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1. General Information

All reactions were carried out under nitrogen atmosphere and anhydrous conditions unless otherwise
indicated. The commercial reagents were purchased from Bidepharm, 9dingchem, Adamas-beta
China and were used as received. Reactions were monitored by thin-layer chromatography (TLC)
carried out on 0.20 mm silica gel plates using UV light as the visualizing agent. NMR spectra were
recorded using a Bruker AVANCE 111 400 MHz and 600 NMR MHz spectrometers. High-resolution
mass spectra (HRMS) were recorded on a Waters GCT Premier TOF MS (EI).

Molecular synthesis and characterization
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Scheme S1. Synthetic routes for main intermediates and target products
FBTZ-SMe: 4-bromo-5,6-difluorobenzo(c][1,2,5]thiadiazole (1, 100mg, 0.40 mmol),
4-(methylthio)phenylboronic acid 2 (75.5 mg, 0.48 mmol), KoCO3 (272.6 mg, 1.99
mmol) and Pd(PPhz)4 (46 mg, 0.040 mmol) were added into 100 mL Schlenk tube under
argon atmosphere. The degassed 1,4-dioxane (6 mL) and H20 (2 mL) were injected
into the solution in sequence and stirred for 12 h at 100 °C. The crude product was
extracted with DCM and washed with water. The solvent was concentrated by
evaporation in a vacuum. The residue was further purified via chromatography on a
silica gel column using DCM/PE=L1:6 as eluent to give the product as yellow solid (83
mg, yield: 70.9%). *H NMR (400 MHz, CDCls) § 7.79 — 7.68 (m, 3H), 7.46 — 7.39 (m,
2H), 2.56 (s, 3H). 13C NMR (100 MHz, CDCls) § 155.72 (d, J = 19.3 Hz), 153.15 (d, J
= 19.3 Hz), 151.10 (d, J = 18.5 Hz), 150.90 — 150.56 (m), 148.54 (d, J = 18.6 Hz),
140.68, 130.87 (d, J = 2.9 Hz), 126.59 (dd, J = 2.7, 1.2 Hz), 126.09, 119.86 (d, J = 13.3
Hz), 104.69 (d, J = 21.2 Hz), 15.47. HRMS(EI): Ci3HsF2N2S; m/z [M] * calcd for
294.0097 found: 294.0099.

IBTZ-SMe: Yield: 60.5%. *H NMR (400 MHz, CDCls) & 7.71 (dd, J = 8.5, 1.3 Hz,
2H), 7.45 — 7.38 (m, 2H), 2.56 (s, 3H). C NMR (100 MHz, CDCls) § 155.73 (d, J =
19.3 Hz), 153.16 (d, J=19.4 Hz), 151.11 (d, J = 18.5 Hz), 150.88 — 150.57 (m), 148.55



(d, J = 18.6 Hz), 140.69, 130.88 (d, J = 3.0 Hz), 126.60 (dd, J = 2.7, 1.3 Hz), 126.10,
119.86 (d, J = 14.9 Hz), 104.69 (d, J = 21.3 Hz), 15.48. HRMS(EI): C13H7F2IN2S2 m/z
[M]* calcd for 419.9063 found: 419.9067.

HBTZ-SMe: Yield: 70.7%. *H NMR (400 MHz, CDCl3) § 8.01 — 7.96 (m, 1H), 7.90 —
7.85(m, 2H), 7.67 (dd, J = 4.9, 0.9 Hz, 2H), 7.44 — 7.38 (m, 2H), 2.56 (s, 3H). *C NMR
(150 MHz, CDCl3) 6 155.75, 153.56, 139.34, 134.09, 134.05, 129.78, 129.69, 127.37,
126.56, 120.52, 15.79. HRMS (EI): C13H10N2S2 m/z [M] * calcd for 258.0285 found:
258.0287.
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Figure S1. 'H NMR-spectrum (400 MHz, CDCls) of FBTZ-SMe
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Figure S2. HRMS spectrum of FBTZ-SMe
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Figure S3. 13C NMR-spectrum (100 MHz, CDCl;) of FBTZ-SMe
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Figure S4. '"H NMR-spectrum (400 MHz, CDCls) of IBTZ-SMe
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Figure S6. '*C NMR-spectrum (100 MHz, CDCl3) of IBTZ-SMe
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Figure S7. 'H NMR-spectrum (400 MHz, CDCls) of HBTZ-SMe
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Figure S8. HRMS spectrum of HBTZ-SMe
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Figure S9. 3C NMR-spectrum (150 MHz, CDCl3) of HBTZ-SMe



2. Conductance measurements

All the STM-BJ experiments were performed in TCB solution (~0.2 mM concentration) under
ambient conditions at room temperature. During the conductance measurements, the Au tip (99.999%
purity) and the substrate coated with a gold layer were used as the two electrodes. Under an applied
tip bias voltage, the Au tip was driven to move in and out of contact with the substrate to form and
break molecule junctions. During this process, the current was recorded continuously and the
conductance was calculated by the formula G =I/V. One-dimensional conductance histograms and
two-dimensional conductance histograms were constructed by compiling >3000 collected

conductance traces without any data selection.
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Figure S10. (a) Two-dimensional conductance histogram of blank solvent. (b) Relative

displacement distribution. The conductance ranges to determine the relative displacement
distribution are from 103 10 % Go. No obvious conductance peak signal was found in the blank
solvent measurement. The stretching distance is AZ=0.50+0.11 nm (the error is the standard

deviation), corresponding to the gold snap-back distance.
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Figure S11. 2D covariance histogram of FBTZ-SMe under 400 mV constructed from 4100

conductance—displacement traces
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Figure S12. 1D conductance histograms of HBTZ-SMe under the bias voltage ranging from 100
to 600 mV.
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Figure S13. 2D conductance histograms of HBTZ-SMe under the bias voltage ranging from 100
to 600 mV.
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Figure S14. 1D conductance histograms of IBTZ-SMe under the bias voltage ranging from 100 to

600 mV.
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Figure S15. 2D conductance histograms of IBTZ-SMe under the bias voltage ranging from 100 to

600 mV.



3. DFT calculation

The molecular devices used in the electron transport simulations are calculated with a
combination of DFT and nonequilibrium Green’s function (NEGF), using the Quantum ATKQ-
2022.03 package. The surface of the gold electrode was cut into a pyramid structure. In the initial
configuration of the device, the S atom and the C atom of fluorine substituted arenes acting as the
anchoring group was attached to the gold atom at the top of the pyramid. The distance between the
S atom and the gold atom of the electrode was controlled at about 2.6 A, the N atom and gold atom
was set about 2.2 A, and the C atom and the gold atom was set at about 2.1 A. Then the devices
were sent to Quantum ATK for geometry optimization. The FHI pseudopotential with a double-C
basis set was used for Au atoms, and the PseudoDojo pseudopotential with a medium basis set was
used for other atoms. A real-space grid with an equivalent energy cutoff of 80 Hartree and the k-
points of 3, 3, 134 was used for geometry optimization, and the force threshold is 0.05 eV/A. The
transmission spectrums with the bias voltage ranging from -1 to 1 V were calculated, transverse k
points are set to 7, 7.

The binding energies were conducted using the Gaussian 09 suite of the program!. The molecules
investigated were fully optimized and calculated by the hybrid meta exchange-correlation M06-2X
functional including empirical dispersion corrections DFT-D3 method? 3,and were performed using
the tight convergence criterion, which was always followed by the calculation of harmonic
vibrational modes. The M06-2X functional has been demonstrated to be dependable for formation
of Au-C bond via numerous benchmark calculations*. We adopted the LANL2TZ basis sets’ for Au
atoms and the 6-311G (d,p) basis sets® for hydrogen, carbon, oxygen, fluorine and sulfur atoms. To
simulate the action of the electric field, we applied a field strength of Er=+0.002 a.u. (about 1.03
V/nm) along the initial direction of C-Au and N-Au bond. All basis sets are obtained from the Basis
Set Exchange library.



