Supporting Information

Iridium(III)-catalyzed photoredox cross-coupling of alkyl bromide with trialkyl amines: Access to α-alkylated aldehydes

Contents

1. Experimental Sections 2
1.1. General Information 2
(a) Light Information and Reaction Setup 2
(b) List of alkyl bromides 1a-1t and alkyl amines $\mathbf{2 a} \mathbf{- 2 e}$ used for the synthesis of α-functionalized aldehydes 3
1.2. Optimization for the photocatalyst (PC-1) loading 4
1.3. Optimization of additives 4
1.4. Optimization of solvents 5
1.5. Optimization of lights 5
1.6. General photocatalytic procedure for the synthesis of aldehydes 3a-3t 6
1.7. General photocatalytic procedure for the synthesis of aldehydes 3u-3ar 6
2. Scale up synthesis of 3 a and $3 \mathbf{u}$ 7
2.1 General photocatalytic procedure for the 2.0 mmol scale reaction of $\mathbf{1 a}$ with $\mathbf{2 a}$ for the synthesis of 3a 7
2.2 General photocatalytic procedure for the 2.0 mmol scale reaction of $\mathbf{1 a}$ with $\mathbf{2 b}$ for the synthesis of $3 \mathbf{u}$ 7
3. Mechanistic Studies (control experiments) 8
(a) HRMS analysis of reaction mixture 10
(b) Procedure for Trapping of Radicals with BHT and TEMPO 10
(c) Procedure for the Detection of Singlet Oxygen and Superoxide 12
(d) Procedure for the Detection of Singlet Oxygen using a Fluorescence probe 13
(e) Procedure for trapping of Singlet Oxygen (${ }^{1} \mathrm{O}_{2}$) 14
(f) $\mathrm{H}_{2} \mathrm{O}^{18}$ labelling experiment 15
(g) Detection of $\mathrm{H}_{2} \mathrm{O}_{2}$ 15
(h) Procedure for the detection of propionaldehyde 16
(i) Cyclic voltammetry of $\mathbf{1 a}$ and $\mathbf{2 a}, \mathbf{2 d}, \mathbf{2 e}$ in acetonitrile. 16
4. NMR data of 3a-3ar 18

1. Experimental Sections

1.1. General Information

The commercial reagents (phenacyl bromides, trialkyl amines and photocatalysts) were used as received from Merck, Sigma-Aldrich, TCI and Avra chemicals without any further purification. Moreover, few of alkyl bromides were synthesized by the reported procedures. ${ }^{1}$ Acetonitrile, 1,4dioxane and DMSO was purchased from Merck. DMF was purchased from Sigma-Aldrich. All the reactions were monitored by analytical thin layer chromatography (TLC) using Merck pre-coated aluminium sheets and visualized by a UV lamp. Flash column chromatography was performed on silica gel (100-200 mesh). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL 500 FT-NMR spectrometer operating at 500 and 126 MHz , respectively. Chemical shifts (δ) for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR are given in parts per million (ppm) using the residual solvent peaks as reference relative to tetramethyl silane (TMS). Coupling constant (J) values are reported in Hz. High-resolution mass spectra (HRMS, m / z) were recorded in EI or ESI mode, on Sciex X500R QTOF instrument. The Cyclic Voltammetry experiments were conducted on Autolab-PGSTAT302N operated using software NOVA 1.9. Kessil blue LED lights ($40 \mathrm{~W}, 467 \mathrm{~nm}$) were used for the photoredox reactions. All the reactions were carried out using oven-dried $5.0-\& 15-\mathrm{mL}$ sample vials of borosilicate. IUPAC names were obtained using the ChemDraw Professional 16.0 software.

1. S. Mal, S. Sarkar and M. Jana, J. Chem. Sci., 2022, 134, 118.
(a) Light Information and Reaction Setup

Two Kessil blue LED lights ($40 \mathrm{~W}, \lambda_{\max }=467 \mathrm{~nm}$ with 50% intensity) were used as the light source for this light promoted reaction and no filter was used. A borosilicate 5.0 mL vial was used as the reaction vessel. The distance from the light source to the irradiation vessel was in between 5 to 6 cm . Regular fan was used to ventilate the area to maintain the room temperature $\left(25-30^{\circ} \mathrm{C}\right)$. The reaction set-up for this photochemical reaction is shown below (Figure S1).

Figure S1. Photochemical reaction Set-up.
(b) List of alkyl bromides 1a-1t and alkyl amines 2a-2e used for the synthesis of α functionalized aldehydes

Alkyl bromides 1a-1t

1a

1b

1c

1d

1e

$1 f$ Br Ts

1g

1h

$1 i$

${ }^{1 j}$

1k

11

1 m

1n

10

1p

1q

1r

1s

1t

Trialkyl amines 2a-2e

2a

2b

2c

2d

1.2. Optimization for the photocatalyst (PC-1) loading

The optimization of the loading of iridium photocatalyst (PC-1) is listed in table S1. Using different amount of PC-1 for the given model reaction (Table S1, entries 1-4), it was found that maximum yield was obtained when we used 2 mol\% of PC-1 (Table S1, entry 1).

Table S1. Variation in loading of PC-1 ${ }^{\text {a }}$

Entry	PC-1 loading in mol\%	Yield (\%) ${ }^{\text {b }}$
1.	2 mol\%	76
2.	1 mol\%	65
3.	$1.5 \mathrm{~mol} \%$	67
4.	$3.0 \mathrm{~mol} \%$	75

${ }^{2}$ Reaction conditions; all reactions were performed with 1a (0.5 mmol), 2a ($2.0 \mathrm{mmol}, 4.0$ equiv.) and TBAI (0.5 equiv.) in 1,4-dioxane (2.0 mL) under open atmosphere at $30^{\circ} \mathrm{C}$ for 5 h . ${ }^{\text {b }}$ isolated yield of 3 a .

1.3. Optimization of additives

The optimization of the loading of TBAI and reaction outcomes with other additives (quaternary ammonium salts) are listed in Table S2. Using different amount of TBAI for the given model reaction, it was found that maximum yield was obtained when we use 0.5 equiv. of TBAI (Table S2, entries 13). Moreover, using other additives such as TBAB and TBATFB could not provide better results (Table S2, entries $4 \& 5$).

Table S2. Additive Variations ${ }^{\text {a }}$

${ }^{\text {aReaction conditions; all reactions were performed with 1a (} 0.5 \mathrm{mmol} \text {), } \mathbf{2 a} \text { (} 2.0 \mathrm{mmol}, 4.0 \text { equiv.), and PC-1 (} 2.0}$ $\mathrm{mol} \%$) in 1,4-dioxane (2.0 mL) under open atmosphere at $30^{\circ} \mathrm{C}$ for 5 h . ${ }^{\text {b }}$ isolated yield of 3 a ; TBAI $=$ tetra butyl ammonium iodide, TBAB = tetra butyl ammonium bromide, TBATFB = tetra butyl ammonium tetrafluoro borate.

1.4. Optimization of solvents

The given model reaction was also checked in different solvents as listed in table S3. Using 2.0 mL of 1,4-dioxane yielded desired product 3a in maximum yield (76\%, table S3, entry 1). The Photoredox reaction in ACN, DMF and DMSO could not provide better results (Table S3, entries 2-4). Moreover, using other cyclic ether such as THF also failed to provide better yield of product as compare to 1,4dioxane (Table S3, entry 5).

Table S3. Using different non-polar and polar solvents. ${ }^{a}$

Entry	Solvent $(2.0 \mathrm{~mL})$	${\text { Yield }(\%)^{\text {b }}}^{\prime}$
1.	$1,4-$ dioxane	76
2.	ACN	45
3.	DMF	35
4.	DMSO	trace
5.	THF	30

 equiv.) and PC-1 ($2.0 \mathrm{~mol} \%$) in solvent (2.0 mL) under open atmosphere at $30^{\circ} \mathrm{C}$ for 5 h . ${ }^{\mathrm{b}}$ isolated yield of 3 a .

1.5. Optimization of lights

The given model reaction was also tested under different light sources as listed in table S4 (entries 15). The photoredox reaction in Kessil blue LED lights ($2 \times 40 \mathrm{~W}, 467 \mathrm{~nm}$) provided better result as compared to other light sources (Table S4, entry 1).

Table S4. Reaction under different light sources ${ }^{\text {a }}$

Entry	Light $(\mathrm{W}, \mathrm{nm})$	Yield (\%)
1.	Kessil blue LED $(2 \times 40 \mathrm{~W}, 467 \mathrm{~nm})$	76
2.	Kessil blue LED $(2 \times 40 \mathrm{~W}, 390 \mathrm{~nm})$	66
3.	LUXEON blue $(1 \mathrm{~W}, 480 \mathrm{~nm})$	40
4.	LUXEON green $(1 \mathrm{~W}, 540 \mathrm{~nm})$	trace
5.	Bulbs $(2 \times 20 \mathrm{~W}$, unknown $)$	35

 equiv.) and PC-1 ($2.0 \mathrm{~mol} \%$) in 1,4-dioxane (2.0 mL) under open atmosphere at $30^{\circ} \mathrm{C}$ for 5 h . ${ }^{\text {b }}$ isolated yield of $3 a$.

An oven-dried 5.0 mL sample vial was charged with alkyl bromide (1) ($0.5 \mathrm{mmol}, 1.0$ equiv.), triethyl amine (2a) ($2.0 \mathrm{mmol}, 4.0$ equiv.), TBAI ($0.25 \mathrm{mmol}, 0.5$ equiv.) and PC-1 ($2 \mathrm{~mol} \%, 0.011 \mathrm{~g}$) a magnetic stir bar in 1,4-dioxane (2 mL) and was stirred at room temperature in an open-air for 5 h under the irradiation of $2 \times 40 \mathrm{~W}$ Kessil blue LED lights ($\lambda_{\max }=467 \mathrm{~nm}$) approximately at a distance of $\sim 5-6 \mathrm{~cm}$. The progress of the reaction was monitored via TLC. After completion of the reaction, the solvent was removed by rotary evaporation. The reaction mixture was then mixed with water (15 mL) and extracted with ethyl acetate $(2 \times 20 \mathrm{~mL})$. The organic layer was dried over anhydrous sodium sulphate and was evaporated under reduced pressure. The residue so obtained was then purified over column chromatography by eluting with hexane: ethyl acetate mixture to afford the desired products 3a-3t.

TLC observation of reaction mixture after 5 h

Developing agent (3% ethyl acetate in hexane; single run)
(a) Under UV light ($\lambda_{\text {max }}=254 \mathrm{~nm}$; short)
(b) Without UV light 3a appears as a red spot after 15 min .

1a
3 a
1.7. General photocatalytic procedure for the synthesis of aldehydes $3 u$-3ar

Scheme S1. General reaction
An oven-dried 5.0 mL sample vial was charged with alkyl bromide (1) ($0.5 \mathrm{mmol}, 1.0$ equiv.), trialkyl amines ($\mathbf{2 b} \mathbf{- 2 e}$) ($2.0 \mathrm{mmol}, 4.0$ equiv.), TBAI ($0.25 \mathrm{mmol}, 0.5$ equiv.) and PC-1 ($2 \mathrm{~mol} \%, 0.011 \mathrm{~g}$) a magnetic stir bar in 1,4-dioxane (2 mL) and was stirred at room temperature in an open-air for 5 h under the irradiation of 2×40 W Kessil blue LED lights ($\lambda_{\max }=467 \mathrm{~nm}$) approximately at a distance of $\sim 5-6 \mathrm{~cm}$. The progress of the reaction was monitored via TLC. After completion of the reaction, the solvent was removed by rotary evaporation. The reaction mixture was then mixed with water (15 mL) and extracted with ethyl acetate ($2 \times 20 \mathrm{~mL}$). The organic layer was dried over anhydrous sodium sulphate and was evaporated under reduced pressure. The residue so obtained was then
purified over column chromatography by eluting with hexane: ethyl acetate mixture to afford the desired products 3u-3ar.

2. Scale up synthesis of 3 a and 3 u

Scheme S2. Scale-up synthesis of compounds 3a and 3u

2.1 General photocatalytic procedure for the 2.0 mmol scale reaction of 1a with 2a for the synthesis of 3a

An oven-dried 15.0 mL sample vial was charged with phenacyl bromide (1a) ($2.0 \mathrm{mmol}, 1.0$ equiv.; $0.4 \mathrm{~g})$, triethyl amine ($\mathbf{2 a}$) ($8.0 \mathrm{mmol}, 4.0$ equiv., 0.8 g), TBAI ($1.0 \mathrm{mmol}, 0.5$ equiv., 0.369 g) and PC-1 ($2 \mathrm{~mol} \%, 0.044 \mathrm{~g}$) a magnetic stir bar in 1,4-dioxane (6 mL) and was stirred at room temperature in an open-air for 8 h under the irradiation of $2 \times 40 \mathrm{~W}$ Kessil blue LED lights ($\lambda_{\max }=467 \mathrm{~nm}$) approximately at a distance of $\sim 5-6 \mathrm{~cm}$. The progress of the reaction was monitored via TLC. After completion of the reaction, the solvent was removed by rotary evaporation. The reaction mixture was then mixed with water (25 mL) and extracted with ethyl acetate $(2 \times 30 \mathrm{~mL})$. The organic layer was dried over anhydrous sodium sulphate and was evaporated under reduced pressure. The residue so obtained was then purified over column chromatography by eluting with hexane: ethyl acetate mixture to afford the desired products $3 \mathrm{a}(68 \%, 0.19 \mathrm{~g})$.

2.2 General photocatalytic procedure for the 2.0 mmol scale reaction of $1 \mathbf{a}$ with $\mathbf{2 b}$ for the synthesis of 3 u

An oven-dried 15.0 mL sample vial was charged with phenacyl bromide (1a) (2.0 mmol , 1.0 equiv.; $0.4 \mathrm{~g})$, tripropyl amine ($\mathbf{2 b}$) ($8.0 \mathrm{mmol}, 4.0$ equiv., 1.14 g), TBAI ($1.0 \mathrm{mmol}, 0.5$ equiv., 0.369 g) and PC-1 ($2 \mathrm{~mol} \%, 0.044 \mathrm{~g}$) a magnetic stir bar in 1,4-dioxane (6 mL) and was stirred at room temperature in an open-air for 8 h under the irradiation of $2 \times 40 \mathrm{~W}$ Kessil blue LED lights $\left(\lambda_{\max }=467\right.$ nm) approximately at a distance of $\sim 5-6 \mathrm{~cm}$. The progress of the reaction was monitored via TLC. After completion of the reaction, the solvent was removed by rotary evaporation. The reaction
mixture was then mixed with water (25 mL) and extracted with ethyl acetate ($2 \times 30 \mathrm{~mL}$). The organic layer was dried over anhydrous sodium sulphate and was evaporated under reduced pressure. The residue so obtained was then purified over column chromatography by eluting with hexane: ethyl acetate mixture to afford the desired products $3 \mathrm{u}(65 \%, 0.23 \mathrm{~g}$).

Figure S2. Scale-up photoreaction set-up.

3. Mechanistic Studies (control experiments)

Scheme S3. Mechanistic studies
2. J. M. R. Narayanam, J. W. Tucker and C. R. J. Stephenson, J. Am. Chem. Soc., 2009, 131, 8756.

To prove the radical nature of the reaction, we carried out radical trapping experiments with BHT and TEMPO radical scavengers, separately. In experiment (b), the photocatalytic cross-coupling of $\mathbf{1 a}$ with $\mathbf{2 b}$ in the presence of BHT under optimized conditions suppressed the yield of desired product $\mathbf{3 u}$ (only 15% isolated yield) and the BHT adduct of $\mathbf{1}$ a was detected in HRMS analysis of the reaction mixture indicating the radical nature of the reaction. The model reaction in the presence of

TEMPO completely suppressed the formation of product 3 u . Although, we could not find TEMPO adduct of 1a in HRMS analysis, but TEMPO trapped the hydrogen radical which formed during the course of the reaction, hence inhibiting the formation of hydroxy radical, responsible for the product formation. Moreover, the TEMPOH adduct was detected in HRMS analysis. Next to check the presence of singlet oxygen and superoxide, the model reaction was carried out in presence of DABCO and p-benzoquinone (see experiment (c)). The experiment supported the formation of singlet oxygen eliminated the formation of superoxide. In experiment (d), to prove the role of singlet oxygen during the transformation, the model reaction was performed with singlet oxygen trapper (1,3-diphenylisobenzofuran) under standard reaction condition. After 5 h, only 40% 3u was isolated by column chromatography and 1,2-phenylenebis(phenylmethanone) (A) was detected during the HRMS analysis of the crude reaction mixture. In experiment (e), to prove the source of aldehyde's oxygen, we carried out a model reaction in presence of $\mathrm{H}_{2} \mathrm{O}^{18}$. After 5 h , the HRMS analysis of reaction mixture provided the peak of aldehyde product $3 u$ contain heavy oxygen atom, hence the above observation indicates that oxygen in aldehydes derived from moisture not from atmospheric oxygen. Next, we moved to check for the production of $\mathrm{H}_{2} \mathrm{O}_{2}$ in the reaction (see experiment (f)). In experiment (g), to discard the formation of aldehyde by the oxidation of trialkyl amine under optimized photocatalytic condition, we carried out the reaction of tripropylamine $\mathbf{2 b}$ without alkyl bromide 1 and subjected to the HRMS analysis after 1 h . The HRMS analysis of reaction mixture did not provide any peak close to propionaldehyde.
(a) HRMS analysis of reaction mixture

HRMS spectra

(b) Procedure for Trapping of Radicals with BHT and TEMPO

An oven-dried 5.0 mL sample vial was charged with phenacyl bromide (1a) (0.25 mmol , 1.0 equiv.; 0.050 g), tripropyl amine (2b) ($1.0 \mathrm{mmol}, 4.0$ equiv., 0.143 g), TBAI (0.5 equiv., 0.046 g), BHT (0.5 $\mathrm{mmol}, 2.0$ equiv., 0.110 g) and PC-1 ($2 \mathrm{~mol} \%, 0.006 \mathrm{~g}$) a magnetic stir bar in 1,4 -dioxane (2.0 mL) and was stirred at room temperature in an open-air for 5 h under the irradiation of $2 \times 40 \mathrm{~W}$ Kessil blue LED lights ($\lambda_{\text {max }}=467 \mathrm{~nm}$) approximately at a distance of $\sim 5-6 \mathrm{~cm}$. After $5 \mathrm{~h}, 50 \mu \mathrm{~L}$ of the reaction mixture was taken by Hamilton microliter syringe and subjected to HRMS analysis. The HRMS analysis of reaction mixture provided the peak of BHT adduct of $\mathbf{1}$ a. This result support the radical nature of the reaction. Next, the reaction mixture was then mixed with water $(10 \mathrm{~mL})$ and extracted with ethyl acetate ($2 \times 10 \mathrm{~mL}$). The organic layer was dried over anhydrous sodium sulphate and was evaporated under reduced pressure. The residue so obtained was then purified over column
chromatography by eluting with hexane: ethyl acetate mixture to afford the desired products 3 u in 15\% yield.

HRMS spectra

An oven-dried 5.0 mL sample vial was charged with phenacyl bromide (1a) (0.25 mmol , 1.0 equiv.; 0.050 g), tripropyl amine ($\mathbf{2 b}$) ($1.0 \mathrm{mmol}, 4.0$ equiv., 0.143 g), TBAI (0.5 equiv., 0.046 g), TEMPO (0.5 $\mathrm{mmol}, 2.0$ equiv., 0.078 g) and PC-1 ($2 \mathrm{~mol} \%, 0.006 \mathrm{~g}$) a magnetic stir bar in 1,4-dioxane (2.0 mL) and was stirred at room temperature in an open-air for 5 h under the irradiation of $2 \times 40 \mathrm{~W}$ Kessil blue LED lights ($\lambda_{\max }=467 \mathrm{~nm}$) approximately at a distance of $\sim 5-6 \mathrm{~cm}$. After $5 \mathrm{~h}, 50 \mu \mathrm{~L}$ of the reaction mixture was taken by Hamilton microliter syringe and subjected to HRMS analysis. The HRMS analysis of reaction mixture provided the peak of TEMPOH. TEMPO trapped the hydrogen radical formed during the course of the reaction, hence inhibiting the formation of hydroxy radical which is responsible for the product formation (see mechanism for detail). This result further supports the radical nature of the reaction. Next, the reaction mixture was then mixed with water (10 mL) and extracted with ethyl acetate ($2 \times 10 \mathrm{~mL}$). The organic layer was dried over anhydrous sodium sulphate and was evaporated under reduced pressure. The residue so obtained was then checked by TLC under UV light, the thin layer chromatography did not show spot of desired product 3u (not formed).

(c) Procedure for the Detection of Singlet Oxygen and Superoxide

An oven-dried 5.0 mL sample vial was charged with phenacyl bromide (1a) (0.25 mmol , 1.0 equiv.; 0.050 g), tripropyl amine ($\mathbf{2 b}$) ($1.0 \mathrm{mmol}, 4.0$ equiv., 0.143 g), TBAI (0.5 equiv., 0.046 g), DABCO (0.5 mmol, 2 equiv.; 0.056 mg) or p-Benzoquinone (0.5 mmol , 2 equiv.; 0.054 mg), and PC-1 ($2 \mathrm{~mol} \%$, $0.006 \mathrm{~g})$ a magnetic stir bar in 1,4-dioxane (2.0 mL) and was stirred at room temperature in an openair for 5 h under the irradiation of $2 \times 40 \mathrm{~W}$ Kessil blue LED lights ($\lambda_{\max }=467 \mathrm{~nm}$) approximately at a distance of $\sim 5-6 \mathrm{~cm}$. The reaction mixture was then mixed with water $(10 \mathrm{~mL})$ and extracted with ethyl acetate $(2 \times 15 \mathrm{~mL})$. The organic layer was dried over anhydrous sodium sulphate and was evaporated under reduced pressure. The residue so obtained was then purified over column chromatography by eluting with hexane: ethyl acetate mixture to afford the product $3 \mathbf{u}$ as brown solid in $0 \mathrm{~g}(0 \%$ yield) for DABCO and 0.028 g (65% yield) for p-benzoquinone. The failure to obtain the desired product $3 \mathbf{u}$ in the presence of DABCO confirms the involvement of the singlet oxygen in the reaction and for p-benzoquinone, the 65% yield of $3 u$ suggests non-involvement of superoxide in the reaction.

(d) Procedure for the Detection of Singlet Oxygen using a Fluorescence probe

For the detection of Singlet Oxygen, 9,10-Diphenylanthracene (DPA) was chosen as the fluorescence probe. DPA reacts with ${ }^{1} \mathrm{O}_{2}$ to form non-fluorescent DPA-endoperoxide. Two oven-dried 5.0 mL sample vials were charged with phenacyl bromide (1a) ($0.25 \mathrm{mmol}, 1.0$ equiv.; 0.050 g), TBAI (0.5 equiv., 0.046 g), DPA ($0.1 \mathrm{mmol}, 0.033 \mathrm{~g}$), and PC-1 ($2 \mathrm{~mol} \%, 0.006 \mathrm{~g}$) a magnetic stir bar in 1,4dioxane (2.0 mL). Tripropyl amine ($\mathbf{2 b}$) ($1.0 \mathrm{mmol}, 4.0$ equiv., 0.143 g) was added in one of the vials. Both were then stirred at room temperature in an open-air atmosphere under the irradiation of 2 x 40 W Kessil blue LED lights ($\lambda_{\max }=467 \mathrm{~nm}$) approximately at a distance of $\sim 5-6 \mathrm{~cm}$. The emission spectra of DPA were measured by exciting the reaction mixture at 375 nm . The DPA fluorescence emission exhibits a maximum around 430 nm . For the emission studies, $200 \mu \mathrm{~L}$ of the reaction mixture was taken and was made up to 3 mL (using 1,4-dioxane). Three readings from each of the vial were taken; a) Before irradiation, (b) after 1 hr of irradiation, and (c) after 2 hr of irradiation for both the vials.

Figure S4. Fluorescence emission spectra of DPA in reaction mixtures
Even though the DPA fluorescence decay is observed in both the cases (confirming the presence of singlet oxygen), it can be noted that the fluorescence decay in the case of reaction mixture containing tripropyl amine was significantly less than the decay in the case of reaction mixture without tripropyl amine. This could be accounted by the quenching of singlet oxygen by the amine present in the mixture.
(e) Procedure for trapping of Singlet Oxygen $\left({ }^{1} \mathrm{O}_{2}\right)$

detected during HRMS analysis

An oven-dried 5.0 mL sample vial was charged with phenacyl bromide (1a) (0.25 mmol , 1.0 equiv.; 0.050 g), tripropyl amine ($\mathbf{2 b}$) ($1.0 \mathrm{mmol}, 4.0$ equiv., 0.143 g), TBAI (0.5 equiv., 0.046 g), 1,3diphenylisobenzofuran ($0.5 \mathrm{mmol}, 2$ equiv.; 0.135 g), and PC-1 ($2 \mathrm{~mol} \%, 0.006 \mathrm{~g}$) a magnetic stir bar in 1,4-dioxane (2.0 mL) and was stirred at room temperature in an open-air for 5 h under the irradiation of $2 \times 40 \mathrm{~W}$ Kessil blue LED lights ($\lambda_{\max }=467 \mathrm{~nm}$) approximately at a distance of $\sim 5-6 \mathrm{~cm}$. After 5 h , TLC show the formation of product $3 \mathbf{u}$, but the starting material 1a was not fully consumed even after 5 h of photochemical reaction. This observation indicated that the oxygen is required for the complete conversion of 1a to 3a under given optimized condition. After that, reaction mixture was mixed with water (10 mL) and extracted with ethyl acetate $(2 \times 15 \mathrm{~mL})$. The organic layer was dried over anhydrous sodium sulphate and was evaporated under reduced pressure. The residue so obtained was then purified over column chromatography by eluting with hexane: ethyl acetate mixture to afford the product 3 u as brown solid in 40% (0.017 g) yield and 1,2phenylenebis(phenylmethanone) (A) was detected in HRMS analysis of the crude reaction mixture. The formation of \mathbf{A} diminished the yield of desired product $3 u$ in given reaction time (5 h) by making unavailability of the singlet oxygen.

HRMS spectra

(f) $\mathrm{H}_{2} \mathrm{O}^{18}$ labelling experiment.

An oven-dried 5.0 mL sample vial was charged with phenacyl bromide (1a) ($0.25 \mathrm{mmol}, 1.0$ equiv.; 0.050 g), tripropyl amine (2b) ($1.0 \mathrm{mmol}, 4.0$ equiv., 0.143 g), TBAI (0.5 equiv., 0.046 g), $\mathrm{H}_{2} \mathrm{O}^{18}(15$ equiv.; containing $10 \% \mathrm{O}^{18}$ atom;) and PC-1 ($2 \mathrm{~mol} \%, 0.006 \mathrm{~g}$) a magnetic stir bar in 1,4-dioxane (2.0 mL) and was stirred at room temperature in an open-air for 5 h under the irradiation of $2 \times 40 \mathrm{~W}$ Kessil blue LED lights ($\lambda_{\max }=467 \mathrm{~nm}$) approximately at a distance of $\sim 5-6 \mathrm{~cm}$. After $5 \mathrm{~h}, 0.02 \mathrm{~mL}$ of reaction mixture was taken from vial and subject to HRMS analysis. The HRMS analysis of reaction mixture provided the peak of aldehyde product 3 u contain heavy oxygen atom $\left(\mathrm{O}^{18}\right)$, hence this observation indicated that the oxygen in aldehydes derived from moisture not from atmospheric oxygen.

HRMS spectra

(g) Detection of $\mathrm{H}_{2} \mathrm{O}_{2}$

An oven-dried 5.0 mL sample vial was charged with phenacyl bromide (1a) ($0.25 \mathrm{mmol}, 1.0$ equiv.; 0.050 g), tripropyl amine (2b) ($1.0 \mathrm{mmol}, 4.0$ equiv., 0.143 g), TBAI (0.5 equiv., 0.046 g), and PC-1 (2 $\mathrm{mol} \%, 0.006 \mathrm{~g})$ a magnetic stir bar in 1,4-dioxane (2.0 mL) and was stirred at room temperature in an open-air for 5 h under the irradiation of $2 \times 40 \mathrm{~W}$ Kessil blue LED lights ($\lambda_{\max }=467 \mathrm{~nm}$) approximately at a distance of $\sim 5-6 \mathrm{~cm}$. In a separate test tube (5 mL), KMnO_{4} solution was prepared by adding $\mathrm{KMnO}_{4}(400 \mu \mathrm{M})$ in $\mathrm{H}_{2} \mathrm{O}$. A portion of the reaction mixture was added to the KMnO_{4} solution. Instantly, the aqueous solution turned to pale yellow colour indicating the presence of $\mathrm{H}_{2} \mathrm{O}_{2}$.

Figure S5. (a) KMnO_{4} solution (b) KMnO 4 solution after addition of reaction mixture.
(h) Procedure for the detection of propionaldehyde

An oven-dried 5.0 mL sample vial was charged with tripropyl amine ($\mathbf{2 b} ; 0.25 \mathrm{mmol}$), TBAI (0.5 equiv.), and PC-1 ($2 \mathrm{~mol} \%$) a magnetic stir bar in 1,4-dioxane (2.0 mL) and was stirred at room temperature in an open-air for 1 h under the irradiation of $2 \times 40 \mathrm{~W}$ Kessil blue LED lights ($\lambda_{\max }=467$ nm) approximately at a distance of $\sim 5-6 \mathrm{~cm}$. After $1 \mathrm{~h}, 0.02 \mathrm{~mL}$ of reaction mixture was taken from vial and subject to HRMS analysis. The HRMS analysis of reaction mixture did not provide any peak close to propionaldehyde product.

(i) Cyclic voltammetry of 1 a and $2 \mathrm{a}, 2 \mathrm{~d}, 2 \mathrm{e}$ in acetonitrile.

Cyclic voltammetry (CV) was performed in an open electrochemical cell with Metrohm AutoLab PGSTAT302N potentiostat using Nova 2 software. CV analysis conditions: Working electrode: Pt Plate; counter electrode: Pt wire; reference electrode: $\mathrm{Ag} / \mathrm{AgCl}$ in saturated $\mathrm{LiCl} / \mathrm{EtOH}$; scan rate, $\mathrm{v}=$ $100 \mathrm{mV} / \mathrm{s} ; T=25^{\circ} \mathrm{C}$. A 0.10 M solution of n-tetra butyl ammonium tetrafluoroborate (TBATFB) in ACN was used electrolytic media. The concentration of phenacyl bromide 1a and trialkyl amines (2a, 2d and 2e) were taken as 10 mM . Moreover, for excited Ir (III)* photocatalyst (PC-1; $\mathrm{E}^{1 / 2 * \| / I I}=+1.21$ V vs SCE) and reductant $\operatorname{Ir}(\mathrm{II})\left(\mathrm{E}^{1 / 2 \mathrm{IIIII}}=-1.37 \mathrm{~V}\right.$ vs SCE). ${ }^{3}$

Figure S6. CV graphs: A. 1a in ACN; B. 2a, 2d and $\mathbf{2 e}$ in ACN.
3. C. K. Prier, D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013, 113, 5322-5363.

4. NMR data of 3a-3ar

4-0xo-2-(2-oxo-2-phenylethyl)-4-phenylbutanal (3a):

Isolated yield (54 mg, 76\%); Sticky brown liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.94(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.58(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 4 \mathrm{H}), 3.68(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.35(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 202.5, 197.8, 136.4, 133.7, 128.9, 128.3, 42.2, 38.1.

HRMS (ESI-TOF, $[\mathbf{M + H}]^{+}$): Calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3} 281.1172$, found 281.1179.

4-Oxo-2-(2-oxo-2-(o-tolyl)ethyl)-4-(o-tolyl)butanal (3b):

Isolated yield (56 mg, 72\%); Sticky orange liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.92(\mathrm{~s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H})$, $7.24(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.55-3.50(\mathrm{~m}, 3 \mathrm{H}), 3.26-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) δ 202.6, 201.4, 138.7, 136.9, 132.3, 132.0, 128.9, 126.0, 42.9, 40.8, 21.6.

HRMS (ESI-TOF, $\left[\mathbf{M}+\mathrm{H}^{+}{ }^{+}\right.$: Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{3} 309.1485$, found 309.1490.

4-Oxo-2-(2-oxo-2-(m-tolyl)ethyl)-4-(m-tolyl)butanal (3c):

Isolated yield (54 mg, 70\%); Sticky brown liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.92(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.39-7.32(\mathrm{~m}, 4 \mathrm{H}), 3.62(\mathrm{dd}, \mathrm{J}=$ 18.4, $5.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.54-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{dd}, \mathrm{J}=18.2,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) δ 202.6, 198.0, 138.6, 136.4, 134.4, 128.8, 128.7, 125.5, 42.2, 38.1, 21.4.

HRMS (ESI-TOF, $\left[\mathbf{M}+\mathrm{H}^{+}\right.$): Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{3} 309.1485$, found 309.1496.
4-Oxo-2-(2-oxo-2-(p-tolyl)ethyl)-4-(p-tolyl)butanal (3d):

Isolated yield (62 mg, 80\%); Light brown solid; mp: 96-98 ${ }^{\circ} \mathrm{C}$; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl ${ }_{3}$) $\delta 9.93(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.26(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.62(\mathrm{dd}, J=$ $18.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.53-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=18.1,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 202.8, 197.5, 144.6, 134.0, 129.5, 128.4, 42.2, 38.1, 21.8.

HRMS (ESI-TOF, $[\mathbf{M + H}]^{+}$): Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{3} 309.1485$, found 309.1495.
4-(4-Ethylphenyl)-2-(2-(4-ethylphenyl)-2-oxoethyl)-4-oxobutanal (3e):

Isolated yield (67 mg, 79\%); Sticky brown liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 9.93(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.64-3.60$ $(\mathrm{m}, 2 \mathrm{H}), 3.53-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=18.0,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.70(\mathrm{q}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.26-1.23(\mathrm{~m}$, $6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 202.8,197.5,150.7,134.1,128.5,128.3,42.2,38.1,29.1,15.3$.

HRMS (ESI-TOF, $[\mathbf{M + H}]^{+}$): Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{3} 337.1798$, found 337.1808.

4-(3-Methoxyphenyl)-2-(2-(3-methoxyphenyl)-2-oxoethyl)-4-oxobutanal (3f):

Isolated yield ($66 \mathrm{mg}, 77 \%$); Sticky red liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.92(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~s}, 2 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.12(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 6 \mathrm{H}), 3.61(\mathrm{dd}, J=18.1,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.55-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=$ $17.8,5.8 \mathrm{~Hz}, 2 \mathrm{H}$).
$\left.{ }^{13} \mathbf{C}^{1}{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) $\delta 202.5,197.7,160.0,137.7,129.8,120.9,120.2,112.4,55.6,42.3$, 38.2.

HRMS (ESI-TOF, $[\mathrm{M}+\mathrm{H}]^{+}$): Calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5} 341.1384$, found 341.1391.
(3-Formylpentanedioyl)bis(3,1-phenylene) bis(4-methylbenzenesulfonate) (3g):

Isolated yield (126 mg, 81\%); Sticky red liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.84(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.55(\mathrm{~s}, 2 \mathrm{H})$, $7.41(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.51-3.46(\mathrm{~m}, 3 \mathrm{H}), 3.23-3.17$ (m, 2H), $2.44(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 201.9, 196.1, 150.0, 146.0, 137.8, 132.2, 130.2, 130.1, 128.6, 127.6, 126.8, 122.2, 41.9, 38.1, 21.8.

HRMS (ESI-TOF, $[\mathbf{M}+\mathrm{H}]^{+}$): Calcd for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{O}_{9} \mathrm{~S}_{2} 621.1248$, found 621.1303 .
4-(3-(Benzyloxy)phenyl)-2-(2-(3-(benzyloxy)phenyl)-2-oxoethyl)-4-oxobutanal (3h):

Isolated yield ($85 \mathrm{mg}, 65 \%$); Sticky dark red liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.92(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~s}, 2 \mathrm{H})$, $7.66(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 3 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.64$ (dd, $J=18.1,6.0 \mathrm{~Hz}, 2 \mathrm{H}$), $3.58-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=17.6,5.6 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.2,196.7,165.1,151.4,137.8,134.0,130.4,130.0,129.2,128.8$, 128.8, 127.2, 125.8, 121.7, 42.1, 38.2.

HRMS (ESI-TOF, $[\mathrm{M}+\mathrm{H}]^{+}$): Calcd for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{7} 521.1595$, found 521.1616.

4-(4-Methyl-3-(pentyloxy)phenyl)-2-(2-(4-methyl-3-(pentyloxy)phenyl)-2-oxoethyl)-4-oxobutanal

(3i):

Isolated yield (84 mg, 70\%); Sticky brown liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.99(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.61-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{dd}, \mathrm{J}=18.7,5.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.26(\mathrm{~s}, 6 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.44-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) $\delta 203.4,199.9,156.7,134.6,130.9,130.9,129.9,127.1,112.5,68.8$, 44.1, 29.0, 28.5, 22.5, 20.3, 14.1.

HRMS (ESI-TOF, $[\mathrm{M}+\mathrm{H}]^{+}$): Calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{5} 481.2949$, found 481.2949.

4-(4-Fluorophenyl)-2-(2-(4-fluorophenyl)-2-oxoethyl)-4-oxobutanal (3j):

Isolated yield ($65 \mathrm{mg}, 82 \%$); Light brown solid; mp: 89-91 ${ }^{\circ} \mathrm{C}$; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=8.7,5.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.61$ (dd, $J=18.1,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.54-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=18.1,5.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (151 MHz, CDCl_{3}) $\delta 202.3,196.2,167.0,165.3,132.8,132.8,131.0,130.9,116.1,115.9$, 42.2, 37.9.

HRMS (ESI-TOF, $\left[\mathbf{M}+\mathrm{H}^{+}\right.$): Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~F}_{2} \mathrm{O}_{3} 317.0984$, found 317.0986.

4-(4-Chlorophenyl)-2-(2-(4-chlorophenyl)-2-oxoethyl)-4-oxobutanal (3k):

Isolated yield (66 mg, 75\%); Light brown solid; mp: 89-91 ${ }^{\circ} \mathrm{C}$; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.45(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 4 \mathrm{H}), 3.60(\mathrm{dd}, J=$ 18.1, $5.9 \mathrm{~Hz}, 2 \mathrm{H}$), $3.55-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.31$ (dd, $J=18.5,5.5 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.1,196.6,140.3,134.6,129.7,129.2,42.1,38.0$.

HRMS (ESI-TOF, $\left[\mathbf{M}+\mathrm{H}^{+}\right.$): Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{3} 349.0393$, found 349.0397.

4-(2-Bromophenyl)-2-(2-(2-bromophenyl)-2-oxoethyl)-4-oxobutanal (3I):

Isolated yield (83 mg, 76\%); Sticky dark brown liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.57(\mathrm{dd}, \mathrm{J}=$ 18.1, $5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{dd}, \mathrm{J}=18.5,5.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (126 MHz, CDCl_{3}) δ 201.5, 201.4, 140.8, 134.0, 132.1, 128.9, 127.7, 118.9, 43.0, 41.6.

HRMS (ESI-TOF, $[\mathbf{M}+\mathbf{2 + H}]^{+}$): Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{3} 438.9362$, found 438.9363.

4-(4-Bromophenyl)-2-(2-(4-bromophenyl)-2-oxoethyl)-4-oxobutanal (3m):

Isolated yield ($81 \mathrm{mg}, 74 \%$); Dark brown solid; mp: $93-95^{\circ} \mathrm{C}$; Isolation: 5% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl $_{3}$) $\delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.58(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.57(\mathrm{dd}, J=$ $17.5,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.28$ (dd, $J=17.3,5.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 202.0, 196.7, 135.0, 132.1, 129.7, 128.9, 42.1, 37.9.
HRMS (ESI-TOF, $\left[\mathbf{M}+\mathrm{H}^{+}\right.$): Calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Br}_{2} \mathrm{O}_{3} 436.9382$, found 436.9407 .

4-(2,4-Dichlorophenyl)-2-(2-(2,4-dichlorophenyl)-2-oxoethyl)-4-oxobutanal (3n):

Isolated yield (84 mg, 80\%); Brown solid; mp: 92-94 ${ }^{\circ} \mathrm{C}$; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 8.03(\mathrm{~s}, 2 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.59-3.51(\mathrm{~m}, 3 \mathrm{H}), 3.29$ (dd, $J=20.0,5.0 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) $\delta 201.6,195.5,138.5,135.8,133.7,131.0,130.3,127.3,42.1,37.8$.

HRMS (ESI-TOF, $[\mathrm{M}+\mathrm{H}]^{+}$): Calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{O}_{3} 416.9613$, found 416.9637.
4-Oxo-2-(2-oxo-2-(3,4,5-trifluorophenyl)ethyl)-4-(3,4,5-trifluorophenyl)butanal (30):

Isolated yield ($63 \mathrm{mg}, 65 \%$); Sticky orange liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.84(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 4 \mathrm{H}), 3.65-3.51(\mathrm{~m}, 3 \mathrm{H}), 3.28(\mathrm{~d}, \mathrm{~J}=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 201.2, 194.2, 152.6, 152.5, 150.5, 144.7, 142.7, 131.8, 113.0, 113.0, 112.9, 112.8, 42.1, 37.6.

HRMS (ESI-TOF, [M+H] ${ }^{+}$): Calcd for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{O}_{3} 389.0607$, found 389.0629.
4-Oxo-2-(2-oxo-2-(2-(trifluoromethyl)phenyl)ethyl)-4-(2-(trifluoromethyl)phenyl)butanal (3p):

Isolated yield (77 mg, 74\%); Sticky brown liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, \mathrm{J}=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.53-3.45(\mathrm{~m}, 3 \mathrm{H}), 3.25(\mathrm{dd}, J=17.9,4.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 201.9, 201.4, 139.5, 139.4, 132.2, 132.1, 130.7, 130.5, 127.6, 127.4, 127.0, 127.0, 126.9, 124.8, 122.6, 42.3, 41.7.

HRMS (ESI-TOF, [M+H] ${ }^{+}$): Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{O}_{3} 417.0920$, found 417.0921.
4-Oxo-2-(2-oxo-2-(4-(trifluoromethyl)phenyl)ethyl)-4-(4-(trifluoromethyl)phenyl)butanal (3q):

Isolated yield ($74 \mathrm{mg}, 71 \%$); Off-white solid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.91(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.74(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.66(\mathrm{dd}, \mathrm{J}=$ $18.3,5.8 \mathrm{~Hz}, 2 \mathrm{H}$), $3.62-3.57$ (m, 1H), 3.38 (dd, $J=18.0,5.7 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.7,196.8,138.9,135.5,135.2,135.0,134.7,128.7,126.0,124.7$, 122.5, 42.2, 38.2.

HRMS (ESI-TOF, $\left[\mathbf{M}+\mathrm{H}^{+}\right.$): Calcd for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~F}_{6} \mathrm{O}_{3} 417.0920$, found 417.0938 .

4-(Benzo[d][1,3]dioxol-5-yl)-2-(2-(benzo[d][1,3]dioxol-5-yl)-2-oxoethyl)-4-oxobutanal (3r):

Isolated yield (74 mg, 80\%); Sticky dark brown liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 2 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.04(\mathrm{~s}, 4 \mathrm{H}), 3.54(\mathrm{dd}, \mathrm{J}=18.1,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.48-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{dd}, \mathrm{J}=18.1,5.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) δ 202.6, 195.9, 152.3, 148.4, 131.3, 124.7, 108.1, 108.0, 102.1, 42.5, 37.9 .

HRMS (ESI-TOF, $\left[\mathbf{M}+\mathrm{H}^{+}{ }^{+}\right.$: Calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}_{7} 369.0969$, found 369.0980.

4-([1,1'-Biphenyl]-4-yl)-2-(2-([1,1'-biphenyl]-4-yl)-2-oxoethyl)-4-oxobutanal (3s):

Isolated yield ($74 \mathrm{mg}, 68 \%$); Dark brown solid; mp: $125-127^{\circ} \mathrm{C}$; Isolation: 5% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR (600 MHz, CDCl $_{3}$) $\delta 9.97(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.62(\mathrm{~d}, \mathrm{~J}=$ $7.9 \mathrm{~Hz}, 4 \mathrm{H}), 7.47(\mathrm{t}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.70(\mathrm{dd}, J=18.1,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-3.56$ (m, 1H), 3.41 (dd, J = 18.1, $6.0 \mathrm{~Hz}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (151 MHz, CDCl_{3}) $\delta 202.6,197.5,146.4,139.9,135.1,129.1,128.9,128.5,127.5,127.4$, 42.3, 38.1.

HRMS (ESI-TOF, $[\mathbf{M}+\mathrm{H}]^{+}$): Calcd for $\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{3} 433.1798$, found 433.1819.

4-(Naphthalen-2-yl)-2-(2-(naphthalen-2-yl)-2-oxoethyl)-4-oxobutanal (3t):

Isolated yield ($67 \mathrm{mg}, 70 \%$); Brown solid; mp: $108-110^{\circ} \mathrm{C}$; Isolation: 5% EtOAc in Hexane;
${ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.02(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 2 \mathrm{H}), 8.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=10.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.90-7.86(\mathrm{~m}, 4 \mathrm{H}), 7.60(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{dd}, J=15.0,6.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.68-3.63(m, 1 H), 3.56-3.53(m, 2 H)$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (151 MHz, CDCl_{3}) $\delta 202.7,197.8,135.9,133.7,132.6,130.3,129.8,128.9,128.8,127.9$, 127.1, 123.8, 42.4, 38.2.

HRMS (ESI-TOF, $[\mathbf{M}+\mathrm{H}]^{+}$): Calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}_{3} 381.1485$, found 381.1483.

2-Methyl-4-oxo-4-phenylbutanal (3u):

Isolated yield (68 mg, 77\%); Sticky dark brown liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl $_{3}$) $\delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 3.47(\mathrm{dd}, J=18.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.07(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=17.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 203.5, 197.9, 136.6, 133.4, 128.7, 128.2, 41.7, 39.5, 13.8.

HRMS (ESI-TOF, $\left[\mathbf{M}+\mathrm{H}^{+}\right.$): Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{2}$ 177.0910, found 177.0910.

2-Methyl-4-oxo-4-(p-tolyl)butanal (3v):

Isolated yield ($74 \mathrm{mg}, 78 \%$); Colourless sticky liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.79(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.46$ (dd, J= $17.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=17.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, 3 H).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) δ 203.7, 197.5, 144.3, 134.2, 129.5, 128.3, 41.8, 39.4, 21.8, 13.9.
HRMS (ESI-TOF, [$\mathbf{M + H}]^{+}$): Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ 191.1067, found 191.1067.

4-(4-Methoxyphenyl)-2-methyl-4-oxobutanal (3w):

Isolated yield (83 mg, 81\%); Sticky brown liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.77(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H})$, $3.41(\mathrm{dd}, \mathrm{J}=18.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=17.9,6.0 \mathrm{~Hz} 1 \mathrm{H}), 1.21(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 203.8,196.4,163.8,130.5,129.8,113.9,55.6,41.8,39.2,13.8$.

HRMS (ESI-TOF, $\left[\mathbf{M}+\mathrm{H}^{+}\right.$): Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ 207.1016, found 207.1015.

3-(3-Methyl-4-oxobutanoyl)phenyl 4-methylbenzenesulfonate (3x):

Isolated yield (133 mg, 77\%); Sticky brown liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.72(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H})$, $7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{dd}, J=18.6,6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.08-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=17.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) δ 203.1, 196.3, 149.9, 145.9, 138.2, 132.1, 130.1, 130.0, 128.6, 127.2, 126.7, 122.1, 41.6, 39.4, 21.7, 13.7.

HRMS (ESI-TOF, [M+H] ${ }^{+}$): Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{~S} 347.0948$, found 347.0947.

4-(4-Ethylphenyl)-2-methyl-4-oxobutanal (3y):

Isolated yield (70 mg, 69\%); Sticky brown liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 9.79(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{dd}, \mathrm{J}=$ $17.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=17.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{q}, J=7.9,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.26$ ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), $1.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.7,197.6,150.5,134.5,128.5,128.3,41.8,39.5,29.1,15.3,13.9$.
HRMS (ESI-TOF, $\left[\mathbf{M}+\mathbf{H}^{+}\right.$): Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$ 205.1223, found 205.1240.

4-(4-Fluorophenyl)-2-methyl-4-oxobutanal (3z):

Isolated yield (69 mg, 71\%); Sticky red liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{dd}, J=9.1,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.46$ (dd, $J=18.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=18.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) $\delta 203.4,196.3,167.0,165.0,133.2,130.9,130.8,116.0,115.8,41.8$, 39.4, 13.9.

HRMS (ESI-TOF, $\left[\mathbf{M}+\mathrm{H}^{+}{ }^{+}\right.$): Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{FO}_{2}$ 195.0816, found 195.0820.
4-(4-Chlorophenyl)-2-methyl-4-oxobutanal (3aa):

Isolated yield (79 mg, 75\%); Dark green solid; mp: 94-96 ${ }^{\circ} \mathrm{C}$; Isolation: 5% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.76(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{dd}, J=$ $18.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=17.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.3,196.7,139.8,135.0,129.6,129.0,41.7,39.4,13.8$.
HRMS (ESI-TOF, $[\mathbf{M}+\mathrm{H}]^{+}$): Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{ClO}_{2}$ 211.0520, found 211.0518.

4-(4-Bromophenyl)-2-methyl-4-oxobutanal (3ab):

Isolated yield (94 mg, 74\%); Sticky orange liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.76(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{dd}, J=$ $18.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=18.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 203.3, 196.9, 135.4, 132.0, 129.7, 128.6, 41.7, 39.3, 13.8.

HRMS (ESI-TOF, $\left[\mathbf{M}+\mathbf{H}^{+}\right.$): Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{2} 255.0015$, found 255.0015.

4-(3-Bromophenyl)-2-methyl-4-oxobutanal (3ac):

Isolated yield (103 mg, 81\%); Sticky orange liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.77(\mathrm{~s}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, \mathrm{J}=18.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{dd}, \mathrm{J}=17.5,5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.25$ ($\mathrm{d}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 203.25,196.60,138.39,136.27,131.28,130.38,126.71,123.13$, 41.71, 39.46, 13.82.

HRMS (ESI-TOF, $\left[\mathbf{M}+\mathrm{H}^{+}\right.$): Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{2} 255.0015$, found 255.0012 .

4-(2-Bromophenyl)-2-methyl-4-oxobutanal (3ad):

Isolated yield (97 mg, 76\%); Sticky orange liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.74(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=17.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=$ $18.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.1,141.3,133.8,131.9,128.8,127.6,118.7,43.4,42.2,13.6$.

HRMS (ESI-TOF, $\left[\mathbf{M}+\mathrm{H}^{+}{ }^{+}\right.$: Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{2} 255.0015$, found 255.0012.

4-(Benzo[d][1,3]dioxol-5-yl)-2-methyl-4-oxobutanal (3ae):

Isolated yield (94 mg, 85\%); Sticky light brown liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.77(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.04(\mathrm{~s}, 2 \mathrm{H}), 3.40(\mathrm{dd}, J=17.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=17.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) δ 203.6, 195.9, 152.1, 148.3, 131.5, 124.5, 108.0, 107.9, 102.0, 41.8, 39.3, 13.8.

HRMS (ESI-TOF, $\left.[\mathrm{M}+\mathrm{H}]^{+}\right)$: Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4} 221.0808$, found 221.0811 .

4-([1,1'-Biphenyl]-4-yl)-2-methyl-4-oxobutanal (3af):

Isolated yield (101 mg, 80\%); Light brown solid; mp: 89-91 ${ }^{\circ} \mathrm{C}$, Isolation: 5% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=17.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-3.11$ $(\mathrm{m}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=17.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) $\delta 203.6,197.5,146.2,139.9,135.4,129.1,128.8,128.4,127.4,127.4$, 41.9, 39.6, 13.9.

HRMS (ESI-TOF, $[\mathrm{M}+\mathrm{H}]^{+}$): Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2} 253.1223$, found 253.1224.

2-Ethyl-4-oxo-4-phenylbutanal (3ag):

Isolated yield (69 mg, 73\%); Sticky off-white liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.45(\mathrm{dd}, J=18.6,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.59(\mathrm{~m}$, $1 \mathrm{H}), 0.99(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (151 MHz, CDCl_{3}) $\delta 203.7$, 198.1, 136.6, 133.4, 128.7, 128.1, 48.1, 37.2, 21.9, 11.5.
HRMS (ESI-TOF, $\left[\mathbf{M}+\mathbf{H}^{+}{ }^{+}\right.$): Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2}$ 191.1067, found 191.1075.

2-ethyl-4-oxo-4-(m-tolyl)butanal (3ah):

Isolated yield (81 mg, 79\%); Sticky red liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{dd}, \mathrm{J}=$ $17.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl ${ }_{3}$) $\delta 203.8,198.4,138.6,136.8,134.2,128.7,128.7,125.4,48.2,37.3$, 22.0, 21.5, 11.6.

HRMS (ESI-TOF, $\left[\mathbf{M}+\mathrm{H}^{+}{ }^{+}\right.$: Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$ 205.1223, found 205.1225.

2-Ethyl-4-(4-methoxyphenyl)-4-oxobutanal (3ai):

Isolated yield (79 mg, 72\%); Sticky brown liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl $_{3}$) $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $3.43-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.06-2.96(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, 3 H).
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 204.0, 196.7, 163.8, 130.5, 129.8, 113.9, 55.6, 48.3, 37.0, 22.0, 11.6.

HRMS (ESI-TOF, $[\mathbf{M}+\mathrm{H}]^{+}$): Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}$ 221.1172, found 221.1170.

4-(4-Chlorophenyl)-2-ethyl-4-oxobutanal (3aj):

Isolated yield (91 mg, 81\%); Sticky brown liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{dd}, J=$ $17.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{dd}, \mathrm{J}=17.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.59$ (m, 1H), $1.01(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 203.5, 197.0, 139.9, 135.1, 129.6, 129.1, 48.2, 37.1, 22.0, 11.6.

HRMS (ESI-TOF, $\left[\mathbf{M}+\mathrm{H}^{+}\right.$): Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{ClO}_{2}$ 225.0677, found 225.0671.
4-(4-Bromophenyl)-2-ethyl-4-oxobutanal (3ak):

Isolated yield (110 mg, 82\%); Sticky brown liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{dd}, J=$ $17.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=17.9,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.61$ ($\mathrm{m}, 1 \mathrm{H}$), $1.00(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 203.5,197.2,135.5,132.1,129.7,128.6,48.2,37.1,22.0,11.6$.

HRMS (ESI-TOF, [M+H] ${ }^{+}$): Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrO}_{2}$ 269.0172, found 269.0175.

4-(Benzo[d][1,3]dioxol-5-yl)-2-ethyl-4-oxobutanal (3al):

Isolated yield ($87 \mathrm{mg}, 74 \%$); Sticky light brown liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.76(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.00(\mathrm{~s}, 2 \mathrm{H}), 3.34(\mathrm{dd}, J=17.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=17.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.83$ $-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) $\delta 203.8,196.1,152.0,148.2,131.4,124.4,107.9,107.8,101.9,48.2$, 37.0, 21.9, 11.5.

HRMS (ESI-TOF, $\left[\mathbf{M}+\mathrm{H}^{+}{ }^{+}\right.$: Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{4}$ 235.0965, found 235.0985.

4-([1,1'-Biphenyl]-4-yl)-2-ethyl-4-oxobutanal (3am):

Isolated yield (106 mg, 80\%); Dark grey solid; mp: 88-90 ${ }^{\circ} \mathrm{C}$; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.84(\mathrm{~s}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.03(\mathrm{~m}, 2 \mathrm{H}), 1.91$ $-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) δ 203.7, 197.7, 146.1, 139.9, 135.4, 129.1, 128.8, 128.4, 127.4, 48.2, 37.3, 22.0, 11.6.

HRMS (ESI-TOF, $[\mathbf{M + H}]^{+}$): Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}$ 267.1380, found 267.1375.

2-(2-Oxo-2-phenylethyl)pentanal (3an):

Isolated yield (77 mg, 76\%); Sticky yellow liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 3.47(\mathrm{dd}, \mathrm{J}=17.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}, \mathrm{J}=17.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.74$ (m, 1H), $1.56-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.8,198.2,136.7,133.4,128.8,128.2,46.7,37.8,31.1,20.5,14.2$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathrm{H}]^{+}$): Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{2}$ 205.1223, found 205.1224.

2-(2-Oxo-2-(p-tolyl)ethyl)pentanal (3ao):

Isolated yield (77 mg, 71\%)Sticky dark brown liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.82(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{dd}, \mathrm{J}=$ $17.4,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.07(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=17.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.75(\mathrm{~m}, 1 \mathrm{H})$, $1.55-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) $\delta 203.9,197.8,144.3,134.3,129.5,128.4,46.7,37.7,31.2,29.8,21.8$, 20.5, 14.3.

HRMS (ESI-TOF, $[\mathbf{M}+\mathrm{H}]^{+}$): Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$ 219.1380, found 219.1394.

2-(2-(4-Bromophenyl)-2-oxoethyl)pentanal (3ap):

Isolated yield (115 mg, 81\%); Pale yellow liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{dd}, J=$ $17.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=18.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.48$ $(\mathrm{m}, 1 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=5.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 203.5,197.2,135.5,132.1,129.7,128.6,46.7,37.6,31.1,20.4,14.2$. HRMS (ESI-TOF, $[\mathbf{M}+\mathrm{H}]^{+}$): Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrO}_{2} 283.0328$, found 283.0343 .

2-(2-Oxo-2-phenylethyl)hexanal (3aq):

Isolated yield (85 mg, 78\%); Pale yellow liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.47(\mathrm{dd}, \mathrm{J}=17.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.06(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}, \mathrm{J}=17.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.76$ $(\mathrm{m}, 1 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.33(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 203.8,198.2,136.7,133.4,128.8,128.2,46.8,37.8,29.3,28.7,22.9$, 14.0.

HRMS (ESI-TOF, [$\mathbf{M}+\mathrm{H}]^{+}$): Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$ 219.1380, found 219.138.

2-(2-(4-Bromophenyl)-2-oxoethyl)hexanal (3ar):

Isolated yield (123 mg, 83\%); Pale yellow liquid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{dd}, J=$ $17.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{dd}, \mathrm{J}=17.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.52$ $(\mathrm{m}, 1 \mathrm{H}), 1.38-1.34(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right)$ δ 203.5, 197.2, 135.5, 132.1, 129.8, 128.6, 46.9, 37.6, 29.4, 28.7, 22.9, 14.0 .

HRMS (ESI-TOF, [M+H] ${ }^{+}$): Calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrO}_{2} 297.0485$, found 297.0495.

General procedure for carboxylic acid synthesis; An oven-dried 5.0 mL sample vial was charged with aldehydes (3) ($0.25 \mathrm{mmol}, 1.0$ equiv.) and Oxone ($0.62 \mathrm{mmol}, 2.5$ equiv.), a magnetic stir bar in DCM $(2 \mathrm{~mL})$ was stirred at room temperature in open-air for 12 h . The progress of the reaction was monitored via TLC. After completion of the reaction, the solvent was removed by rotary evaporation. The reaction mixture was then mixed with water $(10 \mathrm{~mL})$ and extracted with ethyl acetate $(2 \times 10$ mL). The organic layer was dried over anhydrous sodium sulphate and was evaporated under reduced pressure. The residue so obtained was then purified over column chromatography by eluting with hexane: ethyl acetate mixture to afford the desired carboxylic acid products 4 \& 5 .

2-(2-Oxo-2-phenylethyl)hexanoic acid (4):

Isolated yield (44 mg, 76\%); Sticky green liquid; Isolation: 10\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.45(\mathrm{dd}, \mathrm{J}=18.8,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10-3.05(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.40-$ $1.33(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 198.3,180.8,136.7,133.4,128.8,128.2,40.3,40.2,31.8,29.4,22.7$, 14.0.

HRMS (ESI-TOF, $[\mathbf{M + H}]^{+}$): Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} 235.1329$, found 235.1327.

2-(2-(4-Bromophenyl)-2-oxoethyl)pentanoic acid (5):

Isolated yield (52 mg, 70\%); Pale yellow solid; mp: 101-103 ${ }^{\circ} \mathrm{C}$; Isolation: 10% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.41(\mathrm{dd}, J=17.9,8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.10-3.05(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{dd}, \mathrm{J}=17.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.46$ $-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.3,181.2,135.4,132.1,129.7,128.6,40.1,40.0,34.1,20.4,14.0$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathrm{H}]^{+}$): Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrO}_{3} 299.0277$, found 299.0294 .

General procedure for alcohol synthesis; An oven-dried 5.0 mL sample vial was charged with aldehydes (3) ($0.25 \mathrm{mmol}, 1.0$ equiv.) and a magnetic stir bar in $\mathrm{MeOH}(2 \mathrm{~mL})$. To this $\mathrm{NaBH}_{4}(2.0$ equiv. for 6 and 4.0 equiv. for 7) was added, and the reaction mixture was stirred at room temperature in open-air for 1 h . The progress of the reaction was monitored via TLC. After completion of the reaction, the solvent was removed by rotary evaporation. The reaction mixture was then mixed with water (10 mL) and extracted with ethyl acetate ($2 \times 10 \mathrm{~mL}$). The organic layer was dried over anhydrous sodium sulphate and was evaporated under reduced pressure. The residue so obtained was then purified over column chromatography by eluting with hexane: ethyl acetate mixture to afford the desired alcohol products 6 \& 7 .

4-hydroxy-1-(4-methoxyphenyl)-3-methylbutan-1-one (6):

Isolated yield (40 mg, 77\%); Muddy brown solid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{dd}, J=$ $10.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=10.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=16.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=16.0,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.41-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 1 \mathrm{H}), 1.01(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.2,163.8,130.7,114.0,68.2,55.6,42.6,32.8,17.3$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathrm{H}]^{+}$): Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$ 209.1172, found 209.1179.

3-(1,4-dihydroxy-3-methylbutyl)phenyl 4-methylbenzenesulfonate (7):

Isolated yield (63 mg, 73\%); Faint pink solid; Isolation: 5\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.22(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 4 \mathrm{H})$, $6.96(\mathrm{~s}, 2 \mathrm{H}), 6.84-6.81(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=9.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=$ 10.7, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, \mathrm{J}=10.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.36-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 6 \mathrm{H})$, $1.90-1.81(\mathrm{~m}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.42(\mathrm{~m}, 1 \mathrm{H}), 0.89-0.86(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) δ 149.7, 147.9, 147.3, 145.5, 132.5, 129.9, 129.7, 129.6, 128.6, 124.6, $124.5,121.2,121.0,120.0,119.9,72.8,71.0,68.5,67.8,45.4,43.7,34.6,32.0,21.8,18.0,17.4$.

HRMS (ESI-TOF, [$\mathbf{M}+\mathrm{H}]^{+}$): Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~S} 351.1261$, found 351.1285 .

General procedure for pyrrole synthesis; An oven-dried 5.0 mL sample vial was charged with aldehydes (3) ($0.25 \mathrm{mmol}, 1.0$ equiv.) and p-tert-butyl aniline (1.2 equiv.), a magnetic stir bar in $\mathrm{MeOH}(2 \mathrm{~mL})$ was stirred at room temperature in open-air for 3 h . The progress of the reaction was monitored via TLC. After completion of the reaction, the solvent was removed by rotary evaporation. The reaction mixture was then mixed with water $(10 \mathrm{~mL})$ and extracted with ethyl acetate $(2 \times 10$ mL). The organic layer was dried over anhydrous sodium sulphate and was evaporated under reduced pressure. The residue so obtained was then purified over column chromatography by eluting with hexane to afford the desired pyrrole products $\mathbf{8} \& \mathbf{9}$.

4-Butyl-1-(4-(tert-butyl)phenyl)-2-phenyl-1H-pyrrole (8):

Isolated yield (56 mg, 68\%); Sticky dark orange liquid; Isolation: Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.08$ $(\mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 2.54(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.4,138.3,133.5,133.4,128.2,128.1,126.1,125.9,125.5,125.2$, $122.0,111.2,33.2,31.5,29.8,26.7,22.8,14.2$.

HRMS (ESI-TOF, [M+H] ${ }^{+}$): Calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N} 332.2373$, found 332.2379.

2-(4-Bromophenyl)-1-(4-(tert-butyl)phenyl)-4-methyl-1H-pyrrole (9):

Isolated yield (55 mg, 60\%); Sticky yellow liquid; Isolation: Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.06(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.72(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.8,137.9,132.4,132.3,131.3,129.6,126.1,125.2,123.2,120.1$, $119.9,112.5,34.7,31.5,11.8$.

HRMS (ESI-TOF, $[\mathbf{M + H}]^{+}$): Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BrN} 368.1008$, found 368.1018 .

General procedure for pyridazine synthesis; An oven-dried 5.0 mL sample vial was charged with hydrazine hydrochloride ($0.5 \mathrm{mmol}, 2.0$ equiv.) and $\mathrm{NaHCO}_{3}(1.0 \mathrm{mmol}, 4.0$ equiv.) and a magnetic stir bar in ACN (2 mL) was stirred at room temperature in an open-air for 3 h . Next, aldehydes (3) ($0.25 \mathrm{mmol}, 1.0$ equiv.), was added to reaction mixture and the progress of the reaction was monitored via TLC. After completion of the reaction, the solvent was removed by rotary evaporation. The reaction mixture was then mixed with water (10 mL) and extracted with ethyl acetate (2×10 mL). The organic layer was dried over anhydrous sodium sulphate and was evaporated under reduced pressure. The residue so obtained was then purified over column chromatography by eluting with hexane: ethyl acetate mixture to afford the desired pyridazine products 10 \& 11.

3-(Benzo[d][1,3]dioxol-5-yl)-5-ethylpyridazine (10):

Isolated yield (43 mg, 77\%); Sticky brown liquid; Isolation: 20\% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.96(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 2 \mathrm{H}), 2.72(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, CDCl_{3}) $\delta 158.6,150.7,149.4,148.6,143.5,130.9,122.6,121.5,108.7,107.6$, 101.6, 26.0, 13.9.

HRMS (ESI-TOF, $\left[\mathbf{M}+\mathbf{H}^{+}\right.$): Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} 229.0972$, found 229.0964 .

5-Methyl-3-(p-tolyl)pyridazine (11):

Isolated yield ($33 \mathrm{mg}, 73 \%$); Orange solid; mp: 102-104 ${ }^{\circ} \mathrm{C}$; Isolation: 20% EtOAc in Hexane;
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.00(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 2.42 ($s, 6 H$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right)$ ($159.0,151.6,140.3,138.0,133.7,129.8,127.2,124.3,21.5,18.7$.

HRMS (ESI-TOF, $[\mathbf{M}+\mathrm{H}]^{+}$): Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}$ 185.1073, found 185.1070.

${ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of 3a


```
*)
そ人外昷
```


3a

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3a

Now
욱 쿠국

국 굴

3a

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3b
$\stackrel{\alpha}{\alpha}$
 $\underbrace{\circ} \underbrace{\infty} \underbrace{m}_{n} \underbrace{\infty}_{n} \underbrace{N}_{n}$ $\underbrace{\text { nh }}$

3b

${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathbf{1 2 6} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3b

~~~~~
Nin 웅
 \(\underbrace{\text { 곳융 }}\)

\(\stackrel{\stackrel{N}{+}}{\substack{\text { - } \\ 1}}\)


3b

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 1 & & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & 1 & & 1 & 1 & & 1 \\
\hline 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \[
\begin{array}{r}
110 \\
\mathrm{f} 1
\end{array}
\] & \[
\begin{gathered}
100 \\
\mathrm{pm})
\end{gathered}
\] & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}
\({ }^{1} \mathbf{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of 3c
ふু

Nin



3c
(10.5 10.0

\section*{\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of 3c}





\({ }^{1} \mathbf{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of 3d
\(\stackrel{\text { on }}{\substack{\text { i }}}\) \(\overbrace{\langle }^{\infty}\)




3d

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \[
\begin{gathered}
\mathrm{O}_{1}^{\infty} \\
\underset{\circ}{\infty}
\end{gathered}
\] & & & & \[
\underset{\sim}{\underset{\sim}{*}}
\] & & & & & & & & & Tr & & - & & & & & & \\
\hline & & 10 & \({ }^{1}\) & 1 & 15 & 1 & T & 7. & & 1 & & & 15 & 1 & 1.5 & 1. & \({ }^{1}\) & 1 & & 1. & & & \\
\hline 1.0 & 10.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & \[
\begin{array}{r}
5.5 \\
\mathrm{f} 1
\end{array}
\] & \[
\begin{gathered}
5.0 \\
\mathrm{pm})
\end{gathered}
\] & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0 \\
\hline
\end{tabular}

\section*{\({ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR（ \(\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\) ）of 3d}
势足或


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & 1 & & \\
\hline 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}

\section*{\({ }^{1} \mathrm{H}\) NMR ( \(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of 3e}





\section*{\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of 3e}





\({ }^{1} \mathbf{H}\) NMR ( \(\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 f}\)
\(\stackrel{\text { ぶ }}{\stackrel{\circ}{1}}\)


\section*{\(\dot{\sim}\) \\ \(\underbrace{m m m}\)}



\section*{\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR ( \(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of 3 f}

奖


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & 180 & & 160 & 150 & & & & & & & & & & & & & & & \\
\hline 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}

\section*{\({ }^{1} \mathrm{H}\) NMR ( \(\mathbf{5 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 g}\)}
\(\stackrel{ \pm}{\circ}\)
```
\underbrace~
```
\(\underbrace{\text { in }}\)



\section*{\({ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR ( \(\mathbf{1 2 6} \mathrm{MHz}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 g}\)}


准

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & , & 1 & 1 & , & 1 & & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 10 & 1 & 5 & 10 & 1 & 10 & 10 \\
\hline 10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}
\({ }^{1} \mathrm{H}\) NMR (500 MHz, \(\mathrm{CDCl}_{3}\) ) of 3h

\(\underbrace{\sigma} \underbrace{6}\)



\section*{\({ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}\) NMR ( \(\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\) ) of \(\mathbf{3 h}\)}
~~~


\begin{tabular}{|c|}
\hline 1 & & 1 & 1 & 1 & & 1 & & 1 & 1 & & 1 & 1 & 1 & & 1 & 1 & 1 & & 1 & & \\
\hline 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}
\({ }^{1} \mathrm{H}\) NMR (\(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of 3i

(

\section*{\({ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (\(\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\)) of 3i}

\(\left.\begin{aligned} & 8 \\ & \underset{\sim}{2} \\ & 1 \\ & 1\end{aligned} \right\rvert\,\)

命

\({ }^{\mathbf{1}} \mathrm{H}\) NMR (\(\mathbf{6 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of \(\mathbf{3 j}\)
후

3j

\section*{\({ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}\) NMR (\(\mathbf{1 5 1 ~ M H z}, \mathrm{CDCl}_{3}\)) of \(\mathbf{3 j}\)}

\(\overrightarrow{0} \cdot \vec{~}\)
\(\dot{0}-0\)
11

3j

\({ }^{1} \mathbf{H}\) NMR (\(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of \(\mathbf{3 k}\)
\(\stackrel{\circ}{\circ}\)

3k

\section*{\({ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR \(\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of \(\mathbf{3 k}\)}

-

3k

\section*{\({ }^{1} \mathrm{H}\) NMR (\(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of 31}
\(\stackrel{\omega}{\infty}\)

\section*{\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of 31}

\(\underbrace{7 \underbrace{7} \text { 웅 }}\)

\begin{tabular}{|c|}
\hline & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & T & 1 & & \\
\hline 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & \[
110
\] & \[
100
\] & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}

\section*{\({ }^{1} \mathbf{H}\) NMR (\(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of \(\mathbf{3 m}\)}
\(\stackrel{\infty}{\infty}\)
 \(\underset{\sim}{\sim}\)

3m

\({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (\(\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\)) of \(\mathbf{3 m}\)

3m

\section*{\({ }^{1} \mathbf{H}\) NMR (\(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of \(\mathbf{3 n}\)}
|

\(\underbrace{m}\)

\section*{\({ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (\(\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\)) of \(\mathbf{3 n}\)}

륯융

\({ }^{1} \mathbf{H}\) NMR (\(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of \(\mathbf{3 o}\)
\(\stackrel{+}{\infty}\)

\(\underbrace{\stackrel{\sim}{n}}\)

\section*{\({ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR (\(\mathbf{1 2 6} \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of 3 o}

监

\section*{\({ }^{1} \mathrm{H}\) NMR (\(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\)) of 3p}
\(\stackrel{\circ}{\stackrel{\circ}{1}}\)

\(\underbrace{n_{n} n_{n}}\)

3p

\section*{\({ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}\) NMR \(\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)\) of \(\mathbf{3 p}\)}
~~~~~


국웅


3p



## ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\mathbf{3 q}$



## $\underset{\sim}{\circ}$




## ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ( $\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of $\mathbf{3 q}$

茴



${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\mathbf{3 r}$
$\stackrel{\stackrel{\circ}{\circ}}{\stackrel{\circ}{\circ}}$

 $\underbrace{\infty}$


3r


## ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\mathbf{1 2 6} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\mathbf{3 r}$




$\underbrace{7}$




	1	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1		1	1		
210	200	190	180	170	160	150	140	130	120	${ }^{110}$	$100$	90	80	70	60	50	40	30	20	10	0

## ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3 s

$\stackrel{\stackrel{\rightharpoonup}{\sigma}}{\stackrel{1}{2}}$


## 




## ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3s






	1	10		170		150		130		110		1	1	70		5					
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

## ${ }^{1} \mathrm{H}$ NMR ( $\mathbf{6 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of $\mathbf{3 t}$






${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 t





${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\mathbf{3 u}$



$3 u$


## ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ( $\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of $\mathbf{3 u}$

$\stackrel{\text { ñ }}{\stackrel{\infty}{\sim}} \stackrel{\text { ® }}{\sim}$

N-

$3 u$


## ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3v



## ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of $\mathbf{3 v}$

登
$\stackrel{m}{m}$
$\underbrace{\text {～}}_{-1}$
$\stackrel{\rightharpoonup}{\vec{\sigma}}$ デ
$\stackrel{\underset{\sim}{\text { N }}}{\stackrel{\infty}{i}}$




## ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3w



$\underbrace{\text { m~N }}$

(
${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\mathbf{1 2 6} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3w



## 

$\underbrace{\text { テ }}$



${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3x

$\underbrace{\text { gung in }}$



## ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR（ $\mathbf{1 2 6} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of $\mathbf{3 x}$



势号号




## ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3y







## ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of 3 y

 $\underbrace{\text { 年足鬲 }}$



			1	170	1	1		1		1	1	1	1	70	1	1		1	1		
210	200	190	180	170	160	150	140	130	120	$110$	$100$	90	80	70	60	50	40	30	20	10	0

## ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3z



$\xrightarrow{2}$

$3 z$


## ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of $\mathbf{3 z}$


谷范

$\left.{ }_{0}^{28 \cdot 9 \cdot 9 \mathrm{III}}\right\rangle$
我足筞
$\stackrel{\infty}{\stackrel{\infty}{+}}$
$\stackrel{\otimes}{\stackrel{\infty}{m}} \stackrel{1}{1}$

$3 z$


## ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3aa



$\underset{\sim}{\underset{i}{\sim}}$

$3 a \mathrm{a}$


## ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3aa







## ${ }^{1} \mathrm{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 3ab



[^0]


## ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of 3ab



年只品

$\stackrel{\infty}{\stackrel{\circ}{\mathrm{m}}}$




## ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3ac



## ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\mathbf{1 2 6} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3ac



/


$\stackrel{\sim}{\stackrel{\infty}{\mid}}$


3 ac


	1	1	1	1		1		1	1	1	1	1	1	7	1	1	1	1	1		
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3ad




3ad


## ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3ad

$\stackrel{\text { ®. }}{\stackrel{\text { O}}{1}}$

祭


3ad


${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3 ae

 $\stackrel{\text { n }}{\substack{7 \\ i}}$

$3 a e$


## ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3ae





-


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3af


## ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3af


攵 $\stackrel{\text { ® }}{\stackrel{\circ}{\dot{G}}}$ $\stackrel{\text { ๙ }}{\stackrel{\sim}{j}}$



## ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 a g}$





$3 a g$
(

## ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\mathbf{1 5 1} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\mathbf{3 a g}$


$\underset{\sim}{\circ} \underset{\sim}{m} \underset{\sim}{\circ} \underset{\infty}{\infty}$
ఱ্লে



3 ag
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3ah
$\stackrel{\infty}{\infty}$

 $\underbrace{\text { м м м м м м }}$


3ah
(

## ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\mathbf{1 2 6} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3ah

๗

水



## ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3ai



## ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 3ai

皆荡 $\underbrace{\text { An }}$



## ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3aj


 $\underbrace{}_{l}$


3aj


## ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3aj





${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3ak






## ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3ak


궁․․

$\stackrel{\circ}{\stackrel{\circ}{-}} \stackrel{\stackrel{n}{7}}{\stackrel{\sim}{1}}$


3ak



## ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3al

응



3al


## ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ）of 3al



堂

势吴皆

$\stackrel{? ~ ? ~}{+}$


3al


[^1]
## ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3am







3am


## ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3am



$\underbrace{\text { 7. }}$


$3 a m$


## ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3an




$3 a n$


## ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3an

$\stackrel{\stackrel{\infty}{0}}{\stackrel{\infty}{\sim}} \stackrel{\stackrel{\infty}{\oplus}}{\stackrel{\infty}{\sim}}$



3an


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3ao





3 ao


## ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3ao


梊

## $\underbrace{\text { 年是呪 }}$




${ }^{1} \mathrm{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 3ap
$\stackrel{\circ}{\circ}$ + $\underbrace{\infty}_{\sim}$




3ap


## ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3ap



겇읓


3ap


$\top$	1		1	1	1		1	1				1		1	1	1		1			
210	200	190	180	170	160	150	140	130	120	${ }^{110}$	$\begin{gathered} 100 \\ \mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 a q}$
$\stackrel{\rightharpoonup}{i}$


 $\underbrace{\text { minnem. }}$

$3 a q$


## ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $\mathbf{1 2 6} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）of 3aq


年号年


$3 a q$



## ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3ar





$3 a r$


## ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 3ar



为

$3 a r$


## ${ }^{1} \mathrm{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 4







## ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 4

l





## ${ }^{1} \mathrm{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 5

 ペ,


5


## ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 5




## ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 6

ત





${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 6

$\stackrel{7}{\circ}$
$\stackrel{\text { I }}{1}$

※



6


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\underbrace{\substack{0 \\ 0}}_{\text {- }} \underbrace{0} \underbrace{\infty}$
 $\stackrel{\sim}{i}$


(

## ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 7




## ${ }^{1} \mathrm{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of 8

$\underbrace{\text { Nonn }}$




## ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\mathbf{1 2 6} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 8

|
-势



${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 9
$\underbrace{\sim}_{i}$

${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\mathbf{1 2 6} \mathbf{M H z}, \mathrm{CDCl}_{3}$ ) of 9



${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 10




## ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $\mathbf{1 2 6} \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of 10

 -




## ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) of $\mathbf{1 1}$


$\stackrel{\underset{\sim}{\sim}}{\stackrel{y}{2}}$


11


## ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ( $\mathbf{1 2 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ) of $\mathbf{1 1}$


|


11




[^0]:    
    $\underset{\sim}{\approx}$

[^1]:    

