Supporting Information

Bi_2Te_3 nanosheets promoted Pd for ethylene glycol electrooxidation in both dark and visible light irradiation

Fangfang Ren a, Zhenghao Fei a, Yun Yangb, Shuli Wangc, Ligang Fengc

a. College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, PR China.
b. Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, China. E-mail: bachier@163.com
c. School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China. E-mail: ligang.feng@yzu.edu.cn, fenglg11@gmail.com
Experimental section

Chemicals

Palladium chloride (PdCl₂, AR), ethanol (CH₃CH₂OH, AR, ≥99.7%), ethylene glycol (EG, AR, ≥99.5%), sodium hydroxide (NaOH, AR, ≥96.0%) and potassium hydroxide (KOH, AR, ≥85.0%) were purchased from Sinopharm Chemical Reagent Co., Ltd. Polyvinyl pyrrolidone (PVP, K30, GR), bismuth (III) oxide (Bi₂O₃, 99.9%), tellurium dioxide (TeO₂, 99.99%) and commercial Pd/C (10 wt%, contains 40-60% H₂O) catalyst were purchased from Aladdin. Nafion (5 wt%, contains 45 ± 3% H₂O) was purchased from Shanghai Hesen Electric Co., Ltd. All solutions were prepared using ultrapure water and the chemicals were purchased and used without further purification.

Synthesis of Bi₂Te₃

In a typical synthesis, 0.4 g of PVP was added into a flask containing 18 mL of EG. Then, the mixture was sonicated for about 15 min to obtain a uniform suspension. After that, 0.2298 g of Bi₂O₃ and 0.2394 g of TeO₂ were added in and thoroughly stirred. Subsequently, 0.32 g of NaOH completely dissolved in 2 mL of ultrapure water was added dropwise into the above solution with continuous stirring. After stirring for 30 min at room temperature, the mixture was transferred into the Teflon-lined stainless steel with a volume capacity of 30 mL, sealed and reacted at 200 °C for 4 h. The product was collected through centrifugation, washed with ultrapure water and ethanol three times and dried in a vacuum oven at 60 °C.

Synthesis of Pd/Bi₂Te₃

The Pd catalyst anchored over Bi₂Te₃ was synthesized by a solvothermal method. Typically, 20 mg of Bi₂Te₃ obtained above was ultrasonically dispersed in a mixture containing 40 mL of ethanol and 40 mL of ultrapure water to form a uniform suspension. Under stirring, 2 mL of H₂PdCl₄ solution (22.6 × 10⁻³ M) was added to the suspension. Then, the pH of the suspension was adjusted to about 9 ~ 10 by NaOH solution (5 M). Subsequently, the resultant mixture was transferred into the Teflon-
lined stainless steel with a volume capacity of 100 mL, sealed and reacted at 140 °C for 4 h. After naturally cooled to room temperature, the mixture was filtered and washed several times with ethanol and water, respectively. At last, the resulting solid was transferred into a vacuum oven and dried overnight at 60°C to obtain the Pd/Bi$_2$Te$_3$-20% catalyst with 20 wt% Pd. While for Pd/Bi$_2$Te$_3$-25% and Pd/Bi$_2$Te$_3$-30% catalysts, the synthesis process was not changed just by using 2.78 and 3.58 mL of H$_2$PdCl$_4$ solution, respectively.

Physical characterizations

Power X-ray diffraction (XRD) was measured on a Rigaku Ultimate IV X-ray diffractometer operating at 40 mA and 40 kV. Scanning electron microscopy (SEM) image was acquired using a FEI Nova NanoSEM 450. Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and element mapping analysis were conducted on a JEM-2100F electron microscope. X-ray photoelectron spectroscopy (XPS) measurements were carried out on an ESCALAB250Xi spectrometer with an Al Kα radiation source.

Photoelectrochemical measurements

All photoelectrochemical measurements were performed in a conventional three-electrode system by a CHI 660E electrochemical workstation. An L-glassy carbon electrode (L-GCE) with a diameter of 3.0 mm coated by catalyst was employed as the working electrode, an Hg/HgO (1 M KOH) electrode was used as the reference electrode and a platinum foil electrode was used as the counter electrode, respectively. The working electrode was prepared by dispersing 5 mg of catalyst powders into the mixture containing 950 μL of ethanol and 50 μL of Nafion solution (5 wt%) with ultrasonic treatment to form a homogeneous catalyst ink. Afterward, 2 μL of the catalyst ink was dripped onto the L-GCE as the working electrode and then dried in air before electrochemical measurements. All of the potentials were in regard to the Hg/HgO. The electrolyte was saturated by N$_2$ for 15 min before measurements.

Cyclic voltammetry (CV) was carried out in a 1.0 M KOH solution or a mixed solution of 1.0 M KOH and 1.0 M EG at a potential range between -0.6 ~ 0.3 V with a
scan rate of 50 mV s$^{-1}$. Chronoamperometry (CA) was performed in a mixed solution of 1.0 M KOH and 1.0 M EG at -0.05 V for 3600 s. CO stripping voltammetry was measured in a 1.0 M KOH solution at 20 mV s$^{-1}$. CO was bubbled into the 1.0 M KOH solution for 30 min to form a CO monolayer adsorption onto the catalyst. Then, the excess CO in the electrolyte was removed by bubbling N$_2$ into the solution for 15 min.
Fig. S1 XPS survey spectra of Bi$_2$Te$_3$ and Pd/Bi$_2$Te$_3$.

Fig. S2 CV curves of Bi$_2$Te$_3$ in 1.0 M EG + 1.0 M KOH solution under dark and visible light irradiation conditions at 50 mV s$^{-1}$.
Fig. S3 CV curves of Pd/Bi$_2$Te$_3$ with different loading of Pd for EG oxidation under dark (a) and visible light irradiation (b) conditions. Mass activity of Pd/C and Pd/Bi$_2$Te$_3$ with different loading of Pd in 1.0 M EG + 1.0 M KOH solution at 50 mV s$^{-1}$ (c).

Fig. S4 The histogram of forward peak current density of Pd/C and Pd/Bi$_2$Te$_3$ vs. scanning cycles.
Fig. S5 CV curves of Pd/Bi₂Te₃ with (a) and without (b) visible light irradiation in 1.0 M EG + 1.0 M KOH solution at different scan rate.

Fig. S6 Equivalent circuit for EIS analysis. For the equivalent circuit, R_s is the uncompensated solution resistance, R_{ct} represents the charge-transfer resistance arising from alcohol oxidation and R_f stands for the film resistance. Q_s represents double-layer capacitance and Q_f corresponds to the film capacitance.

Fig. S7 EIS spectra of Pd/Bi₂Te₃ catalyst at different potentials in 1.0 M EG + 1.0 M KOH solution under dark (a-c) and visible light illumination (d-f) conditions.
Pd + (CH$_2$OH)$_2$$_{\text{solution}}$ → Pd-(CH$_2$OH)$_2$$_{\text{ads}}$ \hspace{1cm} (1)
Pd + (CH$_2$OH)$_{\text{ads}}$ + 4OH$^-$ → Pd-(HCO)$_{\text{ads}}$ + 4H$_2$O + 4e$^-$ \hspace{1cm} (2)
Pd-(HCO)$_{\text{ads}}$ + 4OH$^-$ → Pd-(HCOO)$_{\text{ads}}$ + 2H$_2$O + 4e$^-$ \hspace{1cm} (3)
Pd-HCOO$_{\text{ads}}$ + e$^-$ → Pd-CO$_{\text{ads}}$ + OH$^-$ \hspace{1cm} (4)
Pd-(HCOO)$_{\text{ads}}$ + e$^-$ → Pd-CO$_{\text{ads}}$ + OH$^-$ \hspace{1cm} (5)
Pd-OH$^-$ → Pd + OH$_{\text{ads}}$ + e$^-$ \hspace{1cm} (6)
Pd-CO$_{\text{ads}}$ + Pd + OH$_{\text{ads}}$ → 2Pd + CO$_2$ + H$^+$ + e$^-$ \hspace{1cm} (7)
Bi$_2$Te$_3$ + H$_2$O → Bi$_2$Te$_3$-OH$_{\text{ads}}$ + H$^+$ + e$^-$ \hspace{1cm} (8)
Pd-CO$_{\text{ads}}$ + Bi$_2$Te$_3$-OH$_{\text{ads}}$ → Pd + Bi$_2$Te$_3$ + CO$_2$ + H$^+$ + e$^-$ \hspace{1cm} (9)

$\text{Bi}_2\text{Te}_3 + h\nu \rightarrow \text{Bi}_2\text{Te}_3 + e^- + h^+$ \hspace{1cm} (10)
$\text{h}^+ (\text{Bi}_2\text{Te}_3) + \text{OH}^- \rightarrow \text{OH}$ \hspace{1cm} (11)
(CH$_2$OH)$_2$ + 10(\text{OH}) → 2CO$_2$ + 8H$_2$O + 5e$^-$ \hspace{1cm} (12)
Intermediates (CO$_{\text{ads}}$) + ·OH → CO$_2$ + H$^+$ + e$^-$ \hspace{1cm} (13)

Scheme S1 The photoelectrocatalytic process of EG oxidation over Pd/Bi$_2$Te$_3$ catalyst.

Table S1. Binding energy (B.E.) of Te 3d and Bi 4f obtained from curve-fitted XPS spectra for Bi$_2$Te$_3$ and Pd/Bi$_2$Te$_3$ samples.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Te 3d$_{5/2}$</th>
<th>Te 3d$_{3/2}$</th>
<th>Bi 4f$_{7/2}$</th>
<th>Bi 4f$_{5/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peak</td>
<td>B.E. (eV)</td>
<td>Peak</td>
<td>B.E. (eV)</td>
</tr>
<tr>
<td>Bi$_2$Te$_3$</td>
<td>Te$^{2-}$</td>
<td>571.6</td>
<td>Te$^{2-}$</td>
<td>582.0</td>
</tr>
<tr>
<td></td>
<td>Te$^{4+}$</td>
<td>575.5</td>
<td>Te$^{4+}$</td>
<td>585.9</td>
</tr>
<tr>
<td>Pd/Bi$_2$Te$_3$</td>
<td>Te$^{2-}$</td>
<td>573.4</td>
<td>Te$^{2-}$</td>
<td>583.8</td>
</tr>
<tr>
<td></td>
<td>Te$^{4+}$</td>
<td>575.7</td>
<td>Te$^{4+}$</td>
<td>586.1</td>
</tr>
</tbody>
</table>
Table S2. Comparison with other Pd-based catalysts for EGOR.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Electrolyte</th>
<th>Mass activity [mA mg<sub>Pd</sub>⁻¹]</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pd-PPy/NGE</td>
<td>1.0 M KOH + 1.0 M EG</td>
<td>2176.7</td>
<td>[1]</td>
</tr>
<tr>
<td>Pd-Bi<sub>2</sub>Te<sub>3</sub>-1/C</td>
<td>1.0 M KOH + 1.0 M EG</td>
<td>2420.0</td>
<td>[2]</td>
</tr>
<tr>
<td>Pd-Cu₂S</td>
<td>1.0 M KOH + 1.0 M EG</td>
<td>3254.0</td>
<td>[3]</td>
</tr>
<tr>
<td>PdPbAg NDs</td>
<td>1.0 M KOH + 1.0 M EG</td>
<td>3867.0</td>
<td>[4]</td>
</tr>
<tr>
<td>Pd/CoTe-C</td>
<td>1.0 M KOH + 1.0 M EG</td>
<td>3917.3</td>
<td>[5]</td>
</tr>
<tr>
<td>PdSn/rGO</td>
<td>0.1 M KOH + 0.5 M EG</td>
<td>4340.0</td>
<td>[6]</td>
</tr>
<tr>
<td>Pd/Bi<sub>2</sub>Te<sub>3</sub></td>
<td>1.0 M KOH + 1.0 M EG</td>
<td>5620.0</td>
<td>This work</td>
</tr>
</tbody>
</table>

References