, 111.5, 75.9, 64.6, 56.5, 45.5, 42.5, 24.9, 14.2.

HRMS (ESI-TOF): $[M+Na]^+$ calcd for $C_{17}H_{22}N_2NaO_2S$ 341.1294 found 341.1290.

1-((2R, 3S, 4S)-4-Hydroxy-2-(2-phenyl-1H-benzo[d]imidazol-1-yl)tetrahydrothiophen-3-yl)-2,2-

dimethylpropan-1-one (3y)

White solid, m.p. 204.9-208.0 °C, 13.0 mg, 68% yield.

 $R_f = 0.25$ (Pet/EtOAc, 2/1, v/v).

 $[\alpha]_D^{22} = -48.3 \text{ (c} = 0.39, \text{CH}_2\text{Cl}_2\text{)}.$

HPLC CHIRALCEL IE, n-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, $\lambda = 256$ nm, retention time: 13.187 min (major), 14.562 min (minor), 89% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 7.77-7.86 (m, 2H), 7.57 (s, 5H), 7.32-7.38 (m, 2H), 6.72 (d, *J* = 9.6 Hz, 1H), 4.63-4.68 (m, 1H), 4.46 (dd, J = 3.0, 9.6 Hz, 1H), 3.74 (dd, J = 3.0, 12.0 Hz, 1H), 3.30 (d, J = 12.0 Hz, 1H), 3.23 (s, 1H), 0.68 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 215.0, 154.3, 144.1, 133.1, 130.4, 129.5, 129.4, 129.1, 123.3, 123.2, 121.2, 112.3, 76.2, 66.0, 58.6, 55.3, 45.4, 42.4, 24.8, 18.6.

HRMS (ESI-TOF): [M+H]⁺ calcd for C₂₂H₂₅N₂O₂S 381.1631 found 381.1628.

Racemic sample of 3y

1-((2R, 3S, 4S)-4-Hydroxy-2-(2-(trifluoromethyl)-1H-benzo[d]imidazol-1-yl)tetrahydrothiophen-

3-yl)-2,2-dimethylpropan-1-one (3z)

$$F_3C \xrightarrow{N}_{N}$$

White solid, m.p. 169.9-173.8 °C, 17.9 mg, 96% yield.

 $R_{\rm f}$ = 0.30 (Pet/EtOAc, 2/1, v/v).

 $[\alpha]_D^{22} = -65.1 \ (c = 0.61, CH_2Cl_2).$

HPLC CHIRALCEL OD-H, n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 6.375 min (minor), 7.653 min (major), 93% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 7.91 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.50 (t, J = 7.8 Hz,

1H), 7.43 (t, *J* = 7.2 Hz, 1H), 6.72 (d, *J* = 9.0 Hz, 1H), 4.77 (s, 1H), 4.44 (dd, *J* = 3.6, 9.6 Hz, 1H), 3.77

(dd, *J* = 1.8, 12.0 Hz, 1H), 3.70 (br, 1H), 3.40 (dd, *J* = 1.8, 12.0 Hz, 1H), 0.74 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 214.8, 142.0, 140.8 (d, J_{C-F} = 39.0 Hz), 133.2, 125.8, 124.4, 122.9, 121.5,

119.7, 117.9, 112.9, 76.8, 65.8, 58.6, 55.4, 45.5, 42.8, 24.6, 18.6.

¹⁹F NMR (565 MHz, CDCl₃) δ -60.8.

HRMS (ESI-TOF): [M+Na]⁺ calcd for C₁₇H₁₉F₃N₂NaO₂S 395.1012 found 395.1011.

1-((2R, 3S, 4S)-2-(5,6-Dimethyl-1H-benzo[d]imidazol-1-yl)-4-hydroxytetrahydrothiophen-3-yl)-

2,2-dimethylpropan-1-one (3aa)

White solid, m.p. 116.8-118.6 °C, 13.3 mg, 80% yield.

 $R_f = 0.10$ (Pet/EtOAc, 1/1, v/v).

 $[\alpha]_D^{22} = -10.7 (c = 0.93, CH_2Cl_2).$

HPLC CHIRALCEL ID, n-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 18.733 min (major), 21.970 min (minor), 98% ee, >20:1 dr.

¹H NMR (600 MHz, CDCl₃) δ 8.00 (s, 1H), 7.51 (s, 1H), 7.22 (s, 1H), 6.56 (d, *J* = 9.6 Hz, 1H), 4.75-4.78 (m, 1H), 4.03 (dd, *J* = 3.0, 9.6 Hz, 1H), 3.73 (dd, *J* = 3.0, 12.0 Hz, 1H), 3.30 (dd, *J* = 1.8, 12.0 Hz, 1H), 2.39 (s, 3H), 2.35 (s, 3H), 0.78 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 214.9, 142.9, 141.3, 132.8, 132.0, 131.1, 120.9, 111.0, 76.3, 65.2, 59.6, 45.4, 42.2, 25.0, 20.9, 20.4.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{18}H_{25}N_2O_2S$ 333.1631 found 333.1627.

1-((2*R*, 3*S*, 4*S*)-4-Hydroxy-2-(3*H*-imidazo[4,5-c]pyridin-3-yl)tetrahydrothiophen-3-yl)-2,2-dimeth ylpropan-1-one (3ab)

Colorless oil, 13.0 mg, 85% yield.

 $R_f = 0.10$ (Pet/EtOAc, 1/1, v/v).

 $[\alpha]_D^{22} = -4.44$ (c = 0.50, CH₂Cl₂).

HPLC CHIRALCEL OD-H, n-hexane/2-propanol = 90/10, flow rate = 1.0 mL/min, λ = 256 nm, retention time: 20.916 min (major), 29.566 min (minor), 96% ee, >20:1 dr.

¹H NMR (400 MHz, CDCl₃) δ 9.09 (s, 1H), 8.46 (d, *J* = 5.6 Hz, 1H), 8.21 (s, 1H), 7.46 (d, *J* = 5.6 Hz, 1H), 6.64 (d, *J* = 9.2 Hz, 1H), 4.82 (br, 1H), 3.97 (dd, *J* = 2.8, 9.2 Hz, 1H), 3.77 (dd, *J* = 3.2, 11.6 Hz, 1H), 3.51 (br, 1H), 3.33 (dd, *J* = 1.2, 11.6 Hz, 1H), 0.78(s, 1H).

¹³C NMR (150 MHz, CDCl₃) δ 213.8, 144.0, 143.4, 142.7, 141.4, 137.7, 106.4, 76.1, 64.9, 60.4, 45.4, 42.3, 25.0, 18.6.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{15}H_{20}N_3O_2S$ 306.1271 found 306.1269.

1-((2R, 3S, 4S)-4-Hydroxy-2-(2-phenyl-1H-imidazol-1-yl)tetrahydrothiophen-3-yl)-2,2-dimethylpr

opan-1-one (3ac)

White solid, m.p. 161.6-169.0 °C, 12.1 mg, 73% yield.

 $R_f = 0.10$ (Pet/EtOAc, 1/1, v/v).

 $[\alpha]_D^{22} = -117.1 \text{ (c} = 1.02, \text{CH}_2\text{Cl}_2\text{)}.$

HPLC CHIRALCEL ID, n-hexane/2-propanol = 80/20, flow rate = 0.8 mL/min, λ = 256 nm, retention

time: 13.272 min (major), 15.257 min (minor), 99% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 7.42-7.49 (m, 5H), 7.42 (d, *J* = 1.2 Hz, 1H), 7.18 (s, 1H), 6.43 (d, *J* = 9.0 Hz, 1H), 4.62-4.65 (m, 1H), 3.85 (dd, *J* = 3.0, 9.0 Hz, 1H), 3.59 (dd, *J* = 3.6, 11.4 Hz, 1H), 3.14 (dd, *J* = 1.8, 12.0 Hz, 1H), 0.91 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 214.0, 148.7, 130.1, 129.7, 129.4, 129.2, 128.9, 117.4, 76.1, 65.1, 60.9, 45.3, 41.9, 25.1.

HRMS (ESI-TOF): $[M+Na]^+$ calcd for $C_{18}H_{22}N_2NaO_2S$ 353.1294 found 353.1291.

1-((2R, 3S, 4S)-2-(4,5-Diphenyl-1H-imidazol-1-yl)-4-hydroxytetrahydrothiophen-3-yl)-2,2-

dimethylpropan-1-one (3ad)

White solid, m.p. 156.5-161.3°C, 15.0 mg, 74% yield.

 $R_f = 0.10$ (Pet/EtOAc, 1/1, v/v).

 $[\alpha]_D^{22} = -88.2 (c = 0.62, CH_2Cl_2).$

HPLC CHIRALCEL ID, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 10.873 min (major), 11.917 min (minor), 97% ee, >20:1 dr.

 $^{1}\text{H NMR} (600 \text{ MHz}, \text{CDCl}_{3}) \delta 8.05 (s, 1\text{H}), 7.45\text{-}7.51 (m, 3\text{H}), 7.37\text{-}7.41 (m, 2\text{H}), 7.22\text{-}7.26 (m, 2\text{H}), 7.22 (m, 2\text{H}), 7.22\text{-}7.26 (m, 2$

7.16-7.20 (m, 2H), 7.11-7.15 (m, 1H), 6.00 (d, *J* = 9.6 Hz, 1H), 4.61-4.65 (m, 1H), 3.94 (dd, *J* = 3.6, 9.0 Hz, 1H), 3.52 (dd, *J* = 3.0, 11.4 Hz, 1H), 3.11 (dd, *J* = 1.8, 11.4 Hz, 1H), 0.99 (s, 9H).

¹³C NMR (150 MHz, CDCl₃) δ 213.6, 138.4, 135.5, 134.1, 131.2, 129.4, 129.4, 129.3, 128.7, 128.3, 126.8, 126.8, 76.2, 63.3, 61.0, 45.3, 41.9, 25.2.

HRMS (ESI-TOF): $[M+H]^+$ calcd for $C_{24}H_{27}N_2O_2S$ 407.1788 found 407.1784.

3ad

((3R,5R,7R)-Adamantan-1-yl)((2R,3R,4R)-2-(6-chloro-9H-purin-9-yl)-4-fluorotetrahydroth

iophen-3-yl)methanone (5a)

Colorless oil, 15.8 mg, 75% yield.

 $R_f = 0.13$ (Pet/EtOAc, 4/1, v/v).

 $[\alpha]_D^{22} = -1.8$ (c = 0.37, CH₂Cl₂).

HPLC CHIRALCEL IE, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 18.005 min (minor), 20.735 min (major), 90% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 8.76 (s, 1H), 8.51 (s, 1H), 6.29 (d, *J* = 3.0 Hz, 1H), 5.31 (dq, *J* = 4.2, 50.4 Hz, 1H), 4.33 (dt, *J* = 3.6, 17.4 Hz, 1H), 3.67-3.75 (m, 1H), 3.51 (ddd, *J* = 4.2, 12.0, 28.2 Hz, 1H), 2.00 (s, 3H), 1.64-1.75 (m, 9H), 1.58-1.63 (m, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 210.4 (d, *J* = 7.0 Hz, 1H), 152.25, 151.4 (d, *J* = 12.0 Hz, 1H), 145.1 (d, *J* = 7.0 Hz, 1H), 132.20, 96.7 (d, *J* = 187.0 Hz), 62.0 (d, *J* = 3.0 Hz), 60.1 (d, *J* = 20.0 Hz), 47.76, 39.0 (d, *J* = 21.0 Hz), 37.38, 36.22, 27.56.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -170.3.

HRMS (ESI-TOF): $[M+Na]^+$ calcd for $C_{20}H_{22}ClFN_4NaOS$ 443.1079 found 443.1073.

((3S,5S,7S)-Adamantan-1-yl)((2R,3S,4S)-2-(6-chloro-9H-purin-9-yl)-4-hydroxy-1,1-

dioxidotetrahydrothiophen-3-yl)methanone (5b)

Colorless oil, 19.2 mg, 85% yield.

 $R_f = 0.10$ (Pet/EtOAc, 1/1, v/v).

 $[\alpha]_D^{22} = 1.71$ (c = 0.35, CH₂Cl₂).

HPLC CHIRALCEL IE, n-hexane/2-propanol = 70/30, flow rate = 0.8 mL/min, λ = 256 nm, retention time: 26.106 min (major), 43.673 min (minor), 90% ee, >20:1 dr.

¹**H NMR** (600 MHz, CDCl₃) δ 8.79 (s, 1H), 8.41 (s, 1H), 6.58 (d, *J* = 10.8 Hz, 1H), 5.31 (dd, *J* = 4.2, 10.8 Hz, 1H), 5.16 (s, 1H), 4.06-4.16 (m, 1H), 3.76-3.89 (m, 2H), 1.96 (s, 3H), 1.60-1.74 (m, 9H), 1.53-1.58 (m, 3H).

¹³C NMR (150 MHz, CDCl₃) δ 208.5, 152.5, 152.1, 151.9, 145.9, 132.1, 71.9, 65.9, 59.6, 51.0, 47.9, 37.5, 36.1, 27.5.

HRMS (ESI-TOF): [M+Na]⁺ calcd for C₂₀H₂₃ClN₄NaO₄S 473.1021 found 473.1020.

7. Copies of ¹H, ¹³C NMR and ¹⁹F NMR spectra

¹H NMR of 1a (400 MHz, CDCl₃)

¹³C NMR of 1b (150 MHz, CDCl₃)

¹H NMR of 1c (400 MHz, CDCl₃)

¹³C NMR of 1c (100 MHz, CDCl₃)

¹H NMR of 1d (400 MHz, CDCl₃)

¹³C NMR of 1d (100 MHz, CDCl₃)

¹H NMR of 1e (600 MHz, CDCl₃)

¹³C NMR of 1e (150 MHz, CDCl₃)

¹H NMR of 1f (400 MHz, CDCl₃)

¹³C NMR of 1f (100 MHz, CDCl₃)

¹H NMR of 1g (400 MHz, DMSO-*d*₆)

¹³C NMR of 1g (100 MHz, DMSO-*d*₆)

¹H NMR of 1h (400 MHz, CDCl₃)

¹³C NMR of 1h (100 MHz, CDCl₃)

¹H NMR of 1i (400 MHz, DMSO-*d*₆)

¹³C NMR of 1i (100 MHz, DMSO-*d*₆)

¹H NMR of 1j (400 MHz, CDCl₃)

¹³C NMR of 1j (100 MHz, CDCl₃)

¹H NMR of 1k (400 MHz, CDCl₃)

¹³C NMR of 1k (100 MHz, CDCl₃)

¹H NMR of 11 (600 MHz, CDCl₃)

¹³C NMR of 11 (150 MHz, CDCl₃)

¹H NMR of 1m (600 MHz, CDCl₃)

¹³C NMR of 1m (150 MHz, CDCl₃)

¹H NMR of 1n (600 MHz, CDCl₃)

¹³C NMR of 1n (150 MHz, CDCl₃)

¹H NMR of 1o (600 MHz, CDCl₃)

¹³C NMR of 10 (150 MHz, CDCl₃)

¹H NMR of 1p (400 MHz, CDCl₃)

¹³C NMR of 1p (100 MHz, CDCl₃)

¹H NMR of 1q (600 MHz, CDCl₃)

¹³C NMR of 1q (150 MHz, CDCl₃)

¹H NMR of 1r (400 MHz, CDCl₃)

¹³C NMR of 1r (100 MHz, CDCl₃)

¹H NMR of 1s (600 MHz, CDCl₃)

¹³C NMR of 1s (150 MHz, CDCl₃)

¹H NMR of 1t (600 MHz, CDCl₃)

¹³C NMR of 1t (150 MHz, CDCl₃)

¹H NMR of 1u (600 MHz, CDCl₃)

¹³C NMR of 1u (150 MHz, CDCl₃)

¹H NMR of 1v (400 MHz, CDCl₃)

¹³C NMR of 1v (100 MHz, CDCl₃)

¹H NMR of 1w (400 MHz, CDCl₃)

¹³C NMR of 1w (100 MHz, CDCl₃)

¹H NMR of 1x (600 MHz, CDCl₃)

¹³C NMR of 1x (150 MHz, CDCl₃)

¹H NMR of 1y (600 MHz, CDCl₃)

¹³C NMR of 1y (150 MHz, CDCl₃)

¹H NMR of 1z (400 MHz, CDCl₃)

¹³C NMR of 1z (100 MHz, CDCl₃)

¹H NMR of 1aa (600 MHz, CDCl₃)

¹³C NMR of 1aa (150 MHz, CDCl₃)

¹H NMR of 1ab (600 MHz, CDCl₃)

¹³C NMR of 1ab (150 MHz, CDCl₃)

¹H NMR of 1ac (600 MHz, CDCl₃)

¹³C NMR of 1ac (150 MHz, CDCl₃)

¹H NMR of 1ad (400 MHz, CDCl₃)

¹³C NMR of 1ad (100 MHz, CDCl₃)

¹H NMR of 3a (400 MHz, CDCl₃)

¹³C NMR of 3a (150 MHz, CDCl₃)

¹H NMR of 3b (400 MHz, CDCl₃)

¹³C NMR of 3b (100 MHz, CDCl₃)

¹H NMR of 3c (600 MHz, CDCl₃)

¹³C NMR of 3c (150 MHz, CDCl₃)

¹H NMR of 3d (400 MHz, CDCl₃)

¹³C NMR of 3d (100 MHz, CDCl₃)

¹H NMR of 3e (600 MHz, CDCl₃)

¹³C NMR of 3e (100 MHz, CDCl₃)

¹H NMR of 3f (400 MHz, CDCl₃)

13C NMR of 3f (100 MHz, CDCl₃)

¹H NMR of 3g (400 MHz, CD₃OD)

¹³C NMR of 3g (100 MHz, CD₃OD)

¹H NMR of 3h (600 MHz, CDCl₃)

¹³C NMR of 3h (150 MHz, CDCl₃)

¹⁹ F NMR of 3h (565 MHz, CDCl₃)

¹H NMR of 3i (400 MHz, CDCl₃)

¹³C NMR of 3i (100 MHz, CDCl₃)

¹H NMR of 3j (400 MHz, CDCl₃)

¹³C NMR of 3j (100 MHz, CDCl₃)

¹H NMR of 3k (600 MHz, CDCl₃)

¹³C NMR of 3k (150 MHz, CDCl₃)

¹H NMR of 3l (600 MHz, CDCl₃)

13C NMR of 3l (150 MHz, CDCl₃)

¹H NMR of 3m (600 MHz, CDCl₃)

¹³C NMR of 3m (150 MHz, CDCl₃)

¹H NMR of 3n (600 MHz, CDCl₃)

¹³C NMR of 3n (150 MHz, CDCl₃)

¹H NMR of 3o (600 MHz, CDCl₃)

¹³C NMR of 3o (150 MHz, CDCl₃)

¹H NMR of 3p (600 MHz, CDCl₃)

¹³C NMR of 3p (150 MHz, CDCl₃)

¹H NMR of 3q (600 MHz, CDCl₃)

¹³C NMR of 3q (100 MHz, CDCl₃)

¹H NMR of 3r (600 MHz, CDCl₃)

¹³C NMR of 3r (150 MHz, CDCl₃)

¹H NMR of 3s (600 MHz, CDCl₃)

13C NMR of 3s (150 MHz, CDCl₃)

¹H NMR of 3t (600 MHz, CDCl₃)

¹³C NMR of 3t (100 MHz, CDCl₃)

¹H NMR of 3u (400 MHz, CDCl₃)

¹³C NMR of 3u (150 MHz, CDCl₃)

¹H NMR of 3v (600 MHz, CDCl₃)

¹³C NMR of 3v (150 MHz, CDCl₃)

¹H NMR of 3w (600 MHz, CDCl₃)

¹³C NMR of 3w (150 MHz, CDCl₃)

S104

¹H NMR of 3x (600 MHz, CDCl₃)

¹³C NMR of 3x (150 MHz, CDCl₃)

¹H NMR of 3y (600 MHz, CDCl₃)

¹³C NMR of 3y (150 MHz, CDCl₃)

¹H NMR of 3z (600 MHz, CDCl₃)

¹³C NMR of 3z (150 MHz, CDCl₃)

¹H NMR of 3aa (600 MHz, CDCl₃)

¹³C NMR of 3aa (150 MHz, CDCl₃)

¹H NMR of 3ab (400 MHz, CDCl₃)

¹³C NMR of 3ab (150 MHz, CDCl₃)

¹H NMR of 3ac (600 MHz, CDCl₃)

¹³C NMR of 3ac (150 MHz, CDCl₃)

¹H NMR of 3ad (600 MHz, CDCl₃)

¹³C NMR of 3ad (150 MHz, CDCl₃)

¹H NMR of 5a (400 MHz, CDCl₃)

¹³C NMR of 5a (100 MHz, CDCl₃)

¹⁹F NMR of 5a (376 MHz, CDCl₃)

¹H NMR of 5b (600 MHz, CDCl₃)

¹³C NMR of 5b (150 MHz, CDCl₃)

8. Reference

- Q.-L. Yang, M.-S. Xie, C. Xia, H.-L. Sun, D.-J. Zhang, K.-X. Huang, Z. Guo, G.-R. Qu and H.-M. Guo, *Chem. Commun.*, 2014, **50**, 14809-14812.
- (a) N. Baricordi, S. Benetti, V. Bertolasi, C. De Risi, G. P. Pollini, F. Zamberlan and V. Zanirato, *Tetrahedron*, 2012, 68, 208-213. (b) K.-X. Huang, M.-S. Xie, J.-W. Sang, G.-R. Qu and H.-M. Guo, *Org. Lett.*, 2020, 23, 81-86.
- M. Waser, E. D. Moher, S. S. K. Borders, M. M. Hansen, D. W. Hoard, M. E. Laurila, M. E. LeTourneau, R. D. Miller, M. L. Phillips, K. A. Sullivan, J. A. Ward, C. Xie, C. A. Bye, T. Leitner, B. Herzog-Krimbacher, M. Kordian and M. Müllner, *Org. Process Res. Dev.*, 2011, 15, 1266-1274.