Supporting Information

Iterative click reactions using trivalent platforms for sequential molecular assembly

Gaku Orimoto and Suguru Yoshida*

Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku Tokyo 125-8585

Contents			
General Information Structures of Modules 2–4 and 7 Experimental Procedures	S1 S2 S3		
		Characterization Data of New Compounds	S11
		HPLC Charts of Triazoles	S26
References for Supporting Information	S27		
¹ H and ¹³ C NMR Spectra of Compounds	S28		

General Information

All reactions were performed with dry glassware under atmosphere of argon, unless otherwise noted. Analytical thin-layer chromatography (TLC) was performed on precoated (0.25 mm) silica-gel plates (Merck Chemicals, Silica Gel 60 F₂₅₄, Cat. No. 1.05715). Column chromatography was conducted using silica-gel (Kanto Chemical Co., Inc., Silica Gel 60, spherical, particle size 40–50 µm, Cat. No. 37562-85). Melting points (Mp) were measured on an OptiMelt MPA100 (Stanford Research Systems), and are uncorrected. ¹H NMR spectra were obtained with a Bruker AVANCE 400 spectrometer at 400 MHz. ¹³C NMR spectra were obtained with a Bruker AVANCE 400 spectrometer at 101 MHz. ¹⁹F NMR spectra were obtained with a Bruker AVANCE 400 spectrometer at 376 MHz. All NMR measurements were carried out at 25 °C. CDCl₃ (Kanto Chemical Co. Inc., Cat. No. 07663-23) was used as a solvent for obtaining NMR spectra. Chemical shifts (δ) are given in parts per million (ppm) downfield from tetramethylsilane (δ 0.00 for ¹H NMR) or the solvent peak (δ 77.2 for ¹³C NMR in CDCl₃) as an internal reference with coupling constants (J) in hertz (Hz). The abbreviations s, d, t, q, m, and br signify singlet, doublet, triplet, quartet, multiplet, and broad, respectively. The abbreviations s, d, q, and m signify singlet, doublet, quartet, and multiplet respectively. IR spectra were measured on a Shimadzu IRSpirit spectrometer with the absorption band given in cm⁻¹. High-performance liquid chromatography (HPLC) was performed on a Shimadzu Prominence HPLC system (CBM-20A lite, LC-20AD × 2, DGU-20A3R, SUS316L, and CTO-20A) equipped with a Shimadzu SPD-20A UV/Vis detector. High-resolution mass spectra (HRMS) were measured on a JEOL JMS-T100CS "AccuTOF CS" mass spectrometer under positive electrospray ionization (ESI⁺) conditions or JMS-700 (JEOL, Tokyo, Japan) mass spectrometer under electron impact ionization (EI) conditions.

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. (3d).^{S1} 4-(propargyloxy)benzaldehyde (3e).^{S2} 2-Iodo-3-(propargyloxy)phenyl triflate 4-(3e).^{S2} (propargylaminocarbonyl)ferrocene (**3f**).^{S3} (propargyloxy)benzaldehyde 5-((3aS,4S,6aR)-2oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)-N-(prop-2-yn-1-yl)pentanamide (3i),^{S4} 5-(dimethylamino)-N-(2mercaptoethyl)naphthalene-1-sulfonamide (4d),^{S5} (1a,8a,9a)-bicyclo[6.1.0]non-4-yn-9-ylmethanol (11),^{S6} 4-(12a),^{S7} 4-hydroxy-N-(2-(2-(prop-2-yn-1-(tert-butyldimethylsilyloxy)phenyl acetylene vloxy)ethoxy)ethyl)benzamide (12b),⁵⁸ and tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine (TBTA)⁵⁹ were prepared according to the reported methods.

Structures of Modules 2-4 and 7

Experimental Procedures

Synthesis of tert-butyl 4-(2-azidoacryloyl)piperazine-1-carboxylate

To a solution of 2-azidoacrylic acid (33.9 mg, 0.300 mmol) and *tert*-butyl piperazine-1-carboxylate (83.8 mg, 0.450 mmol) dissolved in DMF (1.5 mL) was added *i*-Pr₂NEt (93.1 mg, 0.720 mmol) and (benzotriazol-1-yloxy)(trispyrrolidino)phosphonium hexafluorophosphate (PyBOP) (18.7 mg, 0.360 mmol) at 0 °C. After warming to room temperature, the mixture was stirred for 14 h at the same temperature. Then, to the mixture was added saturated aqueous sodium bicarbonate (10 mL). The mixture was extracted with EtOAc (15 mL × 3). The combined organic extract was washed with brine (10 mL) and dried with Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 10 g, *n*-hexane/EtOAc = 2/1) to give *tert*-butyl 4-(2-azidoacryloyl)piperazine-1-carboxylate (54.1 mg, 0.192 mmol, 64%) as a colorless solid.

According to the procedure for preparing *tert*-butyl 4-(2-azidoacryloyl)piperazine-1-carboxylate, *tert*-butyl (S)-3-aminopyrrolidine-1-carboxylate, *tert*-butyl 4-(2-azidoacrylamido)piperidine-1-carboxylate, and *tert*-butyl (2-(2-azidoacrylamido)ethyl)(methyl)carbamate were prepared from 2-azidoacrylic acid and the corresponding amines.

Synthesis of tert-butyl (3-(2-azidoacrylamido)-5-iodobenzyl)(methyl)carbamate

To a solution of 2-azidoacrylic acid (11.3 mg, 0.100 mmol) and *tert*-butyl (3-amino-5iodobenzyl)(methyl)carbamate (60.0 mg, 0.130 mmol) dissolved in MeCN (600 μ L) were added *N*methylimidazole (28.7 mg, 0.350 mmol) and chloro-*N*,*N*,*N'*,*N'*-tetramethylformamidinium hexafluorophosphate (33.7 mg, 0.120 mmol) at 0 °C. After warming to room temperature, the mixture was stirred for 14 h at the same temperature. Then, to the mixture was added saturated aqueous sodium bicarbonate (2 mL). The mixture was extracted with EtOAc (5 mL × 3). The combined organic extract was washed with brine (2 mL) and dried with Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 3 g, *n*-hexane/EtOAc = 1/1) to give *tert*-butyl (3-(2-azidoacrylamido)-5iodobenzyl)(methyl)carbamate (28.3 mg, 62.0 µmol, 62%) as a pale yellow oil.

Synthesis of 2-azido-1-(piperazin-1-yl)prop-2-en-1-one

To a solution of *tert*-butyl 4-(2-azidoacryloyl)piperazine-1-carboxylate (0.281 g, 1.00 mmol) in CH₂Cl₂ (10 mL) was slowly added trifluoroacetic acid (2.0 mL, 26.1 mmol) at 0 °C. After stirring for 2.5 h at room temperature, to the mixture was added saturated 1 M aqueous NaOH (40 mL). The mixture was extracted with CH₂Cl₂ (100 mL × 3). The combined organic extract was washed with brine (20 mL), and dried with Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure to give 2-azido-1-(piperazin-1-yl)prop-2-en-1-one (0.161 g, 0.887 mmol, 89%) as a colorless oil.

According to the procedure for preparing 2-azido-1-(piperazin-1-yl)prop-2-en-1-one, (S)-2-azido-N-(pyrrolidin-3-yl)acrylamide, 2-azido-N-(piperidin-4-yl)acrylamide, 2-azido-N-(2-

(methylamino)ethyl)acrylamide, and 2-azido-*N*-(3-iodo-5-((methylamino)methyl)phenyl)acrylamide were prepared from the corresponding 2-azidoacrylamides.

Synthesis of 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonyl fluoride (1a)

To a solution of 2-azido-1-(piperazin-1-yl)prop-2-en-1-one (1.34 g, 7.40 mmol) in THF (32.0 mL) was added ethenesulfonyl fluoride (0.736 mL, 8.9 mmol) and triethylamine (1.23 mL, 8.88 mmol) at room temperature. After stirring for 24 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 80 g, CH₂Cl₂/MeOH = 30/1) to give 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonyl fluoride (**1a**) (1.73 g, 5.94 mmol, 80%) as a colorless solid.

According to the procedure for preparing2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonyl fluoride (**1a**), (*S*)-2-(3-(2-azidoacrylamido)pyrrolidin-1-yl)ethane-1-sulfonyl fluoride (**1b**), 2-(4-(2-azidoacrylamido)piperidin-1-yl)ethane-1-sulfonyl fluoride (**1c**), 2-((2-(2-azidoacrylamido)ethyl)(methyl)amino)ethane-1-sulfonyl fluoride (**1d**), and 2-((3-(2-azidoacrylamido)-5-iodobenzyl)(methyl)amino)ethane-1-sulfonyl fluoride (**1e**) were prepared from the corresponding 2-azidoacrylamides.

A typical procedure for the SuFEx reaction of 1a with alcohols

To a solution of 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonyl fluoride (**1a**) (14.6 mg, 50 μ mol) in acetonitrile (500 μ L) was added phenol (5.6 mg, 60 μ mol) and DBU (2.3 μ L, 15 μ mol) at room temperature. After stirring for 24 h at the same temperature, to the mixture was added water (10 mL). The mixture was extracted with CH₂Cl₂ (10 mL × 3). The combined organic extract was washed with aq. sat. K₂CO₃ (10 mL) and brine (20 mL) and dried with Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by preparative TLC (CH₂Cl₂/MeOH = 30/1) to give phenyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (**9a**) (16.8 mg, 46.0 μ mol, quant.) as a pale yellow oil.

According to the procedure for preparing phenyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (9a), benzo[d][1,3]dioxol-5-yl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (9b), 2-oxo-2H-chromen-7-yl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (9c), 2,6-dimethoxyphenyl 2-(4-(2azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (8R,9S,13S,14S)-17-hydroxy-13-methyl-(9d). 7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl 2-(4-(2-azidoacryloyl)piperazin-1yl)ethane-1-sulfonate (9e), 4-acetamidophenyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (9f), methyl (S)-2-amino-3-(4-(((2-(2-azidoacryloyl)piperazin-1-yl)ethyl)sulfonyl)oxy)phenyl)propanoate (9g), 3aminophenyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (9h) quinolin-5-yl 2-(4-(2azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (9i), and pyridin-2-yl 2-(4-(2-azidoacryloyl)piperazin-1yl)ethane-1-sulfonate (9j) were prepared from 1a and the corresponding alcohols.

Synthesis of 2,2,3,3,4,4,5,5,6,6,6-undecafluorohexyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (9k)

To a solution of 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonyl fluoride (**1a**) (14.6 mg, 50 µmol) in acetonitrile (500 µL) was added 2,2,3,3,4,4,5,5,6,6,6-undecafluorohexan-1-ol (18.0 mg, 60 µmol) and DBU (9.1 µL, 60 µmol) at room temperature. After stirring for 24 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by preparative TLC (CH₂Cl₂/MeOH = 10/1) to give 2,2,3,3,4,4,5,5,6,6,6-undecafluorohexyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (**9k**) (26.8 mg, 47.0 µmol, 94%) as a pale yellow solid.

A typical procedure for the CuAAC reaction of 9a with alkynes

To a solution of phenyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (**9a**) (36.5 mg, 0.100 mmol) in CH₂Cl₂ (6.0 mL) were added *p*-ethynyltoluene (17.0 μ L, 0.150 mmol), (MeCN)₄CuBF₄ (1.6 mg, 5.0 μ mol), and tris(benzyltriazolylmethyl)amine (TBTA) (2.6 mg, 5.0 μ mol) at room temperature. After stirring for 24 h at the same temperature, to the mixture was added water (10 mL). The mixture was extracted with CH₂Cl₂ (20 mL × 2). The combined organic extract was washed with brine (10 mL) and dried with Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by preparative TLC (CH₂Cl₂/MeOH = 15/1) to give phenyl 2-(4-(2-(4-(4-tolyl)-1*H*-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (**10a**) (39.2 mg, 0.100 mmol, quant.) as a colorless oil.

According to the procedure for preparing phenyl 2-(4-(2-(4-(4-tolyl)-1H-1,2,3-triazol-1-yl)acryloyl) piperazin-1-yl)ethane-1-sulfonate (10a), triazoles 10b–10j were prepared from 9a and the corresponding alkynes.

Synthesis of phenyl 2-(4-(2-((5aR,6R,6aS)-6-(hydroxymethyl)-5,5a,6,6a,7,8hexahydrocyclopropa[5,6]cycloocta[1,2-d][1,2,3]triazol-1(4H)-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (10k)

To a solution of phenyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (**9a**) (18.2 mg, 50.0 μ mol) in CH₂Cl₂ (1.0 mL) was added ((1*R*,8*S*,9*r*)-bicyclo[6.1.0]non-4-yn-9-yl)methanol (**11**) (12.3 mg, 60.0 μ mol) at room temperature. After stirring for 24 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by preparative TLC (*n*-hexane/EtOAc = 1/1) to give phenyl 2-(4-(2-((5a*R*,6*R*,6a*S*)-6-(hydroxymethyl)-5,5a,6,6a,7,8-hexahydrocyclopropa[5,6]cycloocta[1,2-*d*][1,2,3]triazol-1(4*H*)-yl)acryloyl)piper-azin-1-yl)ethane-1-sulfonate (**10k**) (25.2 mg, 42.0 μ mol, 84%) as a colorless solid.

A typical procedure for the Michael addition of thiols to 10a

In a 0.3 mL screw-top V-vial[®] with a solid-top cap (Sigma-Aldrich, Cat. No. Z115118), to a solution of phenyl 2-(4-(2-(4-(4-tolyl)-1*H*-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (**10a**) (24.1 mg, 50.0 µmol) in CH₂Cl₂ (0.20 mL) were added triethylamine (8.4 µL, 60 µmol) and dodecanethiol (14.3 µL, 60.0 µmol) at 0 °C. After stirring for 24 h at room temperature, the mixture was concentrated under reduced pressure. The resulting residue was purified by preparative TLC (CH₂Cl₂/MeOH = 20/1) to give phenyl 2-(4-(3-(dodecylthio)-2-(4-(4-tolyl)-1*H*-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonate (**5a**) (29.9 mg, 43.8 µmol, 88%) as a colorless oil.

According to the procedure for preparing triazole 5a, triazoles 5b–5d were prepared from 10a and the corresponding thiols.

A typical procedure for the Michael addition of amines to 10a

In a 0.3 mL screw-top V-vial[®] with a solid-top cap (Sigma-Aldrich, Cat. No. Z115118), to a solution of phenyl 2-(4-(2-(4-(4-tolyl)-1*H*-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (**10a**) (24.1 mg, 50.0 µmol) in CH₂Cl₂ (0.20 mL) were added triethylamine (8.4 µL, 60 µmol) and methyl L-lysinate (18.5 mg, 60.0 µmol) at 0 °C. After stirring for 24 h at room temperature, the mixture was concentrated under reduced pressure. The resulting residue was purified by preparative TLC (CH₂Cl₂/MeOH = 20/1) to give methyl N^{6} -(3-oxo-3-(4-(2-(phenoxysulfonyl)ethyl)piperazin-1-yl)-2-(4-(*p*-tolyl)-1*H*-1,2,3-triazol-1-yl)propyl)-L-lysinate (**5e**) (39.5 mg, 50 µmol, 83%) as a colorless oil.

According to the procedure for preparing triazole 5e, triazoles 5f and 5g were prepared from methyl *L*-lysinate, 9*H*-purin-6-amine and 6-aminopyrazin-2(1*H*)-one, respectively, with **10a**.

Synthesis of phenyl 2-(4-(3-butoxy-2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonate (5h)

In a 0.3 mL screw-top V-vial[®] with a solid-top cap (Sigma-Aldrich, Cat. No. Z115118), to a solution of phenyl 2-(4-(2-(4-(4-tolyl)-1*H*-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (**10a**) (19.5 mg, 50.0 μ mol) in THF (0.20 mL) were added butanol (18.3 μ L, 0.200 mmol) and cesium carbonate (39.1 mg, 0.120 mmol) at room temperature. After stirring for 24 h at the same temperature, the mixture was concentrated under reduced

pressure. The residue was purified by preparative TLC (*n*-hexane/EtOAc = 1/1) to give phenyl 2-(4-(3-butoxy-2-(4-(*p*-tolyl)-1*H*-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonate (**5h**) (19.0 mg, 41.0 µmol, 82%) as a colorless oil.

Synthesis of diethyl 2-(3-oxo-3-(4-(2-(phenoxysulfonyl)ethyl)piperazin-1-yl)-2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)propyl)malonate (*5i*)

In a 0.3 mL screw-top V-vial[®] with a solid-top cap (Sigma-Aldrich, Cat. No. Z115118), to a mixture of phenyl 2-(4-(2-(4-(4-tolyl)-1*H*-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (**10a**) (19.5 mg, 50.0 µmol) and diethyl malonate (11.4 µL, 75.0 µmol) was added sodium *tert*-butoxide (5.6 mg, 50 µmol) dissolved in THF (0.20 mL) at room temperature. After stirring for 24 h at the same temperature, to the mixture was added saturated aqueous ammonium chloride (5 mL). The mixture was extracted with EtOAc (20 mL × 2). The combined organic extract was washed with brine (5 mL) and dried with Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by preparative TLC (*n*-hexane/EtOAc = 1/1) to give diethyl 2-(3-oxo-3-(4-(2-(phenoxysulfonyl)ethyl)piperazin-1-yl)-2-(4-(*p*-tolyl)-1*H*-1,2,3-triazol-1-yl)propyl)malonate (**5i**) (32.0 mg, 50.0 µmol, quant.) as a colorless solid.

Typical procedures for the iterative click reactions from 9a

To a solution of phenyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (**9a**) (18.2 mg, 50.0 μ mol) in CH₂Cl₂ (1.0 mL) were added *tert*-butyl(4-ethynylphenoxy)dimethylsilane (**12a**) (13.9 mg, 60.0 μ mol), (MeCN)₄CuBF₄ (1.6 mg, 2.5 μ mol), and TBTA (2.6 mg, 2.5 μ mol) at room temperature. After stirring for 24 h at the same temperature, to the mixture was added water (10 mL). The mixture was extracted with CH₂Cl₂ (20 mL × 2). The combined organic extract was washed with brine (10 mL) and dried with Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by preparative TLC (CH₂Cl₂/MeOH = 15/1) to give phenyl 2-(4-(2-(4-((*tert*-butyldimethylsilyl)oxy)phenyl)-1*H*-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (**13a**) (24.5 mg, 41.0 μ mol, 82%) as a colorless oil.

According to the procedure for preparing 13a from 12a with 9a, triazoles 13b and 13c were prepared from the corresponding alkynes 12b and 12c, respectively. Also, triazoles S1 and S2 were prepared from the corresponding azides under the same conditions. The isolated yield of S2 was calculated from the actual weight obtained as a diastereomeric mixture after the purification.

In a 0.3 mL screw-top V-vial[®] with a solid-top cap (Sigma-Aldrich, Cat. No. Z115118), to a solution of phenyl 2-(4-(2-(4-(4-((*tert*-butyldimethylsily))oxy)phenyl)-1*H*-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (**13a**) (17.9 mg, 30.0 µmol) in CH₂Cl₂ (0.20 mL) were added triethylamine (6.0 µL, 36 µmol) and dodecanethiol (10.3 µL, 36.0 µmol) at 0 °C. After stirring for 24 h at room temperature, the mixture was concentrated under reduced pressure. The resulting residue was purified by preparative TLC (CH₂Cl₂/MeOH = 20/1) to give phenyl 2-(4-(2-(4-(4-((*tert*-butyldimethylsilyl)oxy)phenyl)-1*H*-1,2,3-triazol-1-yl)-3-(dodecylthio)propanoyl)piperazin-1-yl)ethane-1-sulfonate (**S3**) (23.9 mg, 30.0 µmol, quant.) as a colorless oil.

According to the procedure for preparing triazole 14 from 9a, bis(trizole) S2 and tris(triazole) 16 were prepared from triazole 14 and bis(trizole) S2, respectively, with 2-phenylethanethiol, buthylamine, and 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonyl fluoride (1a). Also, triazoles S4 and 16 were prepared from the corresponding acrylamides under the same conditions. The isolated yields of S4 and 16 were calculated from the actual weights obtained as diastereomeric mixtures after the purification.

To a solution of phenyl 2-(4-(2-(4-(4-((*tert*-butyldimethylsilyl)oxy)phenyl)-1*H*-1,2,3-triazol-1-yl)-3-(dodecylthio)propanoyl)piperazin-1-yl)ethane-1-sulfonate (**S1**) (85.2 mg, 0.106 mmol) in CH₂Cl₂ (800 μ L) was added 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonyl fluoride (**1a**) (37.2 mg, 0.127 mmol) and DBU (19.3 μ L, 0.127 mmol) at room temperature. After stirring for 24 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by preparative TLC (CH₂Cl₂/MeOH = 30/1) to give 4-(1-(3-(dodecylthio)-1-oxo-1-(4-(2-(phenoxysulfonyl)ethyl)piperazin-1-yl)propan-2-yl)-1*H*-1,2,3-triazol-4-yl)phenyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (**14**) (119 mg, 99.6 μ mol, 97%) as a pale yellow solid.

According to the procedure for preparing triazole 14 from 9a, bis(trizole) S2 and tris(triazole) 16 were prepared from triazole 14 and bis(trizole) S2, respectively, with 2-phenylethanethiol, buthylamine, and 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonyl fluoride (1a). Also, triazole S5 was prepared from silyl ether S4 under the same conditions. The isolated yield of S5 was calculated from the actual weight obtained as a diastereomeric mixture after the purification.

Synthesis of 4-(1-(3-(4-(2-(fluorosulfonyl)ethyl)piperazin-1-yl)-3-oxoprop-1-en-2-yl)-1H-1,2,3-triazol-4-yl)phenyl 2-(4-(3-(dodecylthio)-2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonate (15)

To a solution of 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonyl fluoride (1a) (21.8 mg, 75.0 μ mol) in CH₂Cl₂ (6.0 mL) were added *p*-ethynyltoluene (11.4 μ L, 90.0 μ mol), (MeCN)₄CuBF₄ (1.2 mg, 3.8 μ mol), and TBTA (2.0 mg, 3.8 μ mol) at room temperature. After stirring for 24 h at the same temperature, to the mixture was added water (10 mL). The mixture was extracted with CH₂Cl₂ (20 mL × 2). The combined organic extract was washed with H₂O (10 mL) and dried with Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by preparative TLC (CH₂Cl₂/MeOH = 15/1) to give 2-(4-(2-(4-(4-tolyl)-1*H*-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonyl fluoride (**S6**) (23.7 mg, 75.0 μ mol, quant.) as a colorless solid.

In a 0.3 mL screw-top V-vial[®] with a solid-top cap (Sigma-Aldrich, Cat. No. Z115118), to a solution of 2-(4-(2-(4-(4-tolyl)-1*H*-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonyl fluoride (**S6**) (18.3 mg, 30.0 μ mol) in CH₂Cl₂ (0.20 mL) were added triethylamine (6.0 μ L, 36 μ mol) and dodecanethiol (10.3 μ L, 36.0 μ mol) at 0 °C. After stirring for 24 h at room temperature, the mixture was concentrated under reduced pressure. The resulting residue was purified by preparative TLC (CH₂Cl₂/MeOH = 20/1) to give 2-(4-(3-(dodecylthio)-2-(4-(*p*-tolyl)-1*H*-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonyl fluoride (**S7**) (23.9 mg, 30.0 μ mol, quant.) as a colorless oil.

To a solution of 2-(4-(3-(dodecylthio)-2-(4-(*p*-tolyl)-1*H*-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonyl fluoride (**S7**) (60.2 mg, 0.100 mmol) in CH₂Cl₂ (600 μ L) was added *tert*-butyl(4-ethynylphenoxy)dimethylsilane (**12a**) (27.8 mg, 0.120 mmol) and DBU (18.3 μ L, 0.120 mmol) at room temperature. After stirring for 24 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by preparative TLC (CH₂Cl₂/MeOH = 30/1) to give 4-ethynylphenyl 2-(4-(3-(dodecylthio)-2-(4-(*p*-tolyl)-1*H*-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonate (**S8**) (61.4 mg, 88.0 μ mol, 88%) as a pale yellow solid.

To a solution of 4-ethynylphenyl 2-(4-(3-(dodecylthio)-2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonate (**S8**) (21.8 mg, 75.0 µmol) in CH₂Cl₂ (6.0 mL) were added*p*-

ethynyltoluene (11.4 μ L, 90.0 μ mol), (MeCN)₄CuBF₄ (1.2 mg, 3.8 μ mol), and TBTA (2.0 mg, 3.8 μ mol) at room temperature. After stirring for 24 h at the same temperature, to the mixture was added water (10 mL). The mixture was extracted with CH₂Cl₂ (20 mL × 2). The combined organic extract was washed with H₂O (10 mL) and dried with Na₂SO₄. After filtration, the filtrate was concentrated under reduced pressure. The residue was purified by preparative TLC (CH₂Cl₂/MeOH = 15/1) to give bis(triazole) **15** (74.9 mg, 75.0 μ mol, quant.) as a colorless solid.

Synthesis of 1-(3-azido-5-iodophenyl)-N-methylmethanamine

To a solution of 3-azido-5-iodobenzaldehyde (208 mg, 0.762 mmol) in MeOH (2.4 mL) was added methylamine (88.0 μ L, 0.762 mmol) at room temperature. After stirring for 20 min at the same temperature, to the mixture was added sodium borohydride (14.4 mg, 0.381 mmol) at 0 °C. After stirring for 1 h at the same temperature, the mixture was concentrated under reduced pressure. The resulting residue was purified by preparative TLC (*n*-hexane/EtOAc = 1/1) to give 1-(3-azido-5-iodophenyl)-*N*-methylmethanamine (210 mg, 0.730 mmol, quant.) as a colorless oil.

Synthesis of tert-butyl (3-azido-5-iodobenzyl)(methyl)carbamate

To a solution of 1-(3-azido-5-iodophenyl)-*N*-methylmethanamine (220 mg, 0.763 mmol) in CH₂Cl₂ (1.0 mL) was added di-*tert*-butyl dicarbonate (212 μ L, 0.916 mmol) at 0 °C. After warming to room temperature, the mixture was stirred for 12 h at the same temperature. Then, the mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography (silica-gel 11 g, *n*-hexane/EtOAc = 4/1) to give *tert*-butyl (3-azido-5-iodobenzyl)(methyl)carbamate (214 mg, 0.572 mmol, 75%) as a colorless oil.

Synthesis of tert-butyl (3-amino-5-iodobenzyl)(methyl)carbamate

To a solution of *tert*-butyl (3-azido-5-iodobenzyl)(methyl)carbamate (214 mg, 0.573 mmol) and triethylamine (16.3 μ L, 0.116 mmol) dissolved in THF (2.3 mL) and H₂O (230 μ L) was added tributylphosphine tetrafluoroborate (166 mg, 0.573 mmol) at room temperature. After stirring for 12 h at the same temperature, the mixture was concentrated under reduced pressure. The residue was purified by preparative TLC (*n*-hexane/EtOAc = 1/1) to give 4-(ethoxycarbonyl)aniline (118 mg, 0.324 mmol, 57%) as a colorless oil.

Characterization Data of New Compounds

2-(4-(2-(4-(4-Tolyl)-1H-1,2,3-triazol-1-yl)acryloyl) piperazin-1-yl)ethane-1-sulfonyl fluoride (**S6**) was identical in spectra data with that reported in the literature.^{S10}

tert-Butyl (S)-3-(2-azidoacrylamido)pyrrolidine-1-carboxylate

Pale yellow oil; TLC $R_f 0.33$ (*n*-hexane/EtOAc = 1/1); ¹H and ¹³C NMR analysis show the presence of rotational isomers. ¹H NMR (CDCl₃, 400 MHz): δ 1.47 (s, 9H), 1.82–1.94 (m, 1H), 2.13–2.24 (m, 1H), 3.15–3.30 (m, 1H), 3.38–3.51 (m, 2H), 3.62–3.68 (m, 1H), 4.44–4.52 (m, 1H), 5.21 (d, 1H, J = 2.0 Hz), 6.19 (d, 1H, J = 2.0 Hz), 6.40–6.53 (br, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 28.5, 30.8, 43.7, 49.7, 51.5, 79.7, 106.9, 138.2, 154.5, 160.4; IR (NaCl, cm⁻¹) 1131, 1166, 1410, 1416, 1525, 1682, 1698, 2119; HRMS (ESI⁺) *m/z* 304.1384 ([M + Na]⁺ C₁₂H₁₉N₅NaO₃⁺ requires 304.1386).

(S)-2-Azido-N-(pyrrolidin-3-yl)acrylamide

Pale yellow oil; TLC $R_f 0.28$ (CH₂Cl₂/MeOH = 10/1); ¹H NMR (CDCl₃, 400 MHz): δ 1.61–1.71 (m, 1H), 2.14–2.23 (m, 1H), 2.75–2.83 (m, 1H), 2.92–2.99 (m, 1H), 3.04–3.12 (m, 1H), 3.13–3.20 (m, 1H), 5.19 (d, 1H, J = 2.0 Hz), 6.18 (d, 1H, J = 2.0 Hz), 6.54 (br s, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 33.1, 45.7, 50.6, 53.6, 106.5, 138.5, 160.2; IR (NaCl, cm⁻¹) 1521, 1539, 1652, 2117; HRMS (ESI⁺) m/z 204.0862 ([M + Na]⁺ C₇H₁₁N₅NaO⁺ requires 204.0861).

(S)-2-(3-(2-Azidoacrylamido)pyrrolidin-1-yl)ethane-1-sulfonyl fluoride (1b)

Pale yellow oil; TLC $R_f 0.42$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 1.69-1.76$ (m, 1H), 2.28–2.40 (m, 2H), 2.56–2.61 (m, 1H), 2.77–2.81 (m, 1H), 3.03–3.10 (m, 2H), 3.10–3.18 (m, 1H), 3.58–3.63 (m, 2H), 4.48–4.55 (m, 1H), 5.20 (d, 1H, J = 2.0 Hz), 6.15 (d, 1H, J = 2.0 Hz); ¹³C{¹H} NMR (CDCl₃, 126 MHz): $\delta 32.2$, 48.2, 49.0, 50.3 (d, J = 14.9 Hz), 52.0, 59.5, 106.6, 138.5, 160.1; ¹⁹F{¹H} NMR (CDCl₃, 376 MHz): $\delta 58.8$ (1F, s); IR (NaCl, cm⁻¹) 1199, 1403, 1519, 1612, 1666, 2122; HRMS (ESI⁺) m/z 314.0700 ([M + Na]⁺ C₉H₁₄FN₅NaO₃S⁺ requires 314.0699).

tert-Butyl 4-(2-azidoacrylamido)piperidine-1-carboxylate

Pale yellow oil; TLC $R_f 0.42$ (*n*-hexane/EtOAc = 1/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 1.30-1.42$ (m, 2H), 1.47 (s, 9H), 1.90–1.94 (m, 2H), 2.83–2.94 (m, 2H), 3.90–4.15 (m, 3H), 5.20 (d, 1H, J = 2.0 Hz), 6.18 (d, 1H, J = 2.0 Hz), 6.26–6.34 (br, 1H); ¹³C NMR (CDCl₃, 101 MHz): $\delta 28.4$, 31.8, 42.7 (br), 47.0, 79.8, 106.7, 138.4, 154.7, 159.8; IR (NaCl, cm⁻¹) 1141, 1170, 1239, 1366, 1428, 1525, 1614, 1678, 1682, 2121; HRMS (ESI⁺) *m/z* 318.1543 ([M + Na]⁺ C₁₃H₂₁N₅NaO₃⁺ requires 318.1542).

2-Azido-N-(piperidin-4-yl)acrylamide

Pale yellow oil; TLC $R_f 0.21$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 1.31-1.41$ (m, 2H), 1.91–2.02 (m, 2H), 2.65–2.76 (m, 2H), 3.05–3.14 (m, 2H), 3.84–3.96 (m, 1H), 5.19 (d, 1H, J = 2.0 Hz), 6.18 (d, 1H, J = 2.0 Hz), 6.21–6.39 (br, 1H); ¹³C NMR (CDCl₃, 126 MHz): $\delta 33.3$, 45.4, 47.2, 106.6, 138.6, 159.7; IR (NaCl, cm⁻¹) 1521, 1538, 1614, 1652, 1668, 2116; HRMS (ESI⁺) m/z 196.1201 ([M + H]⁺ C₈H₁₄N₅O⁺ requires 196.1198).

2-(4-(2-Azidoacrylamido)piperidin-1-yl)ethane-1-sulfonyl fluoride (1c)

Pale yellow oil; TLC $R_f 0.42$ (CH₂Cl₂/MeOH = 15/1); ¹H and ¹³C NMR analysis show the presence of rotational isomers. ¹H NMR (CDCl₃, 400 MHz): δ 1.47–1.58 (m, 2H), 1.93–2.06 (m, 2H), 2.23–2.32 (m, 2H), 2.84–2.92 (m, 2H), 2.94–3.00 (m, 2H), 3.53–3.60 (m, 2H), 3.80–3.89 (m, 1H), 5.21 (d, 1H, J = 2.0 Hz), 6.19 (d, 1H, J = 2.0 Hz), 6.23–6.33 (br, 1H); ¹³C {¹H} NMR (CDCl₃, 126 MHz): δ 31.8, 46.5, 49.2 (d, J = 14.4 Hz), 51.3, 51.9, 106.7, 138.4, 159.9; ¹⁹F {¹H} NMR (CDCl₃, 376 MHz): δ 58.2 (1F, s); IR (NaCl, cm⁻¹) 1196, 1395, 1521, 1539, 1652, 2123; HRMS (ESI⁺) m/z 328.0858 ([M + Na]⁺ C₁₀H₁₆FN₅NaO₃S1⁺ requires 328.0856).

tert-Butyl (2-(2-azidoacrylamido)ethyl)(methyl)carbamate

Pale yellow oil; TLC $R_f 0.42$ (*n*-hexane/EtOAc = 1/1); ¹H and ¹³C NMR analysis show the presence of rotational isomers. ¹H NMR (CDCl₃, 400 MHz): δ 1.48 (s, 9H), 2.85–2.93 (br, 3H), 3.39–3.48 (br, 4H), 5.12–5.21 (br, 1H), 6.05–6.22 (br, 1H), 6.64 and 7.20 (two br s signals, total 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 28.3, 34.7, 39.0, 46.9, 80.1, 106.1, 138.7, 157.1, 161.3; IR (NaCl, cm⁻¹) 1157, 1244, 1393, 1525, 1682, 1698, 2119; HRMS (ESI⁺) m/z 292.1386 ([M + Na]⁺ C₁₁H₁₉N₅NaO₃⁺ requires 292.1386).

2-Azido-N-(2-(methylamino)ethyl)acrylamide

Pale yellow solid; TLC $R_f 0.21$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): δ 2.45 (s, 3H), 2.77 (t, 2H, J = 5.8 Hz), 3.41 (dt, 2H, J = 5.8, 5.8 Hz), 5.19 (d, 1H, J = 2.0 Hz), 6.17 (d, 1H, J = 2.0 Hz), 6.82–6.94 (br, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 36.1, 38.9, 50.3, 106.4, 138.7, 160.8; IR (NaCl, cm⁻¹) 1256, 1539, 1609, 1652, 2117, 3309; HRMS (ESI⁺) m/z 192.0864 ([M + Na]⁺ C₆H₁₁N₅NaO⁺ requires 192.0861).

2-((2-(2-Azidoacrylamido)ethyl)(methyl)amino)ethane-1-sulfonyl fluoride (1d)

$$N_3$$
 N_4 N_4 N_5 F

Pale yellow solid; TLC $R_f 0.42$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 2.35$ (s, 3H), 2.63 (t, 2H, J = 5.8 Hz), 3.04 (td, 2H, J = 6.5, 2.0 Hz), 3.44 (dt, 2H, J = 5.8, 5.8 Hz), 3.59 (td, 2H, J = 6.5, 2.7 Hz), 5.19 (d, 1H, J = 2.0 Hz), 6.12 (d, 1H, J = 2.0 Hz), 6.85–6.95 (br, 1H); ¹³C{¹H} NMR (CDCl₃, 126 MHz): $\delta 36.7$, 41.1, 49.3 (d, J = 13.6 Hz), 51.1, 55.8, 106.4, 138.7, 160.9; ¹⁹F{¹H} NMR (CDCl₃, 376 MHz): $\delta 58.8$ (1F, s); IR (NaCl, cm⁻¹) 1199, 1397, 1521, 1539, 1669, 2123; HRMS (ESI⁺) m/z 302.0707 ([M + Na]⁺ C₈H₁₄FN₅NaO₃S⁺ requires 302.0699).

tert-Butyl (3-(2-azidoacrylamido)-5-iodobenzyl)(methyl)carbamate

Pale yellow oil; TLC $R_f 0.42$ (*n*-hexane/EtOAc = 1/1); ¹H and ¹³C NMR analysis show the presence of rotational isomers. ¹H NMR (CDCl₃, 400 MHz): δ 1.48–1.52 (br, 9H), 2.80–2.91 (br, 3H), 4.32–4.43 (br, 2H), 5.33 (d, 1H, J = 2.3 Hz), 6.32 (d, 1H, J = 2.3 Hz), 7.35–7.47 (br, 2H), 7.89–8.06 (br, 1H), 8.07–8.13 (br, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 28.4, 34.2, 51.3, 52.0, 80.2, 94.4, 107.9, 118.0, 127.5, 132.6, 138.1, 141.3, 155.6, 158.3; HRMS (ESI⁺) *m/z* 480.0509 ([M + Na]⁺ C₁₆H₂₀IN₅NaO₃⁺ requires 480.0509).

2-Azido-N-(3-iodo-5-((methylamino)methyl)phenyl)acrylamide

Pale yellow oil; TLC $R_f 0.48$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): δ 2.45 (s, 3H), 3.71 (s, 2H), 5.32 (d, 1H, J = 2.0 Hz), 6.31 (d, 1H, J = 2.0 Hz), 7.49 (dd, 1H, J = 1.7, 1.7 Hz), 7.52 (dd, 1H, J = 1.7, 1.7 Hz), 7.95 (dd, 1H, J = 1.7, 1.7 Hz), 8.10 (br s, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 36.0, 55.1, 94.3, 107.8, 119.0, 127.3, 133.6, 138.0, 138.2, 143.3, 158.3; IR (NaCl, cm⁻¹) 931, 1446, 1531, 1578, 1599, 1694, 2130; HRMS (ESI⁺) m/z 358.0164 ([M + H]⁺ C₁₁H₁₃IN₅O⁺ requires 358.0165).

2-((3-(2-Azidoacrylamido)-5-iodobenzyl)(methyl)amino)ethane-1-sulfonyl fluoride (1e)

Pale yellow oil; TLC $R_f 0.44$ (*n*-hexane/EtOAc = 2/1); ¹H NMR (CDCl₃, 400 MHz): δ 2.30 (s, 3H), 3.04 (td, 2H, J = 7.1, 1.0 Hz), 3.54 (s, 2H), 3.59 (td, 2H, J = 7.1, 3.4 Hz), 5.33 (d, 1H, J = 2.4 Hz), 6.32 (d, 1H, J = 2.4 Hz), 7.46–7.48 (m, 1H), 7.53–7.56 (m, 1H), 7.96–7.98 (dd, 1H, J = 1.7, 1.7 Hz), 8.09 (br s, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 41.7, 49.1 (d, J = 14.0 Hz), 50.7, 61,0, 94.3, 107.9, 119.4, 127.8, 134.0, 138.1, 138.2, 141.1, 158.3; ¹⁹F NMR (CDCl₃, 376 MHz): δ 58.2 (1F, s); IR (NaCl, cm⁻¹) 895, 1203, 1266, 1420, 1529, 1578, 1697, 2130, 3054; HRMS (ESI⁺) *m/z* 489.9823 ([M + Na]⁺ C₁₃H₁₅FIN₅NaO₃S⁺ requires 489.9822).

Benzo[d][1,3]dioxol-5-yl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (9b)

Colorless solid; TLC $R_f 0.68$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 2.55-2.63$ (m, 4H), 3.02 (t, 2H, J = 7.4 Hz), 3.45 (t, 2H, J = 7.4 Hz), 3.61–3.72 (br, 4H), 5.06 (d, 1H, J = 2.1 Hz), 5.11 (d, 1H, J = 2.1 Hz), 6.04 (s, 2H), 6.74 (dd, J = 8.4, 2.4 Hz, 1H), 6.78–6.83 (m, 2H); ¹³C NMR (CDCl₃,101 MHz): $\delta 42.0$ (br), 47.1 (br), 47.7, 51.5, 52.4 (br), 53.0 (br), 102.2, 104.0, 104.2, 108.2, 114.9, 139.5, 142.9, 146.8, 148.4, 163.3; IR (NaCl, cm⁻¹) 858, 1035, 1160, 1367, 1482, 1644, 2109, 2908; HRMS (ESI⁺) *m/z* 432.0953 ([M + Na]⁺ C₁₆H₁₉N₅NaO₆S⁺ requires 432.0954).

2-Oxo-2H-chromen-7-yl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (9c)

Colorless solid; TLC $R_f 0.45$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 2.55-2.63$ (m, 4H), 3.06 (t, 2H, J = 7.2 Hz), 3.54 (t, 2H, J = 7.2 Hz), 3.62–3.72 (br, 4H), 5.07 (d, 1H, J = 2.1 Hz), 5.12 (d, 1H, J = 2.1 Hz), 6.47 (d, 1H, J = 9.6 Hz), 7.24–7.31 (m, 2H), 7.57 (d, 1H, J = 8.5 Hz), 7.73 (d, 1H, J = 9.6 Hz); ¹³C NMR (CDCl₃,101 MHz): $\delta 41.9$ (br), 47.0 (br), 48.8, 51.5, 52.4 (br), 53.2 (br), 104.0, 110.8, 117.0, 117.9, 118.6, 129.2, 139.5, 142.5, 150.7, 154.7, 159.8, 163.3; IR (NaCl, cm⁻¹) 852, 985, 1111, 1170, 1229, 1259, 1367, 1611, 1639, 1732, 2106; HRMS (ESI⁺) m/z 456.0952 ([M + Na]⁺ C₁₈H₁₉N₅NaO₆S⁺ requires 456.0954).

2,6-Dimethoxyphenyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (9d)

Pale yellow oil; TLC $R_f 0.68$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 2.55-2.63$ (m, 4H), 3.08–3.14 (m, 2H), 3.61–3.71 (m, 6H), 3.90 (s, 6H), 5.06 (d, 1H, J = 2.1 Hz), 5.11 (d, 1H, J = 2.1 Hz), 6.64 (d, 2H, J = 8.5 Hz), 7.20 (dd, 1H, J = 8.5 Hz); ¹³C NMR (CDCl₃,101 MHz): $\delta 42.0$ (br), 47.2 (br), 50.3, 51.8, 52.2 (br), 53.1 (br), 56.3, 103.9, 105.0, 127.5, 128.1, 139.6, 153.3, 163.3; IR (NaCl, cm⁻¹) 868, 1111, 1153, 1263, 1306, 1366, 1483, 1614, 1644, 2107; HRMS (ESI⁺) *m/z* 448.1265 ([M + Na]⁺ C₁₇H₂₃N₅NaO₆S⁺requires 448.1267).

(8R,9S,13S,14S)-17-Hydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (**9e**)

Colorless solid; TLC $R_f 0.38$ (*n*-hexane/EtOAc = 1/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.80$ (s, 3H), 1.19–1.62 (m, 6H), 1.68–1.77 (m, 2H), 1.87–1.99 (m, 2H), 2.10–2.36 (m, 3H), 2.52–2.58 (m, 4H), 2.86–2.93 (m, 2H), 3.04 (t, 2H, J = 7.4 Hz), 3.45 (t, 2H, J = 7.4 Hz), 3.60–3.71 (br, 4H), 3.75 (t, 1H, J = 8.56 Hz), 5.06 (d, 1H, J = 2.0 Hz), 5.11 (d, 1H, J = 2.0 Hz), 6.98–7.06 (m, 2H), 7.31–7.35 (m, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 11.1, 23.1, 26.1, 26.9, 30.0, 30.6, 36.6, 38.4, 41.9 (br), 43.2, 44.1, 47.1 (br), 47.8, 50.0, 51.6, 52.3 (br), 53.1 (br), 81.8, 104.0, 118.8, 121.9, 127.0, 139.1, 139.5, 139.8, 146.7, 163.3; IR (NaCl, cm⁻¹) 920, 1130, 1169, 1244, 1367, 1445, 1490, 1614, 1639, 2107, 2927; HRMS (ESI⁺) m/z 566.2413 ([M + Na]⁺ C₂₇H₃₇NsNaO₅S⁺ requires 566.2413).

4-Acetamidophenyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (9f)

Colorless solid; TLC $R_f 0.48$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): δ 2.19 (s, 3H), 2.55–2.63 (m, 4H), 3.02 (t, 2H, J = 7.3 Hz), 3.45 (t, 2H, J = 7.3 Hz), 3.60–3.71 (m, 4H), 5.06 (d, 1H, J = 2.2 Hz), 5.11 (d, 1H, J = 2.2 Hz), 7.22 (d, 2H, J = 9.0 Hz), 7.58 (d, 2H, J = 9.0 Hz), 7.78 (br s, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 24.5, 41.9 (br), 47.1 (br), 47.8, 51.5, 52.3 (br), 53.1 (br), 104.0, 121.2, 122.6, 137.3, 139.5, 144.7, 163.3, 168.7; IR (NaCl, cm⁻¹) 868, 1150, 1366, 1503, 1614, 1634, 1644, 2107, 2931, 3315; HRMS (ESI⁺) *m/z* 445.1274 ([M + Na]⁺ C₁₇H₂₂N₆NaO₅S⁺ requires 445.1270).

Methyl (S)-2-amino-3-(4-(((2-(4-(2-azidoacryloyl)piperazin-1-yl)ethyl)sulfonyl)oxy)phenyl)propanoate (9g)

Pale yellow oil; TLC $R_f 0.26$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): δ 2.55–2.63 (m, 4H), 2.86–2.92 (m, 1H), 3.03 (t, 2H, J = 7.4 Hz), 3.07–3.14 (m, 1H), 3.46 (t, 2H, J = 7.4 Hz), 3.60–3.70 (br, 4H), 3.72–3.78 (m, 4H), 5.06 (d, 1H, J = 2.1 Hz), 5.11 (d, 1H, J = 2.1 Hz), 7.20–7.30 (m, 4H); ¹³C NMR (CDCl₃,101 MHz): δ 40.3, 41.9 (br), 47.0 (br), 48.0, 51.6, 52.2, 52.3 (br), 53.1 (br), 55.7, 104.0, 122.1, 130.9, 136.9, 139.5, 147.8, 163.3, 175.2; IR (NaCl, cm⁻¹) 868, 1147, 1366, 1644, 1732, 2107, 2904; HRMS (ESI⁺) *m/z* 467.1714 ([M + Na]⁺ C₁₉H₂₆N₆NaO₆S⁺ requires 467.1713).

3-Aminophenyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (9h)

Pale yellow oil; TLC $R_f 0.30$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): δ 2.55–2.63 (m, 4H), 3.02 (t, 2H, J = 7.4 Hz), 3.44 (t, 2H, J = 7.4 Hz), 3.59–3.73 (br, 4H), 3.84–3.92 (br, 2H), 5.06 (d, 1H, J = 2.1 Hz), 5.11 (d, 1H, J = 2.1 Hz), 6.61–6.65 (m, 3H), 7.14–7.20 (m, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 41.9 (br), 47.1 (br), 47.8, 51.5, 52.3 (br), 53.1 (br), 104.0, 108.3, 111.1, 113.9, 130.5, 139.5, 148.2, 150.1, 163.3; IR (NaCl, cm⁻¹) 811, 1121, 1171, 1360, 1615, 1634, 2106; HRMS (ESI⁺) m/z 403.1164 ([M + Na]⁺ C₁₅H₂₀N₆NaO₄S⁺ requires 403.1164).

Quinolin-5-yl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (9i)

Pale yellow oil; TLC $R_f 0.28$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 2.55-2.63$ (m, 4H), 3.08–3.13 (m, 2H), 3.60–3.71 (m, 6H), 5.06 (d, 1H, J = 2.1 Hz), 5.11 (d, 1H, J = 2.1 Hz), 7.51–7.59 (m, 2H), 7.75 (t, 1H, J = 8.2 Hz), 8.13 (d, 1H, J = 8.6 Hz), 8.49–8.53 (m, 1H), 8.99–9.02 (m, 1H); ¹³C NMR (CDCl₃, 101 MHz): $\delta 41.9$ (br), 47.0 (br), 48.9, 51.6, 52.4 (br), 53.1 (br), 104.0, 118.9, 122.0, 123.0, 128.7, 129.1, 130.5, 139.5, 144.1, 149.0, 151.4, 163.3; IR (NaCl, cm⁻¹) 897, 1003, 1171, 1362, 1615, 1644, 2107; HRMS (ESI⁺) *m/z* 417.1338 ([M + H]⁺ C₁₈H₂₁N₆O4S⁺ requires 417.1340).

Pyridin-2-yl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (9j)

Colorless solid; TLC $R_f 0.37$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 2.55-2.63$ (m, 4H), 3.08–3.13 (m, 2H), 3.58–3.70 (br, 4H), 3.88–3.93 (m, 2H), 5.05 (d, 1H, J= 2.1 Hz), 5.10 (d, 1H, J= 2.1 Hz), 7.14–7.18 (m, 1H), 7.29–7.33 (m, 1H), 7.83–7.89 (m, 1H), 8.35–8.37 (m, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 41.9 (br), 47.1 (br), 50.8, 51.6, 52.2 (br), 53.0 (br), 103.9, 115.9, 122.9, 139.6, 140.6, 148.1, 157.5, 163.3; IR (NaCl, cm⁻¹) 869, 1211, 1372, 1435, 1651, 2104; HRMS (ESI⁺) *m/z* 389.1010 ([M + Na]⁺ C₁₄H₁₈N₆NaO₄S⁺ requires 410.2016).

3,3,4,4,5,5,6,6,6-Undecafluorohexyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (9k)

Pale yellow solid; TLC $R_f 0.28$ (CH₂Cl₂/MeOH = 10/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 2.53-2.57$ (m, 4H), 2.96 (t, 2H, J = 7.1), 3.46 (t, 2H, J = 7.1), 3.60–3.71 (br, 4H), 4.67–4.71 (m, 2H), 5.07 (d, 1H, J = 2.1 Hz), 5.11 (d, 1H, J = 2.1 Hz); ¹³C NMR (CDCl₃,101 MHz): $\delta 41.8$ (br), 47.0 (br), 49.2, 51.5, 52.3 (br), 53.1 (br), 63.1 (t, J = 27.0 Hz), 104.0, 108.5–118.6 (m), 139.5, 163.3; IR (NaCl, cm⁻¹) 804, 1035, 1171, 1254, 1367, 1446, 1466, 1634, 2109; HRMS (ESI⁺) m/z 594.0643 ([M + Na]⁺ C₁₅H₁₆F₁₁N₅NaO₄S⁺ requires 594.0645).

Colorless solid; TLC $R_f 0.48$ (CH₂Cl₂/MeOH = 10/1); ¹H NMR (CDCl₃, 400 MHz): δ 1.66 (s, 6H), 2.45–2.64 (br, 4H), 3.03 (t, 2H, J = 7.3 Hz), 3.46 (t, 2H, J = 7.3 Hz), 3.51–3.82 (m, 4H), 5.36 (d, 1H, J = 1.8 Hz), 5.94 (d, 1H, J = 1.8 Hz), 7.27–7.46 (m, 5H), 7.78 (s, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 30.4, 42.0 (br), 47.1 (br), 47.9, 51.5, 52.1 (br), 52.8 (br), 68.6, 108.2, 118.0, 122.0, 127.5, 130.1, 136.6, 149.0, 156.1, 162.6; IR (NaCl, cm⁻¹) 867, 1000,

1030, 1144, 1169, 1266, 1369, 1443, 1468, 1488, 1641, 1651; HRMS (ESI⁺) m/z 472.1633 ([M + Na]⁺ C₂₀H₂₇N₅NaO₅S⁺ requires 472.1631).

Phenyl 2-(4-(2-(4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (10c)

Pale yellow oil; TLC $R_f 0.46$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): δ 2.48–2.67 (br, 4H), 3.04 (t, 2H, J = 7.4 Hz), 3.45 (t, 2H, J = 7.4 Hz), 3.50–3.58 (br, 2H), 3.77–3.84 (br, 2H), 5.45 (d, 1H, J = 2.1 Hz), 6.05 (d, 1H, J = 2.1 Hz), 7.26–7.31 (m, 3H), 7.32–7.38 (m, 1H), 7.41–7.46 (m, 2H), 7.83 (ddd, 1H, J = 7.8, 7.7, 1.7 Hz), 8.22 (d, 1H, J = 7.9 Hz), 8.46 (s, 1H), 8.62 (d, 1H, J = 4.4 Hz); ¹³C NMR (CDCl₃,101 MHz): δ 42.0 (br), 47.0 (br), 48.0, 51.5, 52.1 (br), 52.8 (br), 108.5, 120.3, 120.6, 122.0 (two signals overlapped), 123.4, 127.4, 130.1, 136.8, 137.1, 148.7, 149.0, 149.6, 162.3; IR (NaCl, cm⁻¹) 865, 1023, 1144, 1367, 1470, 1602, 1651; HRMS (ESI⁺) m/z 491.1478 ([M + Na]⁺ C₂₂H₂₄N₆NaO₄S⁺ requires 491.1477).

Phenyl 2-(4-(2-(4-((2-iodo-3-(((trifluoromethyl)sulfonyl)oxy)phenoxy)methyl)-1*H*-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (**10d**)

Colorless solid; TLC $R_f 0.60$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): δ 2.45–2.65 (br, 4H), 3.03 (t, 2H, J = 7.3 Hz), 3.46 (t, 2H J = 7.3 Hz), 3.50–3.60 (br, 2H), 3.73–3.83 (br, 2H), 5.37 (s, 2H), 5.46 (d, 1H, J = 2.1 Hz), 6.04 (d, 1H, J = 2.1 Hz), 6.99–7.08 (m, 2H), 7.27–7.31 (m, 2H), 7.32–7.38 (m, 1H), 7.39–7.48 (m, 3H), 8.07 (s, 1H); ¹³C NMR (CDCl₃, 101 MHz): δ 42.1 (br), 47.1 (br), 48.0, 51.5, 52.2 (br), 52.9 (br), 63.7, 83.5, 109.3, 111.9, 115.0, 121.9, 122.0, 127.5, 130.1, 130.6, 136.4, 143.8, 149.0, 151.3, 158.9, 162.4; ¹⁹F NMR (CDCl₃, 376 MHz): δ –73.2 (1F, s); IR (NaCl, cm⁻¹) 865, 1037, 1141, 1219, 1267, 1367, 1423, 1455, 1488, 1588, 1651; HRMS (ESI⁺) m/z 794.0038 ([M + Na]⁺ C₂₅H₂₅F₃IN₅NaO₈S₂⁺ requires 794.0039).

Phenyl 2-(4-(2-(4-((4-formylphenoxy)methyl)-1*H*-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (**10e**)

Colorless oil; TLC $R_f 0.49$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): δ 2.45–2.66 (br, 4H), 3.02 (t, 2H, J = 7.4 Hz), 3.45 (t, 2H J = 7.4 Hz), 3.51–3.61 (br, 2H), 3.71–3.82 (br, 2H), 5.34 (s, 2H), 5.44 (d, 1H, J = 2.1 Hz), 6.05 (d, 1H, J = 2.1 Hz), 7.12–7.17 (m, 2H), 7.28–7.32 (m, 2H), 7.33–7.38 (m, 1H), 7.42–7.47 (m, 2H), 7.86–7.83 (m, 2H), 8.00 (s, 1H), 9.92 (s, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 42.0 (br), 47.2 (br), 48.0, 51.5, 52.1 (br), 52.9 (br), 61.9, 109.4, 115.1, 121.9, 122.0, 127.5, 130.1, 130.5 132.1, 136.2, 143.7, 149.0, 162.4, 162.9, 190.8; IR (NaCl, cm⁻¹) 865, 1003, 1144, 1163, 1247, 1367, 1488, 1599, 1651, 1694; HRMS (ESI⁺) *m/z* 548.1577 ([M + Na]⁺ C₂₅H₂₇N₅NaO₆S⁺requires 548.1580).

Phenyl 2-(4-(2-(4-((ferrocennylcarbonylamino)methyl)-1H-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (10f)

Pale yellow solid; TLC $R_f 0.22$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): δ 2.42–2.63 (br, 4H), 3.00 (t, 2H *J* = 7.4 Hz), 3.42 (t, 2H, *J* = 7.4 Hz), 3.46–3.53 (br, 2H), 3.72–3.80 (br, 2H), 4.16 (s, 5H), 4.36 (dd, 2H, *J* = 1.9, 1.9 Hz), 4.66 (d, 2H, *J* = 6.0 Hz), 4.70 (dd, 2H, *J* = 1.9, 1.9 Hz), 5.38 (d, 1H, *J* = 2.1 Hz), 5.96 (d, 1H, *J* = 2.1 Hz), 6.58 (dd, 1H, *J* = 5.9, 5.9 Hz), 7.26–7.30 (m, 2H), 7.32–7.38 (m, 1H), 7.41–7.46 (m, 2H), 7.95 (s, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 34.8, 42.0 (br), 47.0 (br), 47.9, 51.4, 52.0 (br), 52.7 (br), 68.2, 69.8, 70.7, 75.2,

108.3, 121.0, 122.0, 127.4, 130.1, 136.6, 145.6, 149.0, 162.4, 170.7; IR (NaCl, cm⁻¹) 865, 1001, 1144, 1286, 1367, 1435, 1445, 1538, 1651; HRMS (ESI⁺) *m/z* 655.1405 ([M + Na]⁺ C₂₉H₃₂FeN₆NaO₅S1⁺requires 655.1402).

Colorless solid; TLC $R_f 0.22$ (CH₂Cl₂/MeOH = 10/1); ¹H NMR (CD₃OD, 400 MHz): δ 2.28–2.41 (m, 2H), 2.50–2.70 (m, 4H), 3.03 (t, 2H, J = 7.2 Hz), 3.53–3.68 (m, 4H), 3.72–3.89 (m, 4H), 3.97–4.13 (m, 1H), 4.46–4.49 (m, 1H), 5.52 (d, 1H, J = 2.5 Hz), 6.08 (d, 1H, J = 2.5 Hz), 6.37 (t, 1H, J = 6.7 Hz), 7.31–7.50 (m, 5H), 8.63 (s, 1H), 8.78 (s, 1H); ¹³C NMR (CD₃OD,101 MHz): δ 43.0, 44.5, 50.9, 54.0, 54.4, 55.0, 64.3, 73.8, 88.5, 90.6, 107.5, 110.3, 122.7, 124.7, 129.8, 132.5, 139.5, 140.2, 142.9, 152.2, 152.9, 164.5, 165.8; IR (NaCl, cm⁻¹) 1144, 1622, 1712; HRMS (ESI⁺) m/z 640.1803 ([M + Na]⁺ C₂6H₃₁N₇NaO₉S⁺requires 640.1802).

Phenyl 2-(4-(2-(4-(((*tert*-butoxycarbonyl)(2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)amino)methyl)-1*H*-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (**10h**)

Colorless solid; TLC $R_f 0.48$ (CH₂Cl₂/MeOH = 15/1); ¹H and ¹³C NMR analysis show the presence of rotational isomers. ¹H NMR (CDCl₃, 400 MHz): δ 1.35–1.52 (m, 13H), 1.58–1.67 (m, 2H), 1.72–1.82 (m, 2H), 2.46–2.65 (m, 4H), 3.03 (t, 2H, *J* = 7.3 Hz), 3.41–3.83 (m, 18H), 4.58–4.63 (br, 2H), 5.33–5.39 (br, 1H), 5.89–5.98 (br, 1H), 7.26–7.48 (m, 5H), 7.78–7.87 (br, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 25.4, 26.7, 28.5, 29.5, 32.6, 41.9, 42.9, 45.1, 47.0, 48.0, 51.5, 52.1, 52.8, 69.7, 70.1, 70.2, 70.4, 71.3, 80.2, 107.8 (br), 121.1 (br), 122.0, 127.4, 130.1, 136.9 (br), 145.9 (br), 146.4, 149.0, 155.6 (br), 162.5 : IR (NaCl, cm⁻¹) 865, 1037, 1144, 1169, 1267, 1366, 1412, 1455, 1651, 1694, 2864, 2936; HRMS (ESI⁺) *m/z* 727.3250 ([M + H]⁺ C₃₃H₅₂ClN₆O₈S⁺ requires 727.3250).

Phenyl 2-(4-((5-((3aR,4R,6aS)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanamido)methyl)-1H-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (10i)

Colorless solid; TLC $R_f 0.20$ (CH₂Cl₂/MeOH = 10/1); ¹H NMR (CD₃OD, 400 MHz): δ 1.39–1.44 (m, 2H), 1.57–1.75 (m, 4H), 2.27 (t, 2H, J = 7.4 Hz), 2.51–2.68 (m, 4H), 2.71 (d, 1H, J = 12.7 Hz), 2.92–2.96 (m, 1H), 3.02 (t, 2H, J = 7.2 Hz), 3.17–3.23 (m, 1H), 3.52–3.57 (br, 2H), 3.64 (t, 2H, J = 7.2 Hz), 3.72–3.80 (br, 2H), 4.28–4.32 (m, 1H), 4.47–4.53 (m, 3H), 5.50 (d, 1H, J = 2.5 Hz), 6.04 (d, 1H, J = 2.5 Hz), 7.33–7.39 (m, 3H), 7.45–7.51 (m, 2H), 8.23 (s, 1H); ¹³C NMR (CD₃OD,101 MHz): δ 25.3, 28.0, 28.3, 28.4, 34.0, 35.1, 39.7, 41.7, 51.2, 51.6, 52.2, 53.4, 55.6, 60.2, 61.9, 107.7, 121.0, 121.9, 127.0, 129.7, 136.7, 149.4, 162.9, 164.7, 174.7; HRMS (ESI⁺) m/z 669.2243 ([M + Na]⁺ C₂₈H₃₈N₈NaO₆S₂⁺requires 669.2253).

2-(6-(Diethylamino)-3-(diethyliminio)-3*H*-xanthen-9-yl)-5-(*N*-((1-(3-oxo-3-(4-(2-(phenoxysulfonyl)ethyl)piperazin-1-yl)prop-1-en-2-yl)-1*H*-1,2,3-triazol-4-yl)methyl)sulfamoyl)benzenesulfonate (**10***j*) Et_AN

red solid; TLC *R*_f 0.48 (CH₂Cl₂/MeOH = 10/1); ¹H NMR (DMSO-*d*₆, 400 MHz): δ 1.21 (t, 12H, *J* = 7.0 Hz), 2.36–2.44 (br, 2H), 2.48–2.54 (m, 2H), 2.86–2.91 (m, 2H), 3.52–3.77 (m, 12H), 4.25 (d, 2H, *J* = 6.0 Hz), 5.44 (d, 2H, *J* = 2.4 Hz), 6.06 (d, 2H, *J* = 2.4 Hz), 6.92–7.09 (m, 5H), 7.33–7.41 (m, 3H), 7.42–7.53 (m, 3H), 7.89–8.00 (m, 1H), 8.47–8.49(m, 2H), 8.59 (t, 2H, *J* = 6.0 Hz); ¹³C NMR (DMSO-*d*₆101 MHz): δ 12.9, 38.4, 41.8 (br), 45.7, 46.9 (br), 47.8, 51.4, 51.9 (br), 52.4 (br), 95.8, 108.5, 113.9, 114.1, 122.1, 122.7, 126.3, 127.2, 127.8, 130.6, 131.1, 133.2, 133.6, 136.5, 141.8, 144.5, 148.4, 149.3, 155.5, 157.6, 157.9, 162.2; HRMS (ESI⁺) *m/z* 961.3042 ([M + H]⁺ C₄₅H₅₃N₈O₁₀S₃⁺ requires 961.3041).

Colorless solid; TLC $R_f 0.38$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): δ 0.71–0.91 (m, 3H), 1.32–1.42 (m, 2H), 2.37–2.58 (m, 6H), 2.61–2.71 (m, 1H), 2.83–2.97 (m, 4H), 3.08–3.18 (m, 1H), 3.41–3.58 (m, 6H), 3.61–3.79 (br, 2H), 5.81 (d, 1H, *J* = 1.2 Hz), 5.84 (d, 1H, *J* = 1.2 Hz), 7.23–7.58 (m, 5H); ¹³C NMR (CDCl₃,101 MHz): δ 22.1, 22.3, 22.9, 25.6, 26.9, 27.5, 27.9, 42.2 (br), 46.5 (br), 47.9, 51.5, 52.2 (br), 52.8 (br), 66.3, 119.1, 122.0, 127.5, 130.1, 135.0, 137.3, 145.5, 149.0, 163.5; IR (NaCl, cm⁻¹) 865, 1027, 1144, 1367, 1442, 1634, 2926, 3401; HRMS (ESI⁺) *m/z* 538.2100 ([M + Na]⁺ C₂₅H₃₃N₅NaO₅S⁺ requires 538.2100).

Phenyl 2-(4-(3-((4-methoxyphenyl)thio)-2-(4-(*p*-tolyl)-1*H*-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonate (**5b**)

Colorless solid; TLC $R_f 0.48$ (CH₂Cl₂/MeOH = 20/1); ¹H NMR (CDCl₃, 400 MHz): δ 2.10–2.18 (m, 1H), 2.31–2.37 (m, 1H), 2.40 (s, 3H), 2.49–2.60 (m, 2H), 2.92–2.97 (m, 2H), 3.37–3.44 (m, 3H), 3.45–3.54 (m, 2H), 3.55–3.63 (m, 2H), 3.74 (s, 3H), 3.76–3.83 (m, 1H), 5.77 (dd, 1H, J = 7.3, 7.3 Hz), 6.82–6.87 (m, 2H), 7.23–7.29 (m, 4H), 7.31–7.46 (m, 5H), 7.69 (d, 2H J = 8.1 Hz), 7.90 (s, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 21.4, 39.0, 42.4, 45.7, 47.9, 51.4, 52.2, 52.8, 55.3, 58.3, 115.0, 117.9, 122.0, 123.5, 125.6, 127.3, 127.5, 129.5, 130.1, 134.7, 138.2, 148.3, 149.0, 159.8, 165.1; IR (NaCl, cm⁻¹) 865, 1144, 1246, 1367, 1493, 1651, 1656, 2835, 2927, 2939; HRMS (ESI⁺) m/z 622.2151 ([M + H]⁺ C₃₁H₃₆N₅O₅S₂⁺ requires 622.2152).

Colorless oil; TLC $R_{\rm f}$ 0.32 (CH₂Cl₂/MeOH = 15/1); ¹H and ¹³C NMR analysis show the presence of diastereomers and rotational isomers. ¹H NMR (CDCl₃, 400 MHz): δ 1.45 (s, 9H), 2.12–2.22 (m, 1H), 2.33–2.43 (m, 4H), 2.54–

2.64 (m, 2H), 2.90–3.18 (m, 4H), 3.38–3.47 (m, 3H), 3,49–3.85 (m, 7H), 4.51–4.60 (m, 1H), 5.32–5.43 (m, 1H), 5.86–5.97 (m, 1H), 7.24–7.45 (m, 7H), 7.71–7.79 (m, 2H), 7.96 (s, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 21.3, 28.29, 28.32, 35.3, 35.5, 42.6, 45.9, 47.9, 51.4, 52.2, 52.8, 52.9, 53.3, 58.7 (br), 80.4, 117.6, 122.0, 125.6, 127.3, 127.4, 129.6, 130.1, 138.4, 148.5, 149.0, 164.9 (br), 171.2; IR (NaCl, cm⁻¹) 865, 1040, 1144, 1167, 1193, 1241, 1264, 1366, 1455, 1651, 1665, 2926; HRMS (ESI⁺) *m*/*z* 739.2556 ([M + Na]⁺ C₃₃H₄₄N₆NaO₈S₂⁺ requires 739.2560).

Phenyl 2-(4-(3-((2-((5-(dimethylamino)naphthalene)-1-sulfonamido)ethyl)thio)-2-(4-(*p*-tolyl)-1*H*-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonate (**5d**)

Pale yellow oil; TLC $R_f 0.42$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): δ 2.19–2.25 (m, 1H), 2.37–2.44 (m, 4H), 2.52–2.63 (m, 3H), 2.71–2.80 (m, 1H), 2.88 (s, 6H), 2.92–3.05 (m, 4H), 3.12–3.26 (m, 2H), 3.40 (t, 2H *J* = 7.4 Hz), 3.56–3.77 (m, 4H), 5.93–6.04 (m, 2H), 7.20 (d, 1H, *J* = 7.5 Hz), 7.26 (d, 1H, *J* = 7.5 Hz), 7.26–7.34 (m, 1H), 7.38–7.43 (m, 2H), 7.38–7.45 (m, 2H), 7.74 (d, 2H *J* = 8.1 Hz), 7.95 (s, 1H), 8.24–8.28 (m, 2H), 8.35 (d, 2H *J* = 8.5 Hz), 8.55 (d, 2H *J* = 8.5 Hz); ¹³C NMR (CDCl₃,101 MHz): δ 21.3, 33.6, 34.9, 42.6, 42.8, 45.4, 45.9, 47.9, 51.4, 52.3, 52.7, 58.8, 115.3, 117.8, 118.7, 122.0, 123.2, 125.6, 127.2, 127.4, 128.7, 129.5, 129.56, 129.61, 129.9, 130.1, 130.7, 134.5, 138.4, 148.5, 149.0, 152.0, 165.0; IR (NaCl, cm⁻¹) 867, 1144, 1163, 1266, 1369, 1654; HRMS (ESI⁺) *m/z* 814.2493 ([M + Na]⁺ C₃₈H₄₅N₇NaO₆S₃⁺ requires 814.2491).

Methyl N-(3-oxo-3-(4-(2-(phenoxysulfonyl)ethyl)piperazin-1-yl)-2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)propyl)-L-lysinate (5e)

Pale yellow oil; TLC $R_f 0.48$ (CH₂Cl₂/MeOH = 10/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 1.35-1.56$ (m, 5H), 1.68–1.77 (m, 1H), 2.12–2.18 (m, 1H), 2.32–2.42 (m, 4H), 2.53–2.72 (m, 4H), 2.91–2.98 (m, 2H), 3.13–3.20 (m, 1H), 3.36–3.85 (m, 11H), 5.85 (dd, 1H, J = 6.8, 6.8 Hz), 7.23–7.28 (m, 4H), 7.31–7.36 (m, 1H), 7.39–7.45 (m, 2H), 7.74 (d, 2H, J = 8.1 Hz), 8.01 (s, 1H); ¹³C NMR (CDCl₃, 101 MHz): $\delta 21.3, 23.2, 29.7, 34.6, 42.3, 45.7, 47.9, 49.4, 51.4, 51.7, 52.0, 52.3, 52.8, 54.3, 59.1, 118.2, 122.0, 125.6, 127.40, 127.42, 129.6, 130.1, 138.3, 148.3, 149.0, 165.4, 176.5; IR (NaCl, cm⁻¹) 865, 1144, 1367, 1456, 1488, 1651, 1732, 2930; HRMS (ESI⁺)$ *m/z*642.3067 ([M + H]⁺ C₃₁H₄₄N₇O₆S⁺ requires 642.3068).

Phenyl 2-(4-(3-(6-amino-9*H*-purin-9-yl)-2-(4-(*p*-tolyl)-1*H*-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonate (**5f**)

Colorless solid; TLC $R_f 0.32$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): δ 2.08–2.15 (m, 1H), 2.20–2.28 (m, 1H), 2.37–2.45 (m, 5H), 2.87–2.94 (m, 2H), 3.34–3.39 (m, 2H), 3,48–3.64 (m, 3H), 3.65–3.74 (m, 1H), 4.81 (dd, 1H J = 6.9, 6.9 Hz), 5.00 (dd, 1H, J = 7.7, 7.7 Hz), 5.78–5.84 (br, 2H), 6.39–6.45 (m, 1H), 7.23–7.28 (m, 4H), 7.30–7.36 (m, 1H), 7.38–7.45 (m, 2H), 7.57 (s, 1H), 7.72 (d, 2H J = 8.1 Hz), 8.05 (s, 1H), 8.39 (s, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 21.4, 42.5, 45.7, 45.9, 47.7, 51.3, 52.1, 52.4, 57.5, 117.7, 119.5, 122.0, 125.7,

126.9, 127.5, 130.0, 130.1, 138.7, 140.7, 148.9, 149.0, 150.1, 153.4, 155.5, 163.6; IR (NaCl, cm⁻¹) 865, 1144, 1366, 1470, 1595, 1651, 1656; 6; HRMS (ESI⁺) *m/z* 639.2221 ([M + Na]⁺ C₂₉H₃₂N₁₀NaO4S⁺ requires 639.2226).

Phenyl 2-(4-(3-(6-amino-2-oxopyrazin-1(2H)-yl)-2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonate (**5g**)

Colorless solid; TLC $R_f 0.31$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 2.25-2.52$ (m, 7H), 2.94 (t, 2H, J = 7.0 Hz), 3.41 (t, 2H, J = 7.3 Hz), 3.53-3.79 (m, 4H), 4.14-4.23 (m, 1H), 4.54 (dd, 1H, J = 13.7, 5.5 Hz), 5.57 (d, 1H, J = 7.2 Hz), 6.31 (dd, 1H, J = 8.4, 5.5 Hz), 6.99 (d, 1H J = 7.3 Hz), 7.21-7.34 (m, 5H), 7.38-7.43 (m, 2H), 7.71 (d, 2H, J = 8.1 Hz), 8.17 (s, 1H); ¹³C NMR (CDCl₃,101 MHz): $\delta 21.3, 42.4, 45.6, 47.8, 51.3, 52.2, 52.5, 52.8, 57.3, 94.7, 119.1, 122.0, 125.6, 127.1, 127.4, 129.6, 130.0, 138.4, 146.0, 148.3, 148.9, 156.6, 164.0, 166.3; IR (NaCl, cm⁻¹) 865, 1144, 1279, 1367, 1488, 1651, 1666; HRMS (ESI⁺) <math>m/z$ 615.2115 ([M + Na]⁺ C₂₈H₃₂N₈NaO₅S⁺ requires 615.2114).

Phenyl 2-(4-(3-butoxy-2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonate (5h)

Colorless solid; TLC $R_f 0.43$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.89$ (t, 3H, J = 7.4 Hz), 1.25–1.34 (m, 2H), 1.47–1.55 (m, 2H), 2.29–2.36 (m, 1H), 2.37–2.46 (m, 4H), 2.53–2.61 (m, 2H), 2.95–3.11 (m, 2H), 3.40–3.54 (m, 4H), 3.57–3.80 (m, 4H), 3.94 (dd, 1H, J = 9.7, 6.9 Hz), 4.08 (dd, 1H, J = 9.7, 6.9 Hz), 5.95 (dd, 1H, J = 6.9, 6.9 Hz), 7.23–7.30 (m, 4H), 7.32–7.37 (m, 1H), 7.41–7.46 (m, 2H), 7.73–7.76 (m, 2H), 8.09 (s, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 13.9, 19.2, 21.3, 31.4, 42.3, 45.9, 47.9, 51.4, 52.3, 52.8, 58.5, 70.7, 71.7, 118.7, 122.0, 125.6, 127.5, 127.6, 130.0, 130.1, 138.2, 148.1, 149.0, 165.0; IR (NaCl, cm⁻¹) 867, 1127, 1144, 1169, 1266, 1370, 1488, 1655; HRMS (ESI⁺) m/z 578.2411 ([M + Na]⁺ C₂₈H₃₇N₅NaO₅S⁺ requires 578.2413).

Diethyl 2-(3-oxo-3-(4-(2-(phenoxysulfonyl)ethyl)piperazin-1-yl)-2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)propyl)malonate (5i)

Colorless solid; TLC $R_f 0.61$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): δ 1.25 (t, 3H, J = 7.1 Hz), 1.30 (t, 3H, J = 7.1 Hz), 2.34–2.48 (m, 5H), 2.52–2.65 (m, 3H), 2.68–2.78 (m, 1H), 2.99 (t, 2H, J = 7.3 Hz), 3.09 (dd, 1H, J = 9.7, 5.0 Hz), 3.39–3.47 (m, 2H), 3.58–3.67 (m, 1H), 3.68–3.76 (m, 3H), 4.12–4.29 (m, 4H), 5.95 (dd, 1H, J = 10.3, 5.5 Hz), 7.24–7.30 (m, 4H), 7.33–7.37 (m, 1H), 7.41–7.46 (m, 2H), 7.73–7.76 (m, 2H), 8.12 (s, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 13.99, 14.01, 21.3, 32.1, 42.4, 45.7, 47.6, 47.9, 51.4, 52.3, 52.8, 57.3, 62.09, 62.15, 118.3, 122.0, 125.6, 127.4, 129.6, 130.1 (two signals overlapped), 138.3, 148.6, 149.0, 165.5, 168.3, 168.4; IR (NaCl, cm⁻¹) 867, 1146, 1266, 1658, 1730, 1744, 2986, 3055; HRMS (ESI⁺) m/z 664.2418 ([M + Na]⁺ C₃₁H₃₉N₅NaO₈S⁺requires 664.2417).

Phenyl 2-(4-(2-(4-((*tert*-butyldimethylsilyl)oxy)phenyl)-1*H*-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (**13a**)

Colorless oil; TLC $R_f 0.52$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.23$ (s, 6H), 1.01 (s, 9H), 2.44–2.64 (br, 4H), 3.01 (t, 2H, J = 7.3 Hz), 3.44 (t, 2H, J = 7.3 Hz), 3.48–3.55 (br, 2H), 3.74–3.82 (br, 2H), 5.38 (d, 1H, J = 2.0 Hz), 5.99 (d, 1H, J = 2.0 Hz), 6.91 (d, 2H, J = 8.6 Hz), 7.25–7.44 (m, 5H), 7.73 (d, 2H, J = 8.6 Hz), 8.02 (s, 1H); ¹³C NMR (CDCl₃,101 MHz): δ –4.4, 18.3, 25.7, 41.9 (br), 47.0 (br), 47.9, 51.5, 52.1 (br), 52.8 (br), 108.1, 117.1, 120.6, 122.0, 123.0, 127.2, 127.5, 130.1, 136.7, 148.1, 149.0, 156.2, 162.6; IR (NaCl, cm⁻¹)

864, 911, 1023, 1146, 1269, 1367, 1495, 1562, 1651, 2858, 2931; HRMS (ESI⁺) m/z 620.2337 ([M + Na]⁺ C₂₉H₃₉N₅NaO₅SSi⁺ requires 620.2339).

Phenyl 2-(4-((2-(4-((2-(4-hydroxybenzamido)ethoxy)ethoxy)methyl)-1*H*-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (**13b**)

Colorless oil; TLC $R_f 0.36$ (CH₂Cl₂/MeOH = 10/1); ¹H NMR (CDCl₃, 400 MHz): δ 2.49–2.63 (m, 4H), 3.02 (t, 2H, J = 7.3 Hz), 3.46 (t, 2H, J = 7.3 Hz), 3.50–3.56 (m, 2H), 3.60–3.82 (m, 10H), 4.70 (s, 2H), 5.33 (d, 1H, J = 2.4 Hz), 5.78 (d, 1H, J = 2.4 Hz), 6.69 (d, 2H, J = 8.5 Hz), 6.84–6.89 (m, 1H), 7.26–7.31 (m, 2H), 7.32–7.36 (m, 1H), 7.40–7.46 (m, 2H), 7.54–7.58 (m, 2H), 7.84 (s, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 39.5, 42.1 (br), 47.2 (br), 47.9, 51.4, 52.0 (br), 52.7 (br), 64.4, 69.5, 70.1, 70.2, 107.8, 115.3, 120.9, 122.0, 125.5, 127.5 (two signals overlapped), 128.9, 130.1, 136.3, 149.0, 160.0, 162.7, 167.5; IR (NaCl, cm⁻¹) 867, 1104, 1144, 1171, 1233, 1267, 1367, 1445, 1488, 1505, 1632; HRMS (ESI⁺) m/z 651.2216 ([M + Na]⁺ C₂₉H₃₆N₆NaO₈S⁺ requires 651.2213).

Phenyl 2-(4-(2-(4-((8S,9R,13R,14R,17S)-3,17-dihydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-17-yl)-1H-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (13c)

Colorless solid; TLC $R_f 0.42$ (CH₂Cl₂/MeOH = 10/1); ¹H NMR (CDCl₃, 400 MHz): δ 0.63 (ddd, 1H, J = 12.7, 12.7, 4.0 Hz), 1.02 (s, 3H), 1.21–1.56 (m, 4H), 1.68–1.85 (m, 3H), 1.87–2.09 (m, 3H), 2.23–2.41 (m, 2H), 2.56 (m, 4H), 2.86–2.93 (m, 2H), 3.02 (t, 2H, J = 7.4 Hz), 3.45 (t, 2H, J = 7.4 Hz), 3.60–3.71 (br, 4H), 5.37 (d, 1H, J = 2.2 Hz), 5.93 (d, 1H, J = 2.2 Hz), 6.32 (br s, 1H), 6.48 (d, 1H, J = 2.5 Hz), 6.55 (dd, 1H, J = 8.4, 2.5 Hz), 6.96 (d, 1H, J = 8.4 Hz), 7.23–7.31 (m, 2H), 7.31–7.37 (m, 1H), 7.41–7.46 (m, 2H), 7.80 (s, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 14.2, 23.5, 26.1, 27.3, 29.6, 32.9, 38.1, 39.3, 42.1 (br), 43.0, 47.2 (br), 47.4, 48.0, 48.4, 51.5, 52.1 (br), 52.8 (br), 82.6, 107.9, 112.7, 115.2, 119.9, 122.0, 126.3, 127.5, 130.1, 132.1, 136.6, 138.0, 149.0, 153.8, 154.3, 162.8; IR (NaCl, cm⁻¹) 867, 1023, 1144, 1231, 1286, 1360, 1446, 1455, 1634, 2931; HRMS (ESI⁺) *m/z* 684.2835 ([M + Na]⁺ C₃₅H₄₃N₅NaO₆S⁺ requires 684.2832).

Phenyl 2-(4-(2-(4-((*tert*-butyldimethylsilyl)oxy)phenyl)-1*H*-1,2,3-triazol-1-yl)-3-(dodecylthio)propanoyl)piperazin-1-yl)ethane-1-sulfonate (**S3**)

Colorless solid; TLC $R_f 0.54$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.23$ (s, 6H), 0.91 (t, 3H, J = 6.9 Hz), 1.01 (s, 9H), 1.24–1.38 (m, 18H), 1.52–1.61 (m, 2H), 2.20–2.28 (m, 1H), 2.37–2.44 (m, 1H), 2.47–2.65 (m, 4H), 2.92–3.01 (m, 2H), 3.06 (dd, 1H, J = 13.6, 6.2 Hz), 3.37-3.44 (m, 3H), 3.55-3.84 (m, 4H), 5.86 (dd, 1H, J = 8.6, 6.2 Hz), 6.87-6.93 (AA'BB', 2H), 7.26–7.46 (m, 5H), 7.69–7.75 (AA'BB', 2H), 7.96 (s, 1H); ¹³C NMR (CDCl₃,101 MHz): $\delta -4.4$, 14.2, 18.3, 22.7, 25.7, 28.8, 29.2, 29.4, 29.5, 29.60 (two signals overlapped), 29.65, 29.67, 31.9, 33.0, 34.7, 42.5, 45.9, 48.0, 51.4, 52.3, 52.9, 58.8, 117.4, 120.6, 122.0, 123.5, 127.0, 127.4, 130.1, 148.3, 149.0, 156.0, 165.3; IR (NaCl, cm⁻¹) 864, 912, 1146, 1264, 1367, 1469, 1493, 1651, 2856, 2927, 2953; HRMS (ESI⁺) *m/z* 822.4091 ([M + Na]⁺ C₄₁H₆₅N₅NaO₅S₂Si⁺ requires 822.4094).

4-(1-(3-(Dodecylthio)-1-oxo-1-(4-(2-(phenoxysulfonyl)ethyl)piperazin-1-yl)propan-2-yl)-1*H*-1,2,3-triazol-4-yl)phenyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (14)

Pale yellow oil; TLC $R_f 0.48$ (CH₂Cl₂/MeOH = 10/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.88$ (t, 3H, J = 6.8 Hz), 1.22–1.37 (m, 18H), 1.52–1.60 (m, 2H), 2.26–2.34 (m, 1H), 2.37–2.44 (m, 1H), 2.47–2.65 (m, 8H), 2.93–3.11 (m, 5H), 3.33–3.48 (m, 5H), 3.56–3.79 (m, 8H), 5.04 (d, 1H, J = 2.1 Hz), 5.09 (d, 1H, J = 2.1 Hz), 5.89 (dd, 1H, J = 8.4, 6.4 Hz), 7.23–7.29 (m, 2H), 7.31–7.44 (m, 3H), 7.46–7.54 (m, 2H), 7.68–7.72 (m, 2H), 8.12 (s, 1H); ¹³C NMR (CDCl₃,101 MHz): $\delta 14.2$, 22.7, 28.8, 29.2, 29.4, 29.5, 29.57, 29.59, 29.63, 29.64, 31.9, 33.0, 34.8, 41.9 (br), 42.5, 46.0, 47.1 (br), 48.0, 51.4, 51.5, 52.2, 52.3 (br), 52.7 (br), 52.8, 53.5, 58.7, 104.0, 118.8, 122.0, 122.5, 127.3, 127.4, 129.7, 130.1, 139.5, 146.8, 148.7, 148.9, 163.3, 165.2; IR (NaCl, cm⁻¹) 867, 1041, 1148, 1370, 1465, 1498, 1651, 2854, 2926, 3289; HRMS (ESI⁺) m/z 979.3964 ([M + Na]⁺ C₄₄H₆₄N₁₀NaO₈S₃⁺ requires 979.3968); ; HPLC analysis: Rt = 35.2 min [column: Shiseido CAPCELL PAK MG II (4.6 mm i.d. × 250 mm); mobile phase: MeOH:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–30 min), 99:1 (30–50 min); flow rate: 1.00 mL/min; detection: UV at 254 nm].

2-(4-(3-(Dodecylthio)-2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonyl fluoride (S7)

Colorless oil; TLC $R_f 0.48$ (CH₂Cl₂/MeOH = 20/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.90$ (t, 3H, J = 6.9 Hz), 1.21–1.39 (m, 18H), 1.52–1.62 (m, 2H), 2.19–2.26 (m, 1H), 2.38–2.44 (m, 4H), 2.47–2.58 (m, 2H), 2.59–2.68 (m, 2H), 2.93 (t, 2H, J = 6.8 Hz), 3.07 (dd, 1H, J = 13.6, 6.0 Hz), 3.43 (dd, 1H, J = 13.6, 8.7 Hz), 3.52–5.60 (m, 3H), 3.65–3.73 (m, 1H), 3.75–3.91 (m, 2H), 5.87 (dd, 1H, J = 8.7, 6.0 Hz), 7.26 (d, 2H, J = 7.9 Hz), 7.74 (d, 2H, J = 8.1 Hz), 8.02 (s, 1H); ¹³C NMR (CDCl₃, 101 MHz): $\delta 14.2$, 21.3, 22.7, 28.8, 29.2, 29.4, 29.5, 29.6, 29.66, 29.67, 31.9, 33.0, 34.6, 42.5, 45.9, 48.8 (d, J = 17.9 Hz), 51.0, 52.1, 52.6, 58.8, 117.8, 125.6, 127.3, 129.6, 121.6, 138.3, 148.4, 165.3; ¹⁹F NMR (CDCl₃, 376 MHz): $\delta 59.0$ (1F, s); IR (NaCl, cm⁻¹) 1199, 1409, 1463, 1651, 1656, 2853, 2924; HRMS (ESI⁺) m/z 610.3254 ([M + H]⁺ C₃₀H₄₉FN₅O₃S₂⁺ requires 610.3255).

Pale yellow oil; TLC $R_f 0.67$ (CH₂Cl₂/MeOH = 20/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.89$ (t, 3H, J = 6.8 Hz), 1.21–1.38 (m, 18H), 1.52–1.60 (m, 2H), 2.18–2.25 (m, 1H), 2.34–2.42 (m, 4H), 2.45–2.65 (m, 4H), 2.93–2.97 (m, 2H), 3.07 (dd, 1H, J = 13.5, 6.2 Hz), 3.14 (s, 1H), 3.52–3.44 (m, 4H), 3.63–3.84 (m, 3H), 5.87 (dd, 1H, J = 8.6, 6.2 Hz), 7.20–7.27 (m, 4H), 7.53 (d, 2H, J = 8.6 Hz), 7.74 (d, 2H, J = 8.1 Hz), 8.03 (s, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 14.2, 21.3, 22.7, 28.8, 29.2, 29.4, 29.5, 29.60, 29.65 (two signals overlapped), 29.67, 31.9, 33.0, 34.7, 42.5, 45.9, 48.2, 51.4, 52.2, 52.8, 58.9, 78.6, 82.1, 117.8, 121.6, 122.1, 125.6, 127.4, 129.6, 133.9, 138.3, 148.4, 148.8, 165.3; HRMS (ESI⁺) m/z 708.3610 ([M + H]⁺ C₃₈H₅₄N₅O₄S₂⁺ requires 708.3612).

Colorless oil; TLC $R_f 0.56$ (CH₂Cl₂/MeOH = 20/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.89$ (t, 3H, J = 6.8 Hz), 1.20– 1.38 (m, 18H), 1.51–1.60 (m, 2H), 2.19–2.26 (m, 1H), 2.35–2.43 (m, 4H), 2.47–2.65 (m, 8H), 2.92–3.02 (m, 4H), 3.07 (dd, 1H, J = 11.9, 6.2 Hz), 3.37–3.47 (m, 3H), 3.54–3.84 (m, 10H), 5.43 (d, 1H, J = 2.0 Hz), 5.86 (dd, 1H, J = 8.4, 6.2 Hz), 6.06 (d, 1H, J = 2.0 Hz), 7.25 (d, 2H, J = 8.0 Hz), 7.34 (d, 2H, J = 8.7 Hz), 7.73 (d, 2H J = 8.0 Hz), 7.90 (d, 2H, J = 8.7 Hz), 8.02 (s, 1H), 8.14 (s, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 14.2, 21.3, 22.7, 28.8, 29.2, 29.4, 29.5, 29.60, 29.65, 29.66, 31.9, 33.0, 34.7, 42.0, 42.5, 45.9, 47.2, 48.2, 48.9 (d, J = 10.2 Hz), 51.0, 51.4, 52.0, 52.3, 52.7, 52.8, 58.9, 108.9, 117.9, 118.5, 122.6, 125.6, 127.4, 127.5, 129.1, 129.6, 136.3, 138.3, 146.7, 148.4, 148.8, 162.5, 165.2; ¹⁹F NMR (CDCl₃, 376 MHz): δ 59.2 (1F, s); HRMS (ESI⁺) *m/z* 999.4416 ([M + H]⁺ C₄₇H₆₈FN₁₀O₇S₃⁺ requires 999.4413); HPLC analysis: R*t* = 35.3 min [column: Shiseido CAPCELL PAK MG II (4.6 mm i.d. × 250 mm); mobile phase: MeOH:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–30 min), 99:1 (30–50 min); flow rate: 1.00 mL/min; detection: UV at 254 nm].

4-(1-(3-(Dodecylthio)-1-oxo-1-(4-(2-(phenoxysulfonyl)ethyl)piperazin-1-yl)propan-2-yl)-*1H*-1,2,3-triazol-4-yl)phenyl 2-(4-(2-(4-((*tert*-butyldimethylsilyl)oxy)phenyl)-1*H*-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (**S**1)

Pale yellow oil; TLC $R_f 0.43$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.23$ (s, 6H), 0.89 (t, 3H, J = 6.8 Hz), 1.00 (s, 9H), 1.20–1.37 (m, 18H), 1.51–1.61 (m, 2H), 2.26–2.33 (m, 1H), 2.37–2.44 (m, 1H), 2.47–2.65 (m, 8H), 2.94–3.11 (m, 5H), 3.34–3.49 (m, 5H), 3.51–3.82 (m, 8H), 5.39 (d, 1H, J = 1.9 Hz), 5.86–5.92 (m, 1H), 6.00 (d, 1H, J = 1.9 Hz), 6.92 (d, 2H, J = 8.5 Hz), 7.24–7.29 (m, 2H), 7.30–7.37 (m, 3H), 7.38–7.44 (m, 2H), 7.73 (d, 2H, J = 8.5 Hz), 7.89 (d, 2H, J = 8.6 Hz), 8.00 (s, 1H), 8.11 (s, 1H); ¹³C NMR (CDCl₃,101 MHz): $\delta -4.4$, 14.2, 18.3, 22.7, 25.7, 28.8, 29.2, 29.4, 29.57, 29.60, 29.65, 31.9, 33.0, 34.8, 42.5, 46.0, 47.9, 48.1, 51.4, 51.5, 52.2, 52.8, 58.7, 108.2, 117.1, 118.7, 120.6, 122.0, 122.5, 130.0, 130.1, 136.7, 146.9, 148.1, 148.7, 149.0, 156.2, 162.6, 165.2; HRMS (ESI⁺) m/z 1211.5250 ([M + Na]⁺ C₅₈H₈₄N₁₀NaO₉S₃Si⁺ requires 1211.5252); HPLC analysis: Rt = 38.1 min [column: Shiseido CAPCELL PAK MG II (4.6 mm i.d. × 250 mm); mobile phase: MeOH:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–30 min), 99:1 (30–50 min); flow rate: 1.00 mL/min; detection: UV at 254 nm].

Pale yellow oil; TLC $R_f 0.48$ (CH₂Cl₂/MeOH = 20/1); ¹H NMR (CDCl₃, 400 MHz): δ 0.23 (s, 6H), 0.89 (t, 3H, J = 6.9 Hz), 1.01 (s, 9H), 1.24–1.38 (m, 19H), 1.52–1.61 (m, 2H), 2.18–2.24 (m, 1H), 2.26–2.34 (m, 1H), 2.35–2.45 (m, 2H), 2.49–2.66 (m, 6H), 2.74–2.82 (m, 2H), 2.84–2.90 (m, 2H), 2.91–3.00 (m, 4H), 3.01–3.12 (m, 2H), 3.34–3.44 (m, 5H), 3.53–3.81 (m, 8H), 5.78–5.83 (m, 1H), 5.87–5.93 (m, 1H), 6.90–6.96 (m, 2H), 7.16–7.34 (m, 8H), 7.39–7.44 (m, 4H), 7.71–7.74 (m, 2H), 7.88–7.93 (m, 2H), 7.95 (s, 1H), 8.12 (s, 1H); ¹³C NMR analysis shows the presence of diastereomers. ¹³C NMR (CDCl₃,101 MHz): δ –4.4, 14.2, 18.3, 22.7, 25.7, 28.8, 29.2, 29.4, 29.5, 29.61, 29.65, 31.9, 33.0, 34.4, 34.7, 34.8, 36.1, 42.5, 45.9, 46.0, 47.9, 48.1, 51.27, 51.36, 51.40, 52.2, 52.8, 58.7, 58.9, 117.4, 118.8, 120.6, 122.0, 126.6, 127.0, 127.5, 128.56, 128.58, 129.7, 130.1, 139.8, 146.8, 148.3,

148.7, 149.0, 156.0, 165.15, 165.21; HRMS (ESI⁺) m/z 1349.5756 ([M + Na]⁺ C₆₆H₉₄N₁₀NaO₉S₄Si⁺ requires 1349.5755); HPLC analysis: Rt = 38.1 min [column: Shiseido CAPCELL PAK MG II (4.6 mm i.d. × 250 mm); mobile phase: MeOH:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–30 min), 99:1 (30–50 min); flow rate: 1.00 mL/min; detection: UV at 254 nm].

4-(1-(1-(4-(2-((4-(1-(3-(Dodecylthio)-1-oxo-1-(4-(2-(phenoxysulfonyl)ethyl)piperazin-1-yl)propan-2-yl)-1*H*-1,2,3-triazol-4-yl)phenoxy)sulfonyl)ethyl)piperazin-1-yl)-1-oxo-3-(phenethylthio)propan-2-yl)-1*H*-1,2,3-triazol-4-yl)phenyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (**S5**)

Pale yellow oil; TLC $R_f 0.32$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.89$ (t, 3H, J = 6.9 Hz), 1.22–1.38 (m, 18H), 1.52–1.61 (m, 2H), 2.23–2.33 (m, 2H), 2.36–2.45 (m, 2H), 2.50–2.65 (m, 9H), 2.77–2.83 (m, 2H), 2.86–2.91 (m, 2H), 2.93–3.00 (m, 4H), 3.01–3.11 (m, 5H), 3.34–3.51 (m, 8H), 3.56–3.81 (m, 12H), 5.05 (d, 1H, J = 2.1 Hz), 5.10 (d, 1H, J = 2.1 Hz), 5.83–5.92 (m, 2H), 7.16–7.45 (m, 14H), 7.86–7.92 (m, 4H), 8.09 (s, 1H), 8.12 (s, 1H); ¹³C NMR analysis shows the presence of diastereomers. ¹³C NMR (CDCl₃,101 MHz): δ 14.2, 22.7, 28.8, 29.2, 29.4, 29.57, 29.60, 29.65, 29.66, 31.6, 31.9, 33.0, 34.4, 34.8, 34.9, 36.1, 42.5, 46.0, 42.5, 46.0, 47.9, 48.1, 51.36, 51.40, 51.5, 52.2, 52.8, 52.9, 58.69, 58.74, 104.0, 118.8, 122.0, 122.5, 122.6, 126.7, 127.3, 127.5, 128.55, 128.61, 129.67, 129.70, 130.1, 139.4, 139.7, 146.8, 146.9, 148.6, 148.7, 148.9, 163.3, 165.1, 165.2; HRMS (ESI⁺) *m/z* 742.7937 ([M + 2H]²⁺ C₆₉H₉₅N₁₅O₁₂Ss²⁺ requires 742.7939); HPLC analysis: R*t* = 38.1 min [column: Shiseido CAPCELL PAK MG II (4.6 mm i.d. × 250 mm); mobile phase: MeOH:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–30 min), 99:1 (30–50 min); flow rate: 1.00 mL/min; detection: UV at 254 nm].

Pale yellow oil; TLC $R_f 0.38$ (CH₂Cl₂/MeOH = 15/1); ¹H NMR (CDCl₃, 400 MHz): δ 0.23 (s, 6H), 0.89 (t, 3H, J = 6.8 Hz), 1.01 (s, 9H), 1.22–1.38 (m, 18H), 1.52–1.61 (m, 2H), 2.23–2.33 (m, 2H), 2.36–2.46 (m, 2H), 2.48–2.65 (m, 9H), 2.77–2.83 (m, 2H), 2.84–2.91 (m, 2H), 2.93–3.11 (m, 9H), 3.33–3.50 (m, 8H), 3.51–3.84 (m, 12H), 5.39 (d, 1H, J = 2.0 Hz), 5.82–5.93 (m, 2H), 6.00 (d, 1H, J = 2.0 Hz), 6.90–6.94 (m, 2H), 7.17–7.45 (m, 14H), 7.70–7.74 (m, 2H), 7.89 (d, 4H, J = 8.4 Hz), 7.97 (s, 1H), 8.09 (s, 1H), 8.12 (s, 1H); ¹³C NMR analysis shows the presence of diastereomers. ¹³C NMR (CDCl₃,101 MHz): δ –4.4, 14.2, 18.3, 22.7, 25.7, 28.8, 29.2, 29.4, 29.57, 29.60, 29.65, 29.66, 30.5, 31.9, 33.0, 34.4, 34.8, 34.9, 36.1, 42.0, 42.5, 46.0, 47.0, 47.0, 47.95, 48.10, 48.13, 51.36, 51.40, 51.44, 51.47, 52.2, 52.8, 52.9, 58.70, 58.76 108.2, 117.1, 118.8, 120.6, 122.0, 122.54, 122.56, 123.0, 126.6, 127.2, 127.3, 127.5, 128.55, 128.61, 129.65, 129.70, 130.1, 136.7, 139.7, 146.8, 146.9, 148.1, 148.6, 148.7, 149.0, 156.2, 162.6, 165.1, 165.2; HRMS (ESI⁺) m/z 858.8580 ([M + 2H]²⁺ C₈₃H₁₁₅N₁₅O₁₃S₅Si²⁺ requires 858.8580); HPLC analysis: Rt = 38.1 min [column: Shiseido CAPCELL PAK MG II (4.6 mm i.d. × 250 mm); mobile phase: MeOH:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–30 min), 99:1 (30–50 min); flow rate: 1.00 mL/min; detection: UV at 254 nm].

4-(1-(1-(4-(2-((4-(1-(3-(Dodecylthio)-1-oxo-1-(4-(2-(phenoxysulfonyl)ethyl)piperazin-1-yl)propan-2-yl)-1*H*-1,2,3-triazol-4-yl)phenoxy)sulfonyl)ethyl)piperazin-1-yl)-1-oxo-3-(phenethylthio)propan-2-yl)-1*H*-1,2,3-triazol-4-yl)phenyl 2-(4-(3-(butylamino)-2-(4-(4-((*tert*-butyldimethylsilyl)oxy)phenyl)-1*H*-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonate (**16**)

Colorless solid; TLC $R_f 0.48$ (CH₂Cl₂/MeOH = 10/1); ¹H NMR (CDCl₃, 400 MHz): $\delta 0.23$ (s, 6H), 0.86–0.93 (m, 6H), 1.00 (s, 9H), 1.22–1.38 (m, 20H), 1.39–1.46 (m, 2H), 1.52–1.61 (m, 2H), 2.17–2.33 (m, 3H), 2.36–2.46 (m, 3H), 2.50–2.70 (m, 10H), 2.77–2.83 (m, 2H), 2.84–2.91 (m, 2H), 2.93–3.01 (m, 6H), 3.03–3.11 (m, 2H), 3.13–3.21 (m, 1H), 3.34–3.46 (m, 8H), 3.50–3.84 (m, 14H), 5.82–5.93 (m, 3H), 6.89–6.93 (m, 2H), 7.17–7.45 (m, 14H), 7.70–7.74 (m, 2H), 7.87–7.92 (m, 4H), 7.97 (s, 1H), 8.08 (s, 1H), 8.11 (s, 1H); ¹³C NMR (CDCl₃,101 MHz): $\delta -$ 4.4, 14.0, 14.2, 18.3, 20.3, 22.7, 25.7, 28.8, 29.2, 29.4, 29.53, 29.57, 29.60, 29.65, 31.9, 32.1, 33.0, 34.4, 34.8, 34.9, 36.1, 42.3, 42.5, 45.7, 46.01, 46.04, 47.9, 48.1, 51.31, 51.32, 51.36, 51.39, 51.4, 51.7, 52.2, 52.8, 52.9, 58.69, 58.74, 117.8, 118.7, 120.6, 122.0, 122.6, 123.6, 126.7, 127.0, 127.3, 127.5, 128.55, 128.61, 129.63, 129.69, 130.1, 139.7, 146.85, 146.89, 148.1, 148.7, 148.9, 156.0, 165.1, 165.2, 165.5; IR (NaCl, cm⁻¹) 867, 911, 1148, 1170, 1197, 1254, 1367, 1489, 1651, 1656, 2854, 2927; HRMS (ESI⁺) *m/z* 895.4026 ([M + 2H]²⁺ C₈₇H₁₂₆N₁₆O₁₃S₅Si²⁺ requires 895.4029); HPLC analysis: Rt = 38.1 min [column: Shiseido CAPCELL PAK MG II (4.6 mm i.d. × 250 mm); mobile phase: MeOH:H₂O = 40:60 (0–5 min), linear gradient from 40:60 to 99:1 (5–30 min), 99:1 (30–50 min); flow rate: 1.00 mL/min; detection: UV at 254 nm].

1-(3-Azido-5-iodophenyl)-N-methylmethanamine

Pale yellow oil; TLC $R_f 0.20$ (*n*-hexane/EtOAc = 1/1); ¹H NMR (CDCl₃, 400 MHz): δ 2.45 (s, 3H), 3.69 (s, 2H), 6.96–6.98 (m, 1H), 7.26 (dd, 1H, J = 1.8 Hz), 7.46 (dd, 1H, J = 1.8 Hz); ¹³C NMR (CDCl₃,101 MHz): δ 36.0, 55.0, 94.7, 118.1, 126.5, 133.6, 141.3, 144.1; IR (NaCl, cm⁻¹) 844, 1290, 1435, 1440, 1566, 1591, 2113, 2790, 2843; HRMS (ESI⁺) *m/z* 288.9951 ([M + H]⁺ C₈H₁₀IN₄⁺ requires 288.9950).

tert-Butyl (3-azido-5-iodobenzyl)(methyl)carbamate

Pale yellow oil; TLC $R_f 0.70$ (*n*-hexane/EtOAc = 6/1); ¹H and ¹³C NMR analysis show the presence of rotational isomers. ¹H NMR (CDCl₃, 400 MHz): δ 1.43–1.58 (br, 9H), 2.79–2.92 (br, 3H), 4.30–4.42 (br, 2H), 6.82–6.90 (br, 1H), 7.27–7.31 (br, 1H), 7.35–7.39 (br, 1H); ¹³C NMR (CDCl₃,101 MHz): δ 28.4, 34.3, 51.1 (br), 51.8 (br), 80.3 (br), 94.7, 117.3 (br), 126.7, 132.8 (br), 141.6, 155.4 (br), 156.1 (br); IR (NaCl, cm⁻¹) 878, 1147, 1173, 1290, 1366, 1392, 1445, 1480, 1568, 1595, 1694, 2114, 2930, 2976; HRMS (ESI⁺) *m/z* 411.0291 ([M + Na]⁺ C₁₃H₁₇IN₄NaO₂⁺ requires 411.0294).

tert-Butyl (3-amino-5-iodobenzyl)(methyl)carbamate

Pale yellow oil; TLC $R_f 0.70$ (*n*-hexane/EtOAc = 1/1); ¹H and ¹³C NMR analysis show the presence of rotational isomers. ¹H NMR (CDCl₃, 400 MHz): δ 1.42–1.58 (br, 9H), 2.77–2.89 (br, 3H), 3.65–3.79 (br, 2H), 4.23–4.32 (br, 2H), 6.40–6.55 (br, 1H), 6.90–7.00 (br, 2H); ¹³C NMR (CDCl₃,101 MHz): δ 28.5, 34.1, 51.9 (br), 51.9 (br), 80.0 (br), 95.1, 112.9 (br), 113.6 (br), 122.5 (br), 126.2 (br), 126.6 (br), 141.2 (br), 147.9, 155.7 (br); IR (NaCl, cm⁻¹) 877, 1147, 1246, 1393, 1448, 1462, 1566, 1682, 2976, 3358; HRMS (ESI⁺) *m/z* 385.03863 ([M + Na]⁺ C₁₃H₁₉IN₂NaO₂⁺ requires 385.03889).

HPLC Charts of Triazoles. [(A) 14 (B) 15 (C) S1 (D) S4 (E) S5 (F) S2 (G) 16]

References for Supporting Information

- S1 S. Yoshida, T. Nonaka, T. Morita, T. Hosoya, Org. Biomol. Chem. 2014, 12, 7489.
- S2 S. Di Noja, M. Garrido, L. Gualandi, G. Ragazzon, Chem. Eur. J. 2023, 29, e202300295.
- S3 X. Liu, Q. J. Ling, L. Zhao, G. R. Qiu, Y. H. Wang, L. X. Song, Y. Zhang, J. Ruiz, D. Astruc, H. B. Gu, *Macromol. Rapid Commun.* 2017, 38, 1700448.
- S4 L. B. Poole, C. Klomsiri, S. A. Knaggs, C. M. Furdui, K. J. Nelson, M. J. Thomas, J. S. Fetrow, L W. Daniel, S. B. King, *Bioconjugate Chem.* 2007, 18, 2004.
- S5 J. Youziel, A. R. Akhbar, Q. Aziz, M. E. B. Smith, S. Caddick, A. Tinker, J. R. Baker, Org. Biomol. Chem. 2014, 12, 557.
- S6 J. Dommerholt, S. Schmidt, R. Temming, L. J. A. Hendriks, F. P. J. T. Rutjes, J. C. M. van Hest, D. J. Lefeber, P. Friedl, F. L. van Delft, Angew. Chem., Int. Ed. 2010, 49, 9422.
- S7 Y. Zhang, H. Li, X. Jiang, C. V. S. Reddy, H. Liang, Y. Zhang, R. Cao, R. W. Y. Sun, M. Tse, L. Qiu, Adv. Synth. Catal. 2022, 364, 525.
- S8 S. R. Banks, K. M. Yoo, M. E. Welker, *Molbank* 2021, M1206.
- S9 T. R. Chan, R. Hilgraf, K. B. Sharpless, V. V. Fokin, Org. Lett. 2004, 6, 2853.
- S10 H. Takemura, G. Orimoto, A. Kobayashi, T. Hosoya, S. Yoshida, Org. Biomol. Chem. 2022, 20, 6007.

¹H and ¹³C NMR Spectra of Compounds ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of *tert*-butyl (S)-3-(2-azidoacrylamido)pyrrolidine-1-carboxylate (CDCl₃)

S29

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of (*S*)-2-(3-(2-azidoacrylamido)pyrrolidin-1-yl)ethane-1-sulfonyl fluoride (**1b**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of *tert*-butyl 4-(2-azidoacrylamido)piperidine-1-carboxylate (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 2-(4-(2-azidoacrylamido)piperidin-1-yl)ethane-1-sulfonyl fluoride (1c) (CDCl₃)

S34

S35

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 2-((2-(2-azidoacrylamido)ethyl)(methyl)amino)ethane-1-sulfonyl fluoride (1d) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 2-((3-(2-azidoacrylamido)-5-iodobenzyl)(methyl)amino)ethane-1-sulfonyl fluoride (1e) (CDCl₃)

 $^1\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (101 MHz) spectra of 2-oxo-2H-chromen-7-yl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (9c) (CDCl_3)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 2,6-dimethoxyphenyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (**9d**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of (8R,9S,13S,14S)-17-hydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (**9e**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 4-acetamidophenyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (**9f**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of methyl (S)-2-amino-3-(4-(((2-(4-(2-azidoacryloyl)piperazin-1-yl)ethyl)sulfonyl)oxy)phenyl)propanoate (9g) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 3-aminophenyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (**9h**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of quinolin-5-yl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (9i) (CDCl₃)

 $^1\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (101 MHz) spectra of pyridin-2-yl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (9j) (CDCl_3)

 $^1\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (101 MHz) spectra of 3,3,4,4,5,5,6,6,6-undecafluorohexyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (9k) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of phenyl 2-(4-(2-(4-((2-iodo-3-(((trifluoromethyl)sulfonyl)oxy)phenoxy)methyl)-1H-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (**10d**) (CDCl₃)

 $^{1}\mathrm{H}\,\mathrm{NMR}\,(400\,\mathrm{MHz})\,\mathrm{and}\,^{13}\mathrm{C}\,\mathrm{NMR}\,(101\,\mathrm{MHz})\,\mathrm{spectra}\,\mathrm{of}\,\mathrm{phenyl}\,2\text{-}(4\text{-}(2\text{-}(4\text{-}((4\text{-}\mathrm{formylphenoxy})\mathrm{methyl})\text{-}1H\text{-}1,2,3\text{-}\mathrm{triazol}\text{-}1\text{-}\mathrm{yl})\mathrm{acryloyl})\mathrm{piperazin}\text{-}1\text{-}\mathrm{yl})\mathrm{ethane}\text{-}1\text{-}\mathrm{sulfonate}\,(\mathbf{10e})\,(\mathrm{CDCl}_{3})$

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of phenyl 2-(4-(2-(4-(1-((2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-1*H*-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (**10g**) (CD₃OD)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of phenyl 2-(4-(2-(4-(((*tert*-butoxycarbonyl)(2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)amino)methyl)-1*H*-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (**10h**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of phenyl 2-(4-(2-(4-((5-(((3aR,4R,6aS)-2-oxohexahydro-1*H*-thieno[3,4-*d*]imidazol-4-yl)pentanamido)methyl)-1*H*-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (**10i**) (CD₃OD)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 2-(6-(diethylamino)-3-(diethyliminio)-3*H*-xanthen-9-yl)-5-(*N*-((1-(3-oxo-3-(4-(2-(phenoxysulfonyl)ethyl)piperazin-1-yl)prop-1-en-2-yl)-1*H*-1,2,3-triazol-4-yl)methyl)sulfamoyl)benzenesulfonate (**10**j) (DMSO- d_6)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of phenyl 2-(4-(2-((5a*R*,6*R*,6a*S*)-6-(hydroxymethyl)-5,5a,6,6a,7,8-hexahydrocyclopropa[5,6]cycloocta[1,2-*d*][1,2,3]triazol-1(4H)-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (**10k**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of phenyl 2-(4-(3-((2-((5-(dimethylamino)naphthalene)-1-sulfonamido)ethyl)thio)-2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonate (5d) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of phenyl 2-(4-(3-(6-amino-2-oxopyrazin-1(2*H*)-yl)-2-(4-(*p*-tolyl)-1*H*-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonate (**5g**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of phenyl 2-(4-(3-butoxy-2-(4-(*p*-tolyl)-1*H*-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonate (**5h**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of diethyl 2-(3-oxo-3-(4-(2-(phenoxysulfonyl)ethyl)piperazin-1-yl)-2-(4-(*p*-tolyl)-1*H*-1,2,3-triazol-1-yl)propyl)malonate (**5i**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of phenyl 2-(4-(2-(4-((8S,9R,13R,14R,17S)-3,17-dihydroxy-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-17-yl)-1*H*-1,2,3-triazol-1-yl)acryloyl)piperazin-1-yl)ethane-1-sulfonate (**13c**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of phenyl 2-(4-(2-(4-((*tert*-butyldimethylsilyl)oxy)phenyl)-1*H*-1,2,3-triazol-1-yl)-3-(dodecylthio)propanoyl)piperazin-1-yl)ethane-1-sulfonate (**S3**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 4-(1-(3-(dodecylthio)-1-oxo-1-(4-(2-(phenoxysulfonyl)ethyl)piperazin-1-yl)propan-2-yl)-1*H*-1,2,3-triazol-4-yl)phenyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (**14**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 2-(4-(3-(dodecylthio)-2-(4-(*p*-tolyl)-1*H*-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonyl fluoride (**S7**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 4-(1-(3-(4-(2-(fluorosulfonyl)ethyl)piperazin-1-yl)-3oxoprop-1-en-2-yl)-1H-1,2,3-triazol-4-yl)phenyl 2-(4-(3-(dodecylthio)-2-(4-(p-tolyl)-1H-1,2,3-triazol-1-yl)propanoyl)piperazin-1-yl)ethane-1-sulfonate (**15**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 4-(1-(3-(Dodecylthio)-1-oxo-1-(4-(2-(phenoxysulfonyl)ethyl)piperazin-1-yl)propan-2-yl)-1H-1,2,3-triazol-4-yl)phenyl 2-(4-(2-(4-((*tert*-butyldimethylsilyl)oxy)phenyl)-1H-1,2,3-triazol-1-yl)-3-(phenethylthio)propanoyl)piperazin-1-yl)ethane-1-sulfonate (**S4**) (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of 4-(1-(1-(4-(2-((4-(1-(3-(dodecylthio)-1-oxo-1-(4-(2-(phenoxysulfonyl)ethyl)piperazin-1-yl)propan-2-yl)-1*H*-1,2,3-triazol-4-yl)phenoxy)sulfonyl)ethyl)piperazin-1-yl)-1-oxo-3-(phenethylthio)propan-2-yl)-1*H*-1,2,3-triazol-4-yl)phenyl 2-(4-(2-azidoacryloyl)piperazin-1-yl)ethane-1-sulfonate (**S5**) (CDCl₃)

 $^1\mathrm{H}$ NMR (400 MHz) and $^{13}\mathrm{C}$ NMR (101 MHz) spectra of 1-(3-azido-5-iodophenyl)-N-methylmethanamine (CDCl₃)

¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra of *tert*-butyl (3-amino-5-iodobenzyl)(methyl)carbamate (CDCl₃)

