Inherent directing group enabled Co(III)-catalyzed C-H allylation/vinylation of isoquinolones

Sachin,^{a,b} Tamanna Sharma,^a Devesh Chandra,^a Sumit,^{a,b} and Upendra Sharma^{a,b,*}

^{a.}C-H ASctivation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, H.P.- 176061, India.

E-mail: upendraihbt@gmail.com, upendra@ihbt.res.in

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P.-201002, India

S.No.	Contents	P.No.
1	General Information	SI2
2	General procedure for the synthesis of Isoquinolone	SI2
3	Optimization study	SI2-SI3
4	General procedure for the allylation of Isoquinolone	SI3
5	General procedure for the vinylation of Isoquinolone	SI4
6	Mechanistic study	SI4-SI8
7	Procedure for the scale-up synthesis and post-transformations	SI8-SI9
8	Characterization Data	SI9-SI17
9	References	SI17
10	Copy of ¹ H and ¹³ C	SI18-SI57
11	X-ray data	SI58-SI59

Supporting Information

1. General Information.

All Chemicals were purchased from the Sigma- Aldrich, TCI and AVRA chemicals. TLC plates (Aluminium Sheet Silica gel 60 F_{254}) were purchased from Merck. Column chromatography was performed over silica gel (230–400 mesh) using *n*-hexane and ethyl acetate as eluents. All products were characterized by ¹H NMR, ¹³C NMR, FT-IR and high-resolution mass spectrometry (HRMS) and melting points. NMR spectra were recorded in on Bruker Advance at 400 MHz or 500 MHz (¹H) and 100 MHz and 125 MHz (¹³C) respectively. Chemical shifts (δ) are reported in ppm, using the residual solvent peak in CDCl₃ (δ H = 7.26 and δ C = 77.16) (H₂O, δ H = 1.56) ppm, and coupling constants (J) are given in Hz. HRMS were recorded Mass spectra were recorded on Water Q-ToF Micromass, maXis Impact mass spectrometers, and a high-resolution 6560 Ion Mobility Q-TOF LC/MS (Agilent, Santa Clara, USA). IR was analyzed using a Shimadzu IR Prestige-21 with a ZnSe single reflection ATR accessory. X-ray photoelectron spectra (XPS) was analysed using Thermo Scientific NEXSA Surface Analysis. The melting points were recorded on a Brønsted Electrothermal 9100 and Labindia visual melting range.

2. General procedure for the synthesis of Isoquinolone.

Isoquinolone 1a-1m^{S1}, 1n^{S2}, 10^{S3}, 1p^{S4}, 1q^{S3}, 1a-d₁^{S1} were prepared according to known literature method.

3. Optimization study:

3.1 Optimization table for allylation of Isoquinolone with allyl acetate (Table S1):

Entry	Catalyst (10 mol%)	Ag salt (30	Solvent	Additive	Temp	Yield ^a
		mol%)	(0.2 M)	(0.5	(°C)	(%)
				equiv)		
1	$[CoCp^*(CO)I_2]$	AgSbF ₆	HFIP	-	120	ND
2	[CoCp*(CO)I ₂]	AgSbF ₆	DCE	-	120	ND
3	$[CoCp^*(CO)I_2]$	AgSbF ₆	TFE	-	120	ND
4	$[CoCp^*(CO)I_2]$	AgSbF ₆	HFIP	Cu ₂ O	120	26
5	[CoCp*(CO)I ₂]	AgSbF ₆	TFE	Cu ₂ O	120	54
6	$[CoCp^*(CO)I_2]$	AgSbF ₆	PhCl	Cu ₂ O	120	54
7	[CoCp*(CO)I ₂]	AgSbF ₆	DCE	Cu ₂ O	120	89
						$(81)^{b}$
8	[CoCp*-	-	DCE	Cu ₂ O	120	46

	$(MeCN)_3(SbF_6)_2]$					
9	$[CoCp^*(CO)I_2]$	AgSbF ₆	DCE	$Cu(OAc)_2$	120	61
10	[CoCp*(CO)I ₂]	AgSbF ₆	DCE	Ag ₂ O	120	32
11	$[CoCp^*(CO)I_2]$	AgSbF ₆	DCE	Ag ₂ CO ₃	120	28
12°	[CoCp*(CO)I ₂]	AgSbF ₆	DCE	Cu(OAc) ₂	120	32
13	[CoCp*(CO)I ₂]	AgSbF ₆	DCE	Cu ₂ O	100	70
14	[CoCp*(CO)I ₂]	AgSbF ₆	DCE	Cu ₂ O	60	54
15	-	AgSbF ₆	DCE	Cu ₂ O	120	ND
16	[CoCp*(CO)I ₂]	-	DCE	Cu ₂ O	120	ND
17	$[CoCp^*(CO)I_2]$	AgSbF ₆	DCE	CuO	120	46

a = Yields are calculated using GC and *n*-decane as internal standard; b = isolated yield; c = $AgSbF_6$ (20 mol%), nd = not detected

3.2 Optimization table for vinylation of Isoquinolone with vinyl acetate (Table S2):

	-	Catalyst	
H O Bn	+ 🖗 UAC	Additive Solvent,Temp	N Bn
1a	2a		3a -

Entry	Catalyst (x mol%)	Ag salt (x	Solvent	Additive	Temp	Yield ^a
_		mol%)	(0.2 M)	(0.5 equiv)	(°C)	(%)
1	$[CoCp^*(CO)I_2]$	$AgSbF_6(30)$	DCE	Cu ₂ O	120	37
2	$[CoCp^*(CO)I_2]$	$AgNTf_2(30)$	DCE	Cu ₂ O	120	30
3	$[CoCp^*(CO)I_2]$	AgNTf ₂ (30)	TFE	Cu ₂ O	120	90
						$(84)^{b}$
4	$[CoCp^*(CO)I_2]$	$\operatorname{AgNTf}_{2}(30)$	PhCl	Cu ₂ O	120	17
5	$[CoCp^*(CO)I_2]$	$\operatorname{AgNTf}_{2}(30)$	DMC	Cu ₂ O	120	52
6	$[CoCp^*(CO)I_2]$	$AgSbF_6(30)$	TFE	Cu ₂ O	120	63
7	[CoCp*-	-	TFE	Cu ₂ O	120	33
	$(MeCN)_3(SbF_6)_2]$					
8	$[CoCp^*(CO)I_2]$	$AgSbF_6(20)$	TFE	Cu ₂ O (2.0)	120	23
9	$[CoCp^*(CO)I_2]$	$AgNTf_2(20)$	TFE	Cu ₂ O (2.0)	120	58
10	-	AgNTf ₂ (30)	TFE	Cu ₂ O	120	ND
11	$[CoCp^*(CO)I_2]$	-	TFE	Cu ₂ O	120	ND
12	$[CoCp^*(CO)I_2]$	AgNTf ₂ (30)	TFE	-	120	ND
13	$[CoCp^*(CO)I_2]$	AgNTf ₂ (30)	TFE	CuO	120	41

a = Yields are calculated using GC and *n*-decane as internal standard; b = isolated yield, nd = not detected

4. General Procedure for the allylation of isoquinolone.

To an oven-dried screw cap reaction vial charged with a spin vane magnetic stir-bar isoquinolone (1a) (0.2 mmol), allyl acetate (0.6 mmol) (2a) $[CoCp^*(CO)I_2]$ (10 mol%), AgSbF₆ (30 mol%), Cu₂O (50 mol%) were added followed by the addition of DCE (1.0 mL). The subsequent reaction mixture was stirred at 120°C in a preheated block for 24 h. Reaction mixture was cooled to room temperature and diluted with ethyl acetate. Solvent was evaporated under reduced pressure and the crude mixture was purified by column chromatography using silica gel (230–400 mesh size) and hexane/EtOAc as the eluent.

5. General Procedure for the vinylation of isoquinolone.

To an oven-dried screw cap reaction vial charged with a spin vane magnetic stir-bar isoquinolone **1** (0.2 mmol), vinyl acetate (0.6 mmol) (**2b**) $[CoCp^*(CO)I_2]$ (10 mol%), AgNTf₂ (30 mol%), Cu₂O (50 mol%) were added followed by the addition of TFE (1.0 mL). The subsequent reaction mixture was stirred at 120 °C in a preheated block for 24 h. Reaction mixture was allowed to cool to room temperature and diluted with ethyl acetate. Solvent was evaporated under reduced pressure and the crude mixture was purified by column chromatography using silica gel (230–400 mesh size) and hexane/EtOAc as the eluent.

6. Mechanistic studies

6.1. Deuterium labelling experiments without allyl acetate (2a) :

The substrate **1a** (0.1 mmol), $[CoCp^*(CO)I_2]$ (10 mol%), AgSbF₆ (30 mol%), Cu₂O (50 mol%), CD₃OD (10.0 equiv) and DCE (500 µL) were added to a screw-cap tube equipped with magnetic stirring bar and the mixture was stirred at preheated block maintained at 120 °C for 3 h. The reaction mixture was then allowed to cool to room temperature. The deuterium incorporation at C8 of **1a** was determined by ¹H NMR.

The substrate **1a** (0.1 mmol), **2a** (0.3 mmol), $[CoCp^*(CO)I_2]$ (10 mol%), AgSbF₆ (30 mol%), Cu₂O (50 mol%), CD₃OD (10.0 equiv) and DCE (500 µL) were added to a screw-cap tube equipped with magnetic stirring bar and the mixture was stirred at 120 °C for 3 h. The reaction

mixture was then allowed to cool to room temperature. The deuterium incorporation was determined by ¹H NMR.

6.3 Determination of Kinetic Isotope Effect through parallel reactions :

In two different screwcapped vials with a stir bar separately placed 1a and $1a-d_2$ (0.1 mmol), were reacted with allyl acetate 2a (0.3 mmol) under standard reaction conditions. Yield of product in both reaction was analyzed by GC after 3 hours.

Conclusions: $p_H/p_{D=1.54}$ for parallel reactions.

6.4 Determination of Kinetic Isotope Effect from an intermolecular competition experiment: In a screwcapped vials with a stir bar 1a (0.1 mmol) and 1a-d₂ (0.1 mmol), were reacted with allyl acetate 2a (3 equiv.) under standard reaction conditions for 3 hours. The k_H/k_D was calculated by ¹H NMR.

Conclusions: $k_H/k_{D=}1.07$ for competitive experiments.

6.5 Recovery of Cu from crude reaction mixture for XPS analysis

In a screwcapped vials with a stir bar **1a** (0.1 mmol) was reacted with allyl acetate **2a** (3 equiv.) under standard reaction conditions for 12 hours. The reaction mixture were cooled to room temperature and filtered using whatman filter paper. The residue was submitted for XPS analysis.

Figure S1: XPS spectra of Cu2p of standard Cu₂O (left) and recovered Cu from reaction mixture (right) 7.0 Procedure for the scale-up synthesis and post-transformations

7.1 Scale-up synthesis : In a round-bottom flask, equipped with a magenetic stir bar were added *N*- benzylisoquinolone **1a** (1175 mg, 5.0 mmol), vinyl acetate **2b** (1.38 ml, 3.0 equiv.), $[CoCp^*(CO)I_2]$ (240 mg, 10.0 mol%), AgNTf₂ (582 mg, 30 mol%) and Cu₂O (358 mg, 50 mol%) in TFE (25 ml, 0.2 M). The subsequent reaction mixture was stirred at 120°C for 24 h. Reaction mixture was allowed to cool to room temperature and diluted with ethyl acetate. Solvent was evaporated under reduced pressure and the crude mixture was purified by column chromatography using silica gel (230–400 mesh size) and hexane/EtOAc as the eluent to obtain 801 mg of **3r**, yield 61%.

7.2 Post transformation of 3a to 1-chloroisoquinoline (4) : The following general procedure was adopted for the synthesis of 1-chloroisoquinoline **4**, In a round-bottom flask, equipped with a magenetic stir bar was added **3a** (137.5 mg, 0.5 mmol), trifluoromethanesulfonic acid (8.0 mL). The resulting mixture was heated to reflux while being stirred and monitored by TLC until the starting materials were consumed (about 10 h). The mixture was neutralized by addition of a 10% sodium hydroxide solution, then extracted with ethyl acetate (20.0 mL × 4). The organic layer was washed with brine, dried over Na₂SO₄ and concentrated. To a flask was added crude Isoquinolinone was dissolved in dry toluene (3 mL) and phosphoryl trichloride (6.8 equiv.) was added dropwise via the syringe to the stirred mixture. The reaction mixture was allowed to stir at 90 °C in an oil bath for 2 h. After cooling to ambient temperature, the solvent was removed under vacuum. and crude mixture was purified by column chromatography using silica gel (230–400 mesh size) and hexane/EtOAc as the eluent.

7.3 Post transformation of 3r to aldehyde (5) : The following general procedure was adopted for the synthesis of **5**, which were carried out with 0.2 mmol isoquinolone **3r** . The substrate was

dissolved in a mixture of degassed DMF (2 mL) and degassed water (0.2 mL). Once dissolution was complete, the palladium(II) source (2.0 equiv) was added, and the reaction mixture stirred at room temperature. Solvent was evaporated under reduced pressure and the crude mixture was purified by column chromatography using silica gel (230–400 mesh size) and hexane/EtOAc as the eluent.

7.4 Post transformation of 3r to nitrile (6) : To an oven-dried screw cap reaction vial charged with NH₄HCO₃ (1.2 mmol) and CH₃OH/H₂O (2 mL/0.5 mL). The mixture was stirred at room temperature until the solid was completely dissolved. Then alkene isoquinolone 3r was added. After stirring for 2 min, PhI(OAc)₂ (1.1 mmol) was added, and the reaction mixture was stirred at 36 °C for 12 h. After cooling to room temperature, the reaction mixture was diluted by addition of 20 mL ethyl acetate, dried over Na₂SO₄, filtered, and concentrated under vacuum. The crude residue was purified by column chromatography on silica gel to afford the desired product.

8. Characterization Data

8-allyl-2-benzylisoquinolin-1(2H)-one (Scheme 2, 3a). White solid, yield = 44.5 mg (81%). Mp = 38-40 °C. ¹H NMR (500 MHz, CDCl₃, δ): 7.51 (t, J = 7.5 Hz, 1H), 7.35 (dd, J = 8.0, 1.0 Hz, 1H), 7.33 – 7.26 (m, 6H), 7.05 (d, J = 7.0 Hz, 1H), 6.43 (d, J = 7.0 Hz, 1H), 6.23-6.15 (m, 1H), 5.18 (s, 2H), 5.04-5.03 (m, 1H), 5.02 – 5.00 (m, 1H), 4.23 (dt, J = 6.0, 2.0 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃, δ): 162.5, 143.8, 139.1, 138.7, 137.2, 131.8, 131.3, 129.5, 128.9, 127.9,

127.8, 125.0, 124.2, 115.0, 106.8, 51.7, 40.1. IR (ZnSe): v_{max} (cm⁻¹) 2978, 2940, 2904, 1651, 1619, 1435, 1367, 1283, 1024, 915, 816, 704, 697.; HRMS (ESI-TOF) m/z calcd for C₁₉H₁₈NO [M+H] + 276.1383; found 276.1383.

8-allyl-2-benzyl-3-methylisoquinolin-1(2H)-one (Scheme 2, 3b). White solid, yield = 45.1 mg

(78%). Mp = 78-80 °C. ¹H NMR (500 MHz, CDCl₃, δ): 7.51 (t, J = 7.5 Hz, 1H), 7.30 – 7.27 (m, 3H), 7.24 – 7.20 (m, 2H), 7.15 – 7.12 (m, 2H), 6.32-6.31 (m, 1H), 6.23 – 6.15 (m, 1H), 5.38 (s, 2H), 5.04 – 5.03 (m, 1H), 5.01-4.99 (m, 1H), 4.20 (d, J = 6.5 Hz, 2H), 2.30 (s, 3H); ¹³C NMR (125 MHz, CDCl₃, δ): 163.5, 143.7, 139.4, 138.8, 138.7, 137.5, 131.9, 128.8, 128.5, 127.1, 126.2, 124.1, 122.3, 114.9, 106.6, 47.0, 40.1, 20.6. IR (ZnSe): v_{max}

 (cm^{-1}) 2940, 2921, 1651, 1612, 1571, 1411, 1398, 1370, 1313, 1295, 1235, 1072, 963, 920, 747, 703, 688.; HRMS (ESI-TOF) m/z calcd for $C_{20}H_{20}NO$ [M+H]⁺ 290.1539; found 290.1539.

8-allyl-2-benzyl-6-methylisoquinolin-1(2H)-one (Scheme 2, 3c). yellow oil, yield = 32.3 mg

(soquinolin-1(2H)-one (Scheme 2, 3c). yellow oil, yield = 32.3 mg (56%).1H NMR (500 MHz, CDCl₃, δ): 7.33 – 7.26 (m, 5H), 7.14 (s, 1H), 7.10 (s, 1H), 7.02 (d, J = 7.5 Hz, 1H), 6.36 (d, J = 7.0 Hz, 1H), 6.23 – 6.15 (m, 1H), 5.17 (s, 2H), 5.05 – 5.01 (m, 2H), 4.19 (d, J = 6.5 Hz, 2H), 2.41 (s, 3H); ¹³CNMR (125 MHz, CDCl₃, δ): 162.5, 143.6, 142.2, 139.3, 138.8, 137.4, 131.3, 131.0, 128.8, 127.8, 127.7, 124.8, 121.9, 114.9, 106.6, 51.6, 40.1, 21.5. IR (ZnSe): v_{max} (cm⁻¹) 2942, 2831, 1652, 1607,

1450, 1121, 1022, 741, 703.; HRMS (ESI-TOF) m/z calcd for $C_{20}H_{20}NO$ [M+H] ⁺ 290.1539; found 290.1537.

8-allyl-2-benzyl-6-(trifluoromethyl)isoquinolin-1(2H)-one (Scheme 2, 3d). liquid red, yield =

43.9 mg (64%). ¹H NMR (500 MHz, CDCl₃, δ): 7.63-7.64 (m, 1H), 7.48-7.45 (m, 1H), 7.35 – 7.32 (m, 2H), 7.30 – 7.28 (m, 3H), 7.16 (d, J = 7.5 Hz, 1H), 6.49 (d, J = 7.5 Hz, 1H), 6.20-6.12 (m, 1H), 5.19 (s, 2H), 5.10 – 5.033 (m, 2H), 4.25 (d, J = 6.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃, δ): 161.8, 145.5, 139.1, 137.4, 136.7, 132.7, 129.0, 128.0 (J_{C-F} = 11.25 Hz, 1C), 126.1, 125.0 (J_{C-F} = 1.25 Hz, 1C), 122.06 (J_{C-F} = 3.75

Hz, 1C), 116.1, 106.5, 52.0, 40.1 . ¹⁹F NMR (471 MHz, CDCl₃, δ): -63.11. IR (ZnSe): v_{max} (cm⁻¹) 2942, 2867, 1656, 1629, 1569, 1450, 1436, 1351, 1323, 1166, 1123, 923, 892, 822, 699.; HRMS (ESI-TOF) m/z calcd for C₂₀H₁₇F₃NO [M+H]⁺ 344.1257; found 344.1256.

8-allyl-2-benzyl-6-bromoisoquinolin-1(2H)-one (Scheme 2, 3e). White solid, yield = 52.1 mg

(73%). Mp = 90-92 °C. ¹H NMR (500 MHz, CDCl₃, δ): 7.51 (d, J = 2.0 Hz, 1H), 7.38 (d, J = 2.0 Hz, 1H), 7.35 – 7.32 (m, 2H), 7.30 – 7.27 (m, 3H), 7.08 (d, J = 7.0 Hz, 1H), 6.33 (d, J = 7.0 Hz, 1H), 6.18 – 6.10 (m, 1H), 5.15 (s, 2H), 5.09 – 5.03 (m, 2H), 4.17 (d, J = 6.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃, δ): 162.1, 146.1, 140.4, 137.6, 136.9, 132.5, 132.0, 128.98, 128.96, 127.98, 127.95, 127.2, 126.6, 122.8, 115.9,

105.6, 51.8, 39.8. IR (ZnSe): v_{max} (cm⁻¹) 3063, 2970, 1645, 1628, 1611, 1592, 1581, 1397, 1162, 908, 850, 723, 689, 681.; HRMS (ESI-TOF) m/z calcd for C₁₉H₁₇BrNO [M+H]⁺ 354.0488; found 354.0483.

8-allyl-2-benzyl-6-methoxyisoquinolin-1(2H)-one (Scheme 2, 3f). White solid, yield = 45.8 mg

(75%). Mp = 69-71 °C. ¹H NMR (500 MHz, CDCl₃, δ): 7.34 – 7.31 (m, 4H), 7.29 – 7.27 (m, 1H), 7.03 (d, J = 7.0 Hz, 1H), 6.87 (d, J = 2.5 Hz, 1H), 6.72 (d, J = 2.5 Hz, 1H), 6.35 (d, J = 7.0 Hz, 1H), 6.21 – 6.13 (m, 1H), 5.16 (s, 2H), 5.06-5.02 (m, 2H), 4.18 (dd, J = 6.4 , 1.5 Hz, 2H), 3.85 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, δ): 162.2, 161.7, 146.2, 141.3, 138.3, 137.4, 131.9, 128.8, 127.8, 127.7, 118.4, 118.2, 115.3,

106.6, 105.7, 55.4, 51.5, 40.2. IR (ZnSe): v_{max} (cm⁻¹) 2976, 2900, 1650, 1631, 1596, 1504, 1381, 1260, 1205, 777, 732, 707, 694.; HRMS (ESI-TOF) m/z calcd for C₂₀H₂₀NO₂ [M+H]⁺ 306.1489; found 306.1489.

8-allyl-2-benzyl-5-bromoisoquinolin-1(2H)-one (Scheme 2, **3g**). White solid, yield = 40.3 mg (57%). Mp = 65-67 °C. ¹H NMR (500 MHz, CDCl₃, δ): 7.77 (d, J = 8.5 Hz, 1H), 7.35 - 7.32 (m, 2H), 7.30-7.27 (m, 3H), 7.16 (d, J = 8.0 Hz, 1H), 7.13 (d, J = 8.0 Hz, 1H), 6.86 (d, J = 7.5 Hz, 1H), 6.19 - 6.11 (m, 1H), 5.18 (s, 2H), 5.05 - 4.98 (m, 2H), 4.16 (dt, J = 6.0, 1.5 Hz, 2H). ¹³C NMR (125 MHz,

CDCl₃, δ): 161.8, 143.7, 138.0, 137.8, 136.7, 135.7, 132.5, 130.0, 129.0, 128.0, 127.9, 125.6, 119.0, 115.4, 105.3, 51.9, 40.1 . IR (ZnSe): v_{max} (cm⁻¹) 3076, 2922, 1649, 1619, 1474, 1425, 1360, 1322, 869, 836, 783, 743, 728, 707, 696.; HRMS (ESI-TOF) m/z calcd for C₁₉H₁₇BrNO [M+H]⁺ 354.0488; found 354.0486.

8-allyl-2-benzyl-5-nitroisoquinolin-1(2H)-one (Scheme 2, 3h). Yellow solid, yield = 24.3 mg

(JP) (38%). Mp = 71-73 °C. ¹H NMR (500 MHz, CDCl₃, δ): 8.19 (d, J = 8.0 Hz, 1H), 7.35-728 (m, 6H), 7.24-7.23 (m, 1H), 7.19 (d, J = 8.0 Hz, 1H), 6.15-6.07 (m, 1H), 5.17 (s, 2H), 5.09 – 5.02 (m, 2H), 4.23 (d, J = 6.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃, δ): 161.1, 151.3, 143.9, 136.7, 136.2, 134.8, 132.6, 129.1,

128.5, 128.4, 128.2, 128.0, 125.5, 116.5, 100.5, 52.1, 40.8. IR (ZnSe): v_{max} (cm⁻¹) 3068, 2989, 2952, 1648, 1632, 1622, 1540, 1505, 1374, 1317, 1301, 1226, 757, 695.; HRMS (ESI-TOF) m/z calcd for $C_{19}H_{17}N_2O_3$ [M+H] + 321.1234; found 321.1231.

8-allyl-2-benzyl-4-chloroisoquinolin-1(2H)-one (Scheme 2, 3i). White solid, yield = 43.1 mg (61%). Mp = 98-100 °C. ¹H NMR (500 MHz, CDCl₃, δ): 7.75(dd, J = 8.0 Hz, Br 1.5 Hz, 1H), 7.65 (t, J = 8.0 Hz , 1H), 7.38 – 7.33 (m, 4H), 7.33 – 7.30 (m, 3H), 6.21-6.13(m, 1H), 5.16(s, 2H), 5.06-4.98(m, 2H), 4.22(d, J = 6.0)Hz, 2H); 13 CNMR (125 MHz, CDCl₃, δ): 161.6, 144.3, 138.3, 137.1, 136.6, Bn || 0 132.6, 132.0, 130.8, 129.0, 128.1, 128.0, 125.1, 124.4, 115.3, 100.3, 51.8, 40.1. IR (ZnSe): v_{max} (cm⁻¹) 3068, 3000, 1644, 1623, 1607, 1481, 1372, 1179, 1154, 913, 896, 786, 752, 732, 695.; HRMS (ESI-TOF) m/z calcd for

C₁₉H₁₇BrNO [M+H] + 354.0488; found 354.0484.

8-allyl-2-benzyl-4-chloroisoquinolin-1(2H)-one (Scheme 2, 3j). White solid, yield = 41.4 mg (67%). Mp = 99-101 °C. ¹H NMR (500 MHz, CDCl₃, δ): 7.79 (dd, J = 8.0, CI 1.0 Hz, 1H), 7.64 (t, J = 8.0 Hz, 1H), 7.39 – 7.33 (m, 3H), 7.32 – 7.28 (m, 3H), 7.23 (s, 1H), 6.22-6.14 (m, 1H), 5.16 (s, 2H), 5.06 – 4.99 (m, 2H), 4.23 $(dt, J = 1.5, 6.5 Hz, 2H); {}^{13}CNMR (125 MHz, CDCl_3, \delta): 161.4, 144.3, 138.2,$ Bn || 0 136.5, 136.4, 132.4, 130.8, 129.3, 129.0, 128.1, 128.0, 124.1, 122.4, 115.3, 111.5, 51.7, 40.0. IR (ZnSe): v_{max} (cm⁻¹) 3069, 1648, 1626, 1609, 1507, 1373, 1151, 1000, 955, 913, 903, 831, 786, 760, 714, 695.; HRMS (ESI-TOF) m/z

calcd for C₁₉H₁₇ClNO [M+H]⁺ 310.0993; found 310.0990.

8-allyl-2-benzyl-4-phenylisoquinolin-1(2H)-one (Scheme 3, 3k). colourless oil, yield = 39.3 mg (56%). 1H NMR (500 MHz, CDCl₃, δ) 7.40 – 7.33 (m, 4H), 7.32 – 7.29 (m, Ph 2H), 7.27 – 7.26 (m, 2H), 7.25 – 7.17 (m, 5H), 6.95 (s, 1H), 6.20 – 6.12 (m, 1H), 5.15 (s, 2H), 5.00 – 4.98 (m, 1H), 4.97 (t, J = 1.5 Hz, 1H), 4.21 (dt, J =6.5, 1.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃, δ): 162.0, 144.1, 138.7, 138.5, Bn || 0 137.2, 137.0, 131.7, 130.5, 130.3, 129.8, 128.9, 128.7, 127.9, 127.8, 127.7, 124.0, 123.8, 119.9, 115.0, 51.8, 40.4. IR (ZnSe): v_{max} (cm⁻¹) 2942, 2830, 1652, 1621, 1598, 1426, 1243, 1045, 1023, 862, 787, 701.; HRMS (ESI-TOF)

m/z calcd for C₂₅H₂₂NO [M+H]⁺ 352.1696; found 352.1692.

8-allyl-2-methylisoquinolin-1(2H)-one (Scheme 2, 3l). White solid, yield = 26.6 mg (67%). Mp = 34-36 °C. ¹H NMR (500 MHz, CDCl₃, δ): 7.50 (t, J = 7.5 Hz, 1H), 7.35 (dd, J = 8.0, 1.0 Hz, 1H), 7.25 - 7.24 (m, 1H), 7.04 (d, J = 7.5 Hz, 1H), 6.41Ме (d, J = 7.5 Hz, 1H), 6.23-6.15 (m, 1H), 5.03 - 4.97 (m, 2H), 4.19 (d, J = 6.5 Hz, 1.19 (m, 2H))Hz, 2H), 3.53 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, δ): 162.9, 143.2, 139.3, 0

138.7, 132.3, 131.6, 129.4, 124.9, 123.9, 114.9, 106.3, 40.0, 37.5. IR (ZnSe): v_{max} (cm⁻¹) 3070, 2924, 1774, 1648, 1631, 1595, 1567, 1504, 1489, 1460, 1437, 1364, 1345, 1327, 1293, 1152, 1015, 944, 903, 854, 813, 790, 690, 654, 643.; HRMS (ESI-TOF) m/z calcd for C₁₃H₁₄NO [M+H] ⁺ 200.1070; found 200.1070.

8-allyl-2-phenylisoquinolin-1(2H)-one (Scheme 2, 3m). White solid, yield = 31.3 mg (60%). Mp = 96-98 °C. ¹H NMR (500 MHz, CDCl₃, δ): 7.56 (t, J = 7.5 Hz, 1H), 7.51 – 7.48 (m, 2H), 7.42 – 7.39 (m, 4H), 7.32 (dd, *J* = 7.0, 1Hz, 1H), 7.15 (d, *J* = Ph 7.5 Hz, 1H), 6.51 (d, J = 7.5 Hz, 1H), 6.23 – 6.15 (m, 1H), 5.04-7.01 (m, 1H), Ö 5.00 (t, J = 1.5 Hz, 1H), 4.18 (d, J = 6.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃,

δ): 162.5, 144.2, 141.8, 139.2, 138.6, 132.1, 132.0, 129.7, 129.4, 128.1, 127.2, 125.0, 124.3, 115.0, 106.6, 40.1. IR (ZnSe): v_{max} (cm⁻¹) 2984, 2919, 1651, 1633, 1603, 1592, 1508, 1348, 1269, 1059, 776, 759, 714, 693.; HRMS (ESI-TOF) m/z calcd for C₁₈H₁₆NO [M+H] + 262.1226; found 262.1228.

8-allyl-2-benzyl-7-fluoroisoquinolin-1(2H)-one (Scheme 2, 3n). White solid, yield = 20.5 mg F Bn Ö

(35%). Mp = 60-62 °C. 1H NMR (500 MHz, CDCl₃, δ): 7.35 – 7.28 (m, 5H), 7.24 – 7.18 (m, 2H), 7.12 (d, J = 7.5 Hz, 1H), 6.68 (d, J = 7.5 Hz, 1H), 6.20 - 6.12 (m, 1H), 5.19 (s, 2H), 5.05 - 4.97 (m, 2H), 4.16 (d, J =6.5 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃, δ): 161.70 ($J_{C-F} = 2.5$ Hz, 1C),

157.2, 155.2, 139.28 ($J_{C-F} = 5.0 \text{ Hz}$, 1C), 138.48 ($J_{C-F} = 1.25 \text{ Hz}$, 1C), 136.9, 132.09 ($J_{C-F} = 2.5 \text{ Hz}$, 1C), 129.24 ($J_{C-F} = 7.5 \text{ Hz}$, 1C), 128.9, 128.2, 128.0, 127.96 ($J_{C-F} = 7.5 \text{ Hz}$, 1C), 128.9, 128.2, 128.0, 127.96 ($J_{C-F} = 7.5 \text{ Hz}$, 1C), 128.9, 128.2, 128.0, 127.96 ($J_{C-F} = 7.5 \text{ Hz}$, 1C), 128.9, 128.2, 128.0, 127.96 ($J_{C-F} = 7.5 \text{ Hz}$, 1C), 128.9, 128.2, 128.0, 127.96 ($J_{C-F} = 7.5 \text{ Hz}$, 1C), 128.9, 128.2, 128.0, 127.96 ($J_{C-F} = 7.5 \text{ Hz}$, 1C), 128.9, 128.2, 128.0, 127.96 ($J_{C-F} = 7.5 \text{ Hz}$, 1C), 128.9, 128.2, 128.0, 127.96 ($J_{C-F} = 7.5 \text{ Hz}$, 1C), 128.9, 128.2, 128.0, 127.96 ($J_{C-F} = 7.5 \text{ Hz}$, 1C), 128.9, 128.2, 128.0, 127.96 ($J_{C-F} = 7.5 \text{ Hz}$, 1C), 128.9, 128.2, 128.0, 127.96 ($J_{C-F} = 7.5 \text{ Hz}$, 1C), 128.9, 128.2, 128.0, 127.96 ($J_{C-F} = 7.5 \text{ Hz}$, 1C), 128.9, 128.2, 128.0, 127.96 ($J_{C-F} = 7.5 \text{ Hz}$, 1C), 128.9, 128.2, 128.0, 127.96 ($J_{C-F} = 7.5 \text{ Hz}$, 1C), 128.9, 128.2, 128.0, 127.96 ($J_{C-F} = 7.5 \text{ Hz}$, 128.0, 128.2, 128.0, 127.96 ($J_{C-F} = 7.5 \text{ Hz}$, 128.0, 128.2, 128.0, 128.2, 128.0, 128.2, 128.0, 128.2, 128 = 1.25 Hz, 1C), 125.15 (J_{C-F} = 3.75 Hz, 1C), 116.67 (J_{C-F} = 20.0 Hz, 1C), 115.2, 98.8 (J_{C-F} = 7.5 Hz, 1C), 51.9, 39.5. ¹⁹F NMR (125 MHz, CDCl₃, δ): -124.29. IR (ZnSe): v_{max} (cm⁻¹) 3067, 2972, 2926, 1648, 1632, 1609, 1572, 1559, 1516, 1490, 1387, 1372, 1338, 1192, 1180, 1090, 1044, 913, 858, 744, 696.; HRMS (ESI-TOF) m/z calcd for C₁₉H₁₇FNO [M+H] + 294.1289; found 294.1288.

7-allyl-5-benzyl-1,3,4,4a,5,10b-hexahydro-1,4-methanophenanthridin-6(2H)-one (Scheme 2, 3o).

colourless oil, yield = 50.1 mg (73%). ¹H NMR (500 MHz, CDCl₃, δ) 7.35 -7.25 (m, 5H), 7.13 (d, J = 7.5 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 6.18 - 6.12(m, 1H), 5.49 (d, J = 15.0 Hz, 1H), 5.02 - 4.98 (m, 2H), 4.16 - 4.12 (m, 2H), 4.07 - 3.99 (m, 1H), 3.55 (dd, J = 9.0, 1.0 Hz, 1H), 3.18 (d, J = 9.5 Hz, 1H), 2.52 (d, J = 3.0 Hz, 1H), 2.28 (d, J = 2.5 Hz, 1H), 1.67 – 1.43 (m, 5H), 1.22 -1.78 (m, 1H), 1.11 (dt, J = 10.5, 1.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃, δ): 163.2, 143.1, 141.6, 138.9, 137.7, 131.5, 130.0, 128.6, 127.9, 127.1,

127.1, 124.4, 114.6, 62.4, 49.4, 48.7, 45.3, 42.4, 40.6, 32.3, 29.2, 26.8. IR (ZnSe): v_{max} (cm⁻¹) 2967, 2889, 1642, 1593, 1475, 1455, 1359, 1332, 1289, 1267, 1076, 1035, 982, 909, 788, 757, 699.; HRMS (ESI-TOF) m/z calcd for C₂₄H₂₆NO [M+H]⁺ 344.2009; found 344.2010.

9-allyl-5,6,13-triphenyl-8H-isoquinolino[3,2-a]isoquinolin-8-one (Scheme 2, 3p). yellow solid,

yield = 30.78 mg (30%), Mp = $169-171 \degree \text{C}$. ¹H NMR (500 MHz, CDCl₃, δ): 7.67 – 7.50 (m, 3H), 7.48 – 7.43 (m, 3H), 7.27 – 7.21 (m, 4H), 7.17 -7.10 (m, 7H), 7.07 - 7.05 (m, 3H), 7.03 (d, J = 8.5 Hz, 1H), 6.88 -6.84 (m, 1H), 5.80 - 5.72 (m, 1H), 4.93 - 4.89 (m, 1H), 4.86 - 4.83 (m, 1H), 3.77 (d, J = 6.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃, δ): 163.7, 142.4, 139.3, 138.2, 137.4, 136.6, 136.4, 133.5, 133.4, 132.3, 131.7, 131.6, 129.8, 129.2, 128.9, 128.56, 128.54, 128.1, 128.0, 127.4, 127.0,

126.9, 126.3, 126.0, 125.7, 124.4, 123.8, 116.2, 115.2, 39.4. IR (ZnSe): v_{max} (cm⁻¹) 2926, 2852, 1678, 1664, 1515, 1477, 1381, 1290, 944, 942, 750, 716, 694.; HRMS (ESI-TOF) m/z calcd for C₃₈H₂₈NO [M+H]⁺ 514.2165; found 514.2162.

8-allyl-2-benzyl-3,4-diphenylisoquinolin-1(2H)-one (Scheme 2, 3q). White solid, yield = 52.09

mg (61%). Mp = 64-66 °C. ¹H NMR (500 MHz, CDCl₃, δ): 7.44 (t, J = 7.5 Hz, 1H), 7.33 (d, J = 6.5 Hz, 1H), 7.18 – 7.15 (m, 4H), 7.14 – 7.09 (m, 3H), 7.05 - 7.02 (m, 5H), 6.91-6.89 (m, 4H), 6.31-6.23 (m, 1H), 5.22 - 5.05 (m, 4H), 4.32 (d, J = 6.5 Hz, 2H); ¹³CNMR (125 MHz, CDCl₃, δ): 162.2, 143.8, 141.5, 139.4, 138.8, 138.0, 137.2, 134.7, 131.7, 130.3, 129.4, 128.3, 128.1, 127.0, 127.7, 126.8, 124.6, 123.1, 119.4, 115.0, 49.1, 40.6 . IR (ZnSe): v_{max} (cm⁻¹) 3067, 2972, 1645, 1619, 1591, 1507, 1491, 1476, 1430, 1390, 1309, 1091, 1071, 1042, 903, 857, 783, 758, 696.; HRMS (ESI-TOF) m/z calcd for $C_{31}H_{26}NO$ [M+H] ⁺ 428.2009; found 428.2009.

2-benzyl-8-vinylisoquinolin-1(2H)-one (Scheme 2, **3r**). White solid, yield = 43.8 mg (84%). Mp = 120-122 °C. ¹H NMR (500 MHz, CDCl₃, δ): 8.16 (dd, J = 17.5, 11.0 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.50 (d, J = 7.0 Hz, 1H), 7.41 (d, J = 7.5 Hz, 1H), 7.31-7.29 (m, 4H), 7.29-7.27 (m, 1H), 7.07 (d, J = 7.5 Hz, 1H), 6.44 (d, J = 7.5 Hz, 1H), 5.51 (dd, J = 17.0 Hz,1.5 Hz, 1H), 5.35 (dd, J = 11.0 Hz,1.5 Hz, 1H), 5.18 (s, 2H); ¹³C NMR (125 MHz, CDCl₃, δ): 162.7, 142.2, 139.3, 138.5, 137.16, 131.9, 131.4, 128.9, 128.0, 127.8, 127.0, 126.1, 123.4, 115.3, 106.7, 51.8. IR (ZnSe): v_{max} (cm⁻¹) 2922, 2857, 1652, 1624, 1579, 1366, 1274, 826, 731, 695.; HRMS (ESI-TOF) m/z calcd for C₁₈H₁₆NO [M+H] + 262.1226; found 262.1226.

2-benzyl-6-methyl-8-vinylisoquinolin-1(2H)-one (Scheme 2, 3s). White solid, yield = 41.0 mg

(74%). Mp = 60-62 °C. ¹H NMR (500 MHz, CDCl₃, δ) 8.13 (dd, J = 17.5, 11.0 Hz, 1H), 7.33 – 7.29 (m, 6H), 7.20 (s, 1H), 7.04 (d, J = 7.5 Hz, 1H), 6.37 (d, J = 7.0 Hz, 1H), 5.50 (dd, J = 17.5, 1.5 Hz, 1H), 5.33 (dd, J = 11.0, 1.5 Hz, 1H), 5.17 (s, 2H), 2.44 (s, 3H).); ¹³C NMR (125 MHz, CDCl₃, δ): 162.6, 142.3, 142.0, 139.3, 138.7, 137.2, 131.4, 128.9,

128.5, 128.0, 127.8, 125.9, 121.2, 115.1, 106.5, 51.6, 21.7. IR (ZnSe): v_{max} (cm⁻¹) 2944, 2920, 1647, 1633, 1610, 1507, 876, 859, 834, 729, 730, 681, 670, 635.; HRMS (ESI-TOF) m/z calcd for C₁₉H₁₈NO [M+H]⁺ 276.1383; found 276.1383.

2-benzyl-6-phenyl-8-vinylisoquinolin-1(2H)-one (Scheme 2, 3t). White solid, yield = 27.7 mg

(41%). Mp = 71-73 °C. ¹H NMR (500 MHz, CDCl₃, δ) 8.19 (dd, J = 17.0, 10.5 Hz, 1H), 7.73-7.72 (m, 1H), 7.70 – 7.68 (m, 2H), 7.61 (d, J = 2.0 Hz, 1H), 7.50-7.47 (m, 2H), 7.43-7.41 (m, 1H), 7.35 – 7.32 (m, 5H), 7.10 (d, J = 7.5 Hz, 1H), 6.50 (d, J = 7.0 Hz, 1H), 5.59 (dd, J = 17.0, 1.5 Hz, 1H), 5.40 (dd, J = 11.0, 1.5 Hz, 1H), 5.20 (s, 2H); ¹³C NMR (125

MHz, CDCl₃, δ): 162.6, 144.5, 142.8, 139.9, 139.3, 139.0, 137.1, 131.8, 129.0, 128.9, 128.3, 128.0, 127.9, 127.5, 126.2, 124.1, 122.2, 115.6, 106.8, 51.8. IR (ZnSe): v_{max} (cm⁻¹) 3000, 2929, 1648, 1615, 1517, 1363, 1263, 1269, 1074, 881, 764, 695.; HRMS (ESI-TOF) m/z calcd for C₂₄H₂₀NO [M+H]⁺ 338.1539; found 338.1538.

2-benzyl-6-(trifluoromethyl)-8-vinylisoquinolin-1(2H)-one (Scheme 2, 3u). White solid, yield =

Bn

∏ O 43.2 mg (66%). Mp = 85-87 °C. ¹H NMR (500 MHz, CDCl₃, δ) 8.12 (dd, J = 17.5, 11.0 Hz, 1H), 7.68 – 7.65 (m, 2H), 7.36 - 729 (m, 5H), 7.16 (d, J = 7.5 Hz, 1H), 6.49 (d, J = 7.5 Hz, 1H), 5.58 (dd, J = 17.5 Hz, 1.5, 1H), 5.44 (dd, J = 10.5 Hz, 1.0 Hz, 1H), 5.19 (s, 2H); ¹³C NMR (125 MHz, CDCl₃, δ): 162.0, 143.6, 138.6, 138.2, 136.6, 133.4 ($J_{C-F} = 10.5$ Mz, 1.5, 136.6, 133.4 ($J_{C-F} = 10.5$ Mz, 1.5, 136.6, 138.2, 136.6, 133.4 ($J_{C-F} = 10.5$ Mz, 1.5, 136.6, 138.2, 136.6, 138.4 ($J_{C-F} = 10.5$ Mz, 1.5, 136.6, 138.2, 136.6, 138.4 ($J_{C-F} = 10.5$ Mz, 1.5, 138.2, 136.6, 138.4 ($J_{C-F} = 10.5$ Mz, 1.5, 138.2, 136.6, 138.4 ($J_{C-F} = 10.5$ Mz, 1.5, 138.2, 136.6, 138.4 ($J_{C-F} = 10.5$ Mz, 1.5, 138.2, 136.6, 138.4 ($J_{C-F} = 10.5$ Mz, 1.5, 138.2, 136.6, 138.4 ($J_{C-F} = 10.5$ Mz, 1.5, 138.2, 136.6, 138.4 ($J_{C-F} = 10.5$ Mz, 1.5, 138.2, 136.6, 138.4 ($J_{C-F} = 10.5$ Mz, 1.5, 138.2, 136.6, 138.4 ($J_{C-F} = 10.5$ Mz, 1.5, 138.2, 136.6, 138.4 ($J_{C-F} = 10.5$ Mz, 1.5, 138.2, 136.5, 138.2, 138.5, 138.2, 136.5, 138.2, 138.5

32.5 Hz, q, 1C), 132.8, 129.0, 128.1, 125.2, 124.7, 122.8 (q, m), 116.9, 106.3, 52.1, ¹⁹F NMR (471 MHz, Chloroform-d) δ -63.28. IR (ZnSe): v_{max} (cm⁻¹) 2926, 2855, 2154, 1648, 1635, 1616, 1572, 1200, 1159, 1140, 1111, 1083, 733, 708, 697.; HRMS (ESI-TOF) m/z calcd for C₁₉H₁₅F₃NO [M+H] + 330.1100; found 330.1100.

2-benzyl-6-bromo-8-vinylisoquinolin-1(2H)-one (Scheme 2, 3v). White solid, yield = 47.4 mg (70%). Mp = 115-117 °C. ¹H NMR (500 MHz, CDCl₃, δ) 8.06 (dd, J = 17.5, 11.0 Hz, 1H), 7.57 (d, J = 14.5, 1.5 Hz, 2H), 7.35–7.28 (m, 5H),

SI13

7.09 (d, J = 7.5 Hz, 1H), 6.34 (d, J = 7.5 Hz, 1H), 5.53 (dd, J = 17.5 Hz, 1.5 Hz, 1H), 5.39 (d, J = 10.5 Hz, 1.5Hz, 1H), 5.15 (s, 2H); ¹³C NMR (125 MHz, CDCl₃, δ): 162.31, 144.21, 139.93, 138.06, 136.81, 132.65, 129.78, 129.01, 128.21, 128.11, 128.04, 126.74, 122.11, 116.62, 105.57, 51.93. IR (ZnSe): v_{max} (cm⁻¹) 3079, 2927, 1645, 1629, 1611, 1586, 1573, 1502, 1267, 770, 750, 721, 703, 673, 688.; HRMS (ESI-TOF) m/z calcd for C₁₈H₁₅NO [M+H] + 340.0332; found 340.0329.

2-benzyl-5-nitro-8-vinylisoquinolin-1(2H)-one (Scheme 2, 3w). White solid, yield = 17.7 mg (29%). Mp = 155-157 °C. 1H NMR (500 MHz, CDCl₃, δ) 8.26 (dd, J = 8.5, 0.5 Hz, 1H), 8.02 (dd, J = 17.0, 10.0 Hz, 1H), 7.49 (dd, J = 8.5, 0.5 Hz, 1H), 7.32-7.27 (m, 5H), 7.24 (d, J = 6.0 Hz, 1H), 7.21 (d, J = 7.5, 1H), 5.57 (dd, J = 17.0, 1.5 Hz, 1H), 5.48 (dd, J = 11.0, 1.5 Hz, 1H), 5.17 (s, 2H); ¹³C NMR (125 MHz, CDCl₃, δ): 161.3, 148.5, 144.2, 138.5, 136.1, 134.9, 132.2, 129.1, 128.8, 128.3, 128.2, 126.2, 124.7, 118.1, 100.6, 52.2. IR (ZnSe): v_{max} (cm⁻¹)

2953, 2939, 1655, 1639, 1627, 1598, 1531, 1501, 1416, 1338, 1312, 754, 729, 709.; HRMS (ESI-TOF) m/z calcd for $C_{18}H_{15}N_2O_3[M+H]^+$ 307.1077; found 307.1075.

2-benzyl-5-bromo-8-vinylisoquinolin-1(2H)-one (Scheme 2, 3x). White solid, yield = 35.3 mg (52%). Mp = 82-84 °C ¹H NMR (500 MHz, CDCl₃, δ): 8.02 (dd, J = 17.5, 11.0 Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.35 – 7.27 (m, 6H), 7.17 (d, J = 7.5Hz, 1H), 6.85 (d, J = 7.5 Hz, 1H), 5.48 (dd, J = 17.0, 1.5 Hz, 1H), 5.38 dd, J= 10.5, 1.5 Hz, 1H), 5.17 (s, 2H); ¹³C NMR (125 MHz, CDCl₃, δ): 162.0, 142.0, 138.8, 137.3, 136.7, 135.8, 132.6, 129.0, 128.1, 120.0, 127.6, 124.7, 120.2, 115.7, 105.2, 52.0. IR (ZnSe): v_{max} (cm⁻¹) 3066, 2946, 1644, 1630,

1611, 1410, 863, 835, 789, 742, 726, 717, 697, 641.; HRMS (ESI-TOF) m/z calcd for $C_{18}H_{15}BrNO [M+H]^+ 340.0332$; found 340.0328.

2-benzyl-4-bromo-8-vinylisoquinolin-1(2H)-one (Scheme 2, 3y). White solid, yield = 42.1 mg (62%). Mp = 156-158 °C. ¹H NMR (500 MHz, CDCl₃, δ) 8.07 (dd, J = 17.5, 11.0, 1H), 7.80 (dd, J = 8.0, 1.0 Hz, 1H), 7.69-7.65(m, 1H), 7.57-7.55 (m, 1H), 7.36 (s, 1H), 7.35 – 7.29 (m, 5H), 5.51 (dd, J = 17.0, 1.5 Hz, 1H), 5.38 (dd, J = 11.0, 1.5 Hz, 1H), 5.15 (s, 2H); ¹³C NMR (125 MHz, CDCl₃, δ): 161.8, 142.7, 139.0, 136.6, 136.4, 132.7, 132.1, 129.0, 128.4, 128.2, 126.0, 123.6, 115.9, 100.2, 51.9. IR (ZnSe): v_{max} (cm⁻¹) 2934, 1673, 1545, 1486,

1452, 1380, 1351, 1293, 1214, 1110, 1074, 1029, 919, 861, 822, 754, 699.; HRMS (ESI-TOF) m/z calcd for $C_{18}H_{15}BrNO$ [M+H] + 340.0332; found 340.0320.

2-benzyl-4-chloro-8-vinylisoquinolin-1(2H)-one (Scheme 2, 3z). White solid, yield = 25.3 mg (43%). Mp = 154-156 °C. ¹H NMR (500 MHz, CDCl₃, δ): 8.08 (dd, J = 17.5, 11.0 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.69 (t, J = 8.0 Hz, 1H), 7.57 (d, J = 7.5, 1H), 7.40-7.28 (m, 5H), 7.23 (s, 1H), 5.52 (dd, J = 17.0, 1.5 Hz, 1H), 5.39 (dd, J = 11.0, 1.5 Hz, 1H), 5.16 (s, 2H); ¹³C NMR (125 MHz, CDCl₃, δ): 161.6, 142.7, 138.9, 136.4, 135.9, 132.6, 129.4, 129.1, 128.4, 128.2, 128.2, 123.4, 123.3, 115.9, 111.5, 51.9. IR (ZnSe): v_{max} (cm⁻¹) 3079, 2826,

1644, 1623, 1603, 1504, 937, 907, 853, 761, 744, 733, 713, 698, 648.; HRMS (ESI-TOF) m/z calcd for $C_{18}H_{15}CINO$ [M+H]⁺ 296.0837; found 296.0837.

2-benzyl-4-phenyl-8-vinylisoquinolin-1(2H)-one (Scheme 2, 3za). White solid, yield = 35.5 mg Ph (52%). Mp = 125-127 °C. ¹H NMR (500 MHz, CDCl₃, δ) 8.18 (dd, J = 17.0,

11.0 Hz, 1H), 7.52 – 7.51 (m, 2H), 7.45 – 7.39 (m, 4H), 7.36 – 7.31 (m, 6H), 7.29 – 7.27 (m, 1H), 7.05 (s, 1H), 5.52 (dd, J = 17.5, 1.5 Hz, 1H), 5.38 (dd, J = 10.5, 1.5 Hz, 1H), 5.23 (s, 3H); ¹³C NMR (125 MHz, CDCl₃, δ): 162.2, 142.6, 137.9, 137.0, 136.8, 136.8, 130.6, 130.3, 128.9, 128.7, 128.1, 127.9, 127.8, 127.4, 124.8, 123.2, 119.8, 115.2, 51.9. IR (ZnSe): v_{max} (cm⁻¹) 3047, 2951, 1648, 1630, 1607, 1507, 1414, 1365, 1230, 799, 761, 737, 724, 715, 696, 627.; HRMS (ESI-TOF) m/z calcd for C₂₄H₂₀NO [M+H] + 338.1539; found 338.1539.

2-benzyl-3-methyl-8-vinylisoquinolin-1(2H)-one (Scheme 2, 3zb). White solid, yield = 48.5 mg (88%). Mp = 117-119 °C. ¹H NMR (500 MHz, CDCl₃, δ): 8.13 (dd, J = 17.0, 10.5 Hz, 1H), 7.54 (t, J = 7.5 Hz, 1H), 7.45 (d, J = 7.5 Hz, 1H), 7.35 (dd, J = 7.5, 1.0 Hz, 1H), 7.30-7.27 (m, 2H), 7.24-7.20 (m, 1H), 7.16-7.14 (m, 2H), 6.34 (s, 1H), 5.51 (dd, J = 17.5, 1.5 Hz, 1H), 5.39-5.35 (m, 2H), 5.32 (dd, J= 11.0, 1.5 Hz, 1H), 2.31 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, δ): 163.7,

142.1, 139.6, 139.3, 138.2, 137.4, 132.0, 128.8, 127.2, 126.2, 126.1, 125.2, 121.5, 115.1, 106.5, 47.1, 20.6 . IR (ZnSe): v_{max} (cm⁻¹) 2988, 2956, 1651, 1634, 1611, 1464, 1399, 1345, 1276, 1160, 1075, 964, 856, 835, 751, 715, 683.; HRMS (ESI-TOF) m/z calcd for C₁₉H₁₈NO [M+H] + 276.1383; found 276.1383.

2-benzyl-3,4-diphenyl-8-vinylisoquinolin-1(2H)-one (Scheme 2, 3zc). White solid, yield = 55.1

mg (66%). Mp = 144-146 °C. ¹H NMR (500 MHz, CDCl₃, δ): 8.21 (dd, J = 17.5, 11.0 Hz, 1H), 7.53 – 7.51 (m, 1H), 7.49-7.46 (m, 1H), 7.18-7.14 (m, 5H), 7.13 – 7.08 (m, 3H), 7.06 – 7.03 (m, 4H), 6.91 – 6.87 (m, 4H), 5.54 (dd, J = 17.0, 2.0 Hz, 1H), 5.38 (dd, J = 10.5, 2.0 Hz, 1H), 5.25 – 5.09 (m, 2H), ¹³C NMR (125 MHz, CDCl₃, δ): 163.0, 142.3, 141.6, 139.8, 138.8, 137.9, 137.0, 134.5, 131.8, 131.7, 130.4, 128.3, 128.1, 128.0, 127.7, 127.1, 126.9,

126.8, 125.6, 122.4, 119.3, 115.1, 49.2. IR (ZnSe): v_{max} (cm⁻¹) 3058, 2956, 1640, 1619, 1589, 1508, 1492, 1477, 1391, 1309, 1100, 718, 695, 628.; HRMS (ESI-TOF) m/z calcd for C₃₀H₂₄NO [M+H]⁺ 414.1852; found 414.1852.

2-phenyl-8-vinylisoquinolin-1(2H)-one (Scheme 2, 3zd). White solid, yield = 37.05 mg (75%).

Mp = 138-140 °C. ¹H NMR (500 MHz, CDCl₃, δ) 8.08 (dd, J = 17.0, 10.0 Hz, 1H), 7.63-7.59 (m, 1H), 7.53 – 7.46 (m, 4H), 7.42 – 7.39 (m, 3H), 7.16 (d, J = 7.5 Hz, 1H), 6.53 (d, J = 7.5 Hz, 1H), 5.50 (dd, J = 17.5, 1.5 Hz, 1H), 5.30 (dd, J = 11.0, 1.5 Hz, 1H). ¹³CNMR (125 MHz, CDCl₃, δ): 162.6, 142.6, 141.73, 139.2, 138.7, 132.3, 132.1, 129.4, 128.2, 127.3, 127.2, 126.1, 123.5,

115.4, 106.5. IR (ZnSe): v_{max} (cm⁻¹) 2931, 1656, 1651, 1622, 1492, 1352, 1272, 868, 759, 715, 693.; HRMS (ESI-TOF) m/z calcd for C₁₇H₁₄NO [M+H] + 248.1070; found 248.1072.

2-methyl-8-vinylisoquinolin-1(2H)-one (Scheme 2, 3ze). White solid, yield = 23.7 mg (64%). Mp = 65-67 °C. ¹H NMR (500 MHz, CDCl₃, δ) 8.15 (dd, J = 17.5, 10.5 Hz, 1H), 7.55 - 7.52 (m, 1H), 7.47-7.46 (m, 1H), 7.41 (dd, J = 8.0, 1.5 Hz, 1H), 7.04 (d, J = 7.0 Hz, 1H), 6.43 (d, J = 7.5 Hz, 1H), 5.48 (dd, J = 17.0, 1.5 Hz, 1H), 5.34 (dd, J = 11.0, 1.5 Hz, 1H) 3.54 (s, 3H). ¹³C NMR (125 MHz, Chloroform-d) δ 163.1, 141.9, 139.2, 138.6, 132.4, 131.7, 126.9, 126.0,

123.1, 115.3, 106.2, 37.4. IR (ZnSe): v_{max} (cm⁻¹) 3074, 2951, 1650, 1610, 1362, 1345, 840, 820, 801, 785, 722, 681, 487.; HRMS (ESI-TOF) m/z calcd for C₁₂H₁₂NO [M+H] + 186.0913; found 186.0913.

5-benzyl-7-vinyl-1,3,4,4a,5,10b-hexahydro-1,4-methanophenanthridin-6(2H)-one (Scheme 2,

3zf). White solid, yield = 42.1 mg (64%). Mp = 105-107 °C. ¹H NMR (500 MHz, CDCl₃, δ) δ 7.87 (dd, J = 17.5, 11.0 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 7.32 – 7.27 (m, 5H), 7.14 (d, J = 7.5 Hz, 1H), 5.52 (d, J = 10.0 Hz, 1H), 5.41 (dd, J = 17.5, 2.0 Hz, 1H), 5.26 (dd, J = 11.0, 2.0 Hz, 1H), 4.12 (d, J = 15.0 Hz, 1H), 3.53 (dd, J = 9.0, 1.5 Hz, 1H), 3.17 (d, J = 9.0 Hz, 1H), 2.53 (d, J = 3.0 Hz, 1H), 2.29 (d, J = 2.5 Hz, 1H), 1.65 – 1.55 (m, 4H), 1.47 – 1.43 (m,

1H), 1.21 – 1.18 (m, 1H), 1.11 (dt, J = 10.5, 1.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃, δ): 163.0, 141.6, 141.0, 140.1, 137.6, 131.7, 128.6, 128.1, 127.6, 127.2, 123.8, 113.9, 62.3, 49.3, 48.5, 45.2, 42.3, 32.4, 29.1, 26.9. IR (ZnSe): v_{max} (cm⁻¹) 2960, 2926, 1621, 1516, 1470, 1369, 1256, 1209, 936, 907, 836, 717, 701, 632.; HRMS (ESI-TOF) m/z calcd for C₂₃H₂₄NO [M+H] + 330.1852; found 330.1853.

2-benzyl-7-fluoro-8-vinylisoquinolin-1(2H)-one (Scheme 2, 3zg). White solid, yield = 32.9 mg (59%). Mp = 51-53°C. ¹H NMR ((500 MHz, CDCl₃, δ) 8.05 (dd, J = 17.5, 11.0 Hz, 1H), 7.43 (dd, J = 8.5, 5.5 Hz, 1H), 7.35-7.30 (m, 5H), 7.29 – 7.27 (m, 1H), 7.14 (d, J = 7.5 Hz, 1H), 6.67 (d, J = 7.5 Hz, 1H), 5.46 (dd, J = 17.5, 1.5 Hz, 1H), 5.34 (dd, J = 11.0, 1.5 Hz, 1H), 5.18 (s, 2H).); ¹³C NMR (125 MHz, CDCl₃, δ): 161.8, δ 158.1, 156.1, 138.4, 138.15 ($J_{C-F} = 100$

5.0 Hz, 1C), 136.7, 132.21 ($J_{C-F} = 1.25$ Hz, 1C), 129.0, 128.0, 127.08 ($J_{C-F} = 7.0$ Hz, 1C), 116.94 ($J_{C-F} = 22.5$ Hz, 1C), 115.44 ($J_{C-F} = 2.5$ Hz, 1C), 98.81($J_{C-F} = 7.5$ Hz, 1C), 52.03, ¹⁹F NMR (471 MHz, CDCl₃, δ) -122.44. IR (ZnSe): v_{max} (cm⁻¹) 3066, 2939, 1650, 1636, 1613, 1572, 1260, 1243, 1194, 745, 724, 706, 695, 633.; HRMS (ESI-TOF) m/z calcd for C₁₈H₁₅NO [M+H] + 280.1132; found 280.1133.

 $\begin{array}{l} (E) \mbox{-}1\mbox{-}chloro\mbox{-}8\mbox{-}(prop\mbox{-}1\mbox{-}en\mbox{-}1\mbox{-}y)\mbox{isoquinoline} (Scheme 5, 4). White solid, yield = 52.9 mg (52%). \\ Mp = 44\mbox{-}46\mbox{-}C. \mbox{}^1\mbox{H} \ NMR ((400 \mbox{ MHz}, \mbox{CDCl}_3, \delta) \mbox{ 8.21 (d, J = 5.6 \mbox{ Hz}, 1\mbox{H}), 7.71 (d, J = 8.0 \mbox{ Hz}, 1\mbox{H}), 7.64\mbox{-}7.59 (m, 1\mbox{H}), 7.56\mbox{-}7.43 (m, 3\mbox{H}), 5.90 (dq, J = 20.4, 6.8 \mbox{ Hz}, 1\mbox{H}), 1.97 (dd, J = 6.8, 1.6 \mbox{ Hz}, 3\mbox{H}).;^{13}\mbox{C} \ NMR (100 \mbox{ MHz}, \mbox{CDCl}_3, \delta): \delta 197.0, 162.5, 139.1, 136.7, 136.2, 132.1, 131.6, 131.3, 129.0, 128.0, 127.9, 126.4, 124.1, 107.2, 51.8, 50.2. \mbox{ HRMS} (ESI-TOF) \mbox{ m/z calcd for } C_{12}\mbox{H}_{11}\mbox{Cl} \ M+\mbox{H}]^{+} 204.0575; found 204.0582. \end{array}$

2-(2-benzyl-1-oxo-1,2-dihydroisoquinolin-8-yl)acetaldehyde (Scheme 5, 5). White solid, yield = 34.3 mg (62%). Mp = 98-100°C. ¹H NMR ((500 MHz, CDCl₃, δ) 9.83 (s, 1H), 7.5(t, J = 7.5, 1H), 7.46 (dd, J = 8.0, 1.0 Hz, 1H), 7.35 – 7.31 (m, 3H), 7.29 - 7.27 (m, 2H), 7.24 - 7.21 (m, 1H), 7.09 (d, J = 7.5 Hz, 1H), 6.50 (d, J = 7.5 Hz, 1H), 5.17 (s, 2H), 4.33 (s, 2H).; ¹³C NMR (125 MHz, CDCl₃, δ): δ 197.0, 162.5, 139.1, 136.7, 136.2, 132.1, 131.6, 131.3, 129.0,

128.0, 127.9, 126.4, 124.1, 107.2, 51.8, 50.2.; HRMS (ESI-TOF) m/z calcd for $\rm C_{18}H_{16}NO_2$ [M+H] + 278.1176; found 278.1181.

2-benzyl-1-oxo-1,2-dihydroisoquinoline-8-carbonitrile (Scheme 5, 6). White solid, yield = 35.36 mg (68%). Mp = 100-102°C. ¹H NMR ((500 MHz, CDCl₃, δ) 7.86 (dd, J = 7.0 Hz, 2.0 Hz, 1H), 7.70 - 7.65 (m, 2H), 7.37 - 7.29 (m, 5H), 7.19 (d, J = 7.5 Hz, 1H), 6.49 (d, J = 7.5 Hz, 1H), 5.23 (s, 2H).; ¹³CNMR (125 MHz, CDCl₃, δ): 160.0 138.4, 136.3, 134.8, 133.1, 131.7, 130.6, 129.0, 128.4, 128.3, 118.7, 112.6, 105.7, 51.9.; HRMS (ESI-TOF) m/z calcd for $C_{17}H_{13}N_2O$ [M+H] ⁺ 261.1022; found 261.1026.

9.0 References

- S1. Chandra, D., Kumar, N., Parmar, D., Gupta, P. and Sharma, U., **2021**. Co (iii)-catalysed regioselective linear C (8)–H olefination of isoquinolone with terminal aromatic and aliphatic alkynes. *Chemical Communications*, 57(88), 11613-11616.
- S2. Chandra, D., Sachin and Sharma, U., 2024. Co (III)-Catalyzed Regioselective [4+ 2]-Annulation of N-Chlorobenzamide with Allenes and Vinyl Acetate. *Asian Journal of Organic Chemistry*, 13(1), e202300536.
- S3. Guimond, N., Gorelsky, S.I. and Fagnou, K., 2011. Rhodium (III)-catalyzed heterocycle synthesis using an internal oxidant: improved reactivity and mechanistic studies. *Journal of the American Chemical Society*, 133(16), 6449-6457.
- S4. Song, G., Chen, D., Pan, C.L., Crabtree, R.H. and Li, X., 2010. Rh-catalyzed oxidative coupling between primary and secondary benzamides and alkynes: synthesis of polycyclic amides. *The Journal of Organic Chemistry*, 75(21), 7487-7490.

10 Copy of ¹H and ¹³C NMR

¹H NMR spectrum of 3b

¹⁹F NMR spectrum of 3d

SI28

SI30

¹⁹F NMR spectrum of 3n

¹⁹F NMR spectrum of 3u

¹H NMR spectrum of 3y

SI47

CCDC: 2300817

Table 1 Crystal data.

Identification code	USSRNB1_134_1_Rt_Cu_auto
Empirical formula	C ₁₈ H ₁₄ ClNO
Formula weight	295.75
Temperature/K	293(2)
Crystal system	Monoclinic
Space group	P2 ₁ /c
a/Å	7.8569(6)
b/Å	16.8285(13)
c/Å	11.2120(8)
$\alpha/^{\circ}$	90
β/°	104.254(7)
$\gamma/^{\circ}$	90
Volume/Å ³	1436.81(19)
Z	4
$\rho_{calc}g/cm^3$	1.367
µ/mm ⁻¹	2.323
F(000)	616.0
Crystal size/mm ³	$0.635 \times 0.387 \times 0.143$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/	° 9.688 to 137.948
Index ranges	$-9 \le h \le 9, -20 \le k \le 9, -10 \le l \le 13$
Reflections collected	4102
Independent reflections	2554 [$R_{int} = 0.0256$, $R_{sigma} = 0.0384$]
Data/restraints/parameters	2554/0/191
Goodness-of-fit on F ²	1.026
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0510, wR_2 = 0.1395$

Final R indexes [all data] $R_1 = 0.0614$, $wR_2 = 0.1540$ Largest diff. peak/hole / e Å⁻³ 0.19/-0.26

Aton	n Aton	n Length/Å	Atom	Atom	Length/Å
Cl1	C9	1.736(2)	C10	C11	1.408(3)
01	C16	1.225(2)	C6	C7	1.509(3)
N1	C16	1.381(3)	C6	C5	1.386(3)
N1	C8	1.369(3)	C6	C1	1.377(3)
N1	C7	1.480(3)	C17	C18	1.293(4)
C15	C16	1.479(3)	C11	C12	1.373(4)
C15	C14	1.416(3)	C5	C4	1.377(3)
C15	C10	1.411(3)	C13	C12	1.379(4)
C8	C9	1.337(3)	C1	C2	1.387(4)
C14	C17	1.496(3)	C4	C3	1.367(4)
C14	C13	1.392(3)	C3	C2	1.375(4)
C10	C9	1.433(3)			

Table 2 Bond Lengths for USSRNB1_134_1_Rt_Cu_auto.

Table 5 Bond Angles for USSRNB1_134_1_Rt_Cu_auto.

Atom Atom Angl		Angle/°	Atom Atom Atom Angle/°				
C16	N1	C7	117.68(17)	C5	C6	C7	120.4(2)
C8	N1	C16	124.06(18)	C1	C6	C7	121.4(2)
C8	N1	C7	118.26(17)	C1	C6	C5	118.2(2)
C14	C15	C16	120.42(19)	N1	C7	C6	112.99(17)
C10	C15	C16	119.77(19)	C8	C9	Cl1	118.32(18)
C10	C15	C14	119.80(19)	C8	C9	C10	121.3(2)
01	C16	N1	119.65(18)	C10	C9	Cl1	120.34(18)
01	C16	C15	124.59(19)	C18	C17	C14	123.6(3)
N1	C16	C15	115.76(17)	C12	C11	C10	119.6(2)
C9	C8	N1	120.7(2)	C4	C5	C6	121.0(2)
C15	C14	C17	124.29(19)	C12	C13	C14	122.1(2)
C13	C14	C15	118.0(2)	C6	C1	C2	120.8(2)
C13	C14	C17	117.6(2)	C11	C12	C13	120.6(2)
C15	C10	C9	118.27(19)	C3	C4	C5	120.3(3)
C11	C10	C15	119.9(2)	C4	C3	C2	119.7(2)
C11	C10	С9	121.8(2)	C3	C2	C1	120.0(3)