Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Metal- and solvent-free domino reaction of 2-isocyanophenol esters to benzoxazines: long-range 1,5-acyl migration on 1,4-diazabutatriene

Alireza Akbari,^{‡a} Hormoz Khosravi,^{‡a} Felix Bauer,^b Frank Rominger,^c Bernhard Breit *^b and Saeed Balalaie *^a

^a Peptide Chemistry Research Institute, Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran

E-mail: balalaie@kntu.ac.ir.

^b Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany

E-mail: bernhard.breit@chemie.uni-freiburg.de

- ^c Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany.
- [‡] These authors have contributed equally to this work.

Table of Contents

1.	General Considerations	S2
2.	Experimental Procedures	S3
3.	Follow-up Reactions	S5
4.	Computational details	S5
5.	Compounds Characterization Data	S6
6.	References	S12
7.	X-Ray Crystallographic Analysis	S13
8.	Z-matrices	S15
9.	¹ H-NMR and ¹³ C-NMR of unknown compounds	S39

1. General Considerations

- All final reactions were run in a flame-dried 50 mL Schenk tube filled with a 10 mm magnetic stirrer bar. Solvents and liquid reagents were added by Argon-flushed syringes or cannulas.
- All reagents and chemicals were purchased from chemical suppliers (Merck, Sigma-Aldrich, Fluka, Exir, and Alpha-Aesar) and used without further purification.
- Solvents employed for column chromatography and work-up were purchased in analytically pure grade and used without further purification. Solvents used for air and moisture-sensitive reactions were freshly distilled before use.
- TLC (Thin Layer Chromatography) was performed on silica gel pre-coated aluminum plates (Merck, 60 F-254) and was visualized by UV lamp (λ=254 nm).
- Flash Column Chromatography was performed using a normal phase silica column packed with silica gel 60 (230-240 mesh).
- Microwave-assisted reactions were performed with a CEM Discover Focused Microwave System apparatus (CEM GmbH).
- NMR (Nuclear Magnetic Resonance) spectra were recorded using Bruker Avance 250 spectrometer (250 MHz and 63 MHz for ¹H and ¹³C, respectively) and Bruker Avance 300 spectrometer (300 MHz and 75 MHz for ¹H and ¹³C, respectively) and Bruker Avance 400 spectrometer (400 MHz and 101 MHz for ¹H and ¹³C, respectively) and on a Bruker DRX 500 (500 MHz and 126 MHz for ¹H and 13C, respectively). Spectrometer in CDCl₃. Chemical shifts (δ) are given in ppm, relative to the signals for CDCl₃ (1H NMR: δ= 7.27 ppm, 13C NMR: δ= 77.00 ppm) or DMSO-*d*₆ (1H NMR: δ= 2.5 ppm, 13C NMR: δ= 39.52 ppm). Coupling constants (J) are reported in Hertz. Multiplicities for ¹H NMR are stated as follows: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), and broad (br).
- ◆ HRMS (High-Resolution Mass Spectra) (ESI-TOF) was recorded using a Waters LCT Premier[™] XE mass Spectrometer.
- X-ray crystal data were collected on Bruker APEX-II Quazar area detector. Ethanol was employed at room temperature for crystallizing 3b, while ethyl acetate was utilized for 2a.
- Melting points were measured in open capillary tubes on an Electrothermal 9100 digital melting point apparatus.

2. Experimental Procedures

2.1. General procedures for the synthesis of isocyanides 1a-o.

- Step 1: A solution of the substituted 2-aminophenol (1.0 equiv.) in HCO₂H (15 equiv.) was heated in an oil bath for 18-24 hours. The reaction mixture was added 5% HCI and was extracted with AcOEt. The organic layer was washed with brine, dried over Na₂SO₄, filtered, and evaporated in vacuo. The residue was used for the next step without further purification.^{S1}
- Step 2: To a solution of the substituted N-(2-hydroxyphenyl)formamide (1.0 equiv.) in pyridine (2 M) and DCM (0.2 M) was cooled in a dry ice bath, then benzoyl chloride (1.2 equiv.) was added dropwise over 10 min with stirring. Subsequently, the reaction mixture was then allowed to reach room temperature for 14 hours. After total consumption of the starting material was confirmed by TLC, the reaction mixture was extracted with dichloromethane (10 mL) and washed with a solution of diluted HCI (10 mL). The organic phase was then washed with water, dried on Na₂SO₄, filtrated, and evaporated under pressure. The residue was used for the next step without further purification.^{S2}
- Step 3: A solution of the substituted 2-formamidophenyl benzoate (1.0 equiv.) and Et₃N (4.5 equiv.) in DCM (0.2 M) was cooled at 0 °C, then POCl₃ (1.5 equiv.) was added dropwise. After the reaction was completed, a saturated Na₂CO₃ aqueous solution was added at 0 °C, and the mixture was extracted with EA (3×50 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel, eluting with *n*hexane and ethyl acetate (15:1) to afford the desired products **1a-o**.^{S3}

2.2. General procedures for the synthesis of isocyanide 1p.

A 50 mL round-bottom flask equipped with a magnetic stir bar and charged with benzoxazole (0.90 g, 7.56 mmol) and THF (18 mL) is allowed to cool to -78 °C for five min prior to the addition of *n*-BuLi (1.6 M solution in hexanes, 4.96 mL, 7.94 mmol). The reaction mixture was allowed to stir at the same temperature for 1.5 h. The furan-2-carbonyl chloride (7.94 mmol) was added dropwise to the solution. The solution was allowed to warm to room temperature and stirred for two hours. The reaction mixture was poured onto a mixture of ether (100 mL) and saturated aqueous NaHCO₃ (50 mL). The organic layer was washed with water (2 x 50 mL), dried, and concentrated in *vacuo*. The resulting residue was purified by silica gel flash column chromatography (n-hexane /ethyl acetate 15:1), and the organics were concentrated in vacuo to provide the title compound **1p**. ^{S4}

2. 2. Typical procedure for the formation of Benzoxazine.

2.2.1. General Procedure:

The Schlenk tube containing isocyanide **1a-p** (100 mg, 0.4 mmol) was placed in an oil bath and stirred at 120 °C for 14 h, in the absence of catalyst and solvent. After the completion of the reaction, the residue was chromatographed on silica gel using *n*-hexane and ethyl acetate (15:1) as an eluent to afford the products **2a-p**.

2.2.3. Representative Procedure for Synthesis of 1a in gram-scale reaction:

The Schlenk tube containing isocyanide **1a** (1 g, 0.4 mmol) was placed in an oil bath and stirred at 120 °C for 14 h, in the absence of catalyst and solvent. After the completion of the reaction, the residue was chromatographed on silica gel using *n*-hexane and ethyl acetate (12:1) as an eluent to afford the product **2a** in 68% yield (680 mg).

2.2.4. Table S1. Optimization of the reaction conditions:

Entry	Cat. (10 mol %)	Solvent	Temp (°C)	Time (h)	Yield ^ø (%) (2a/3a)
1	-	Neat	120	14	83,0
2	-	DMF	130	12	-
3	-	DMSO	130	14	-
4	-	Dioxane	90	12	-
5	-	DMA	130	14	-
6	-	Toluene	100	16	-
7	-	Chlorobenzene	120	14	-
8	-	Xylene	120	14	-
9	-	Ethylene glycol	120	14	-
10	-	DCM	80	14	-
11	Cul	Toluene	100	12	-
12	AICI ₃	Toluene	100	12	-
13	Cul	Xylene	120	12	-
14	AICI ₃	DMF	130	12	-
15	Cul	DMF	130	12	-
16	Pd(PPh ₃) ₄	DMF	130	12	-
17	Pd(OAc) ₂	DMF	130	12	-
18	Sc(OTf) ₃	Xylene	120	12	-
19	Ag(OTf) ₃	Toluene	110	12	-
20	Pd(PPh ₃) ₄	Toluene	110	12	-
21	Pd(OAc) ₂	Toluene	110	12	-

^a reaction condition: was performed with **1a** (0.2 mmol), catalyst (10 mol %) in solvent (1 mL) for 14 h. ^b Isolated yields are shown.

3. Follow-up Reactions

Figure S1. Compound 2a hydrolysis

Concentrated HCI (1.8 mmol, 3 equiv) was added to a solution of (Z)-2-((3-benzoyl-2H-benzo[b][1,4]oxazin-2ylidene)amino)phenyl benzoate **2a** (0.60 mmol) in water (3 ml) and the reaction mixture was stirred in an oil bath at 80 °C for 6 h. then the reaction mixture was extracted with acetone (3×10 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel, eluting with *n*-hexane and ethyl acetate (20:1) to afford the product **4a** in 59% yield (69 mg).

Figure S2. Cross-coupling reaction of compound 2f.

Compound **2f** (25 mg, 0.04 mmol) was added to a mixture of phenylboronic acid (25 mg, 0.2 mmol, 5.0 equiv.), $Pd(OAc)_2$ (2.8 mg, 0.012 mmol, 30 mol%), PPh_3 (6.5 mg, 0.024 mmol, 60 mol%), and K_2CO_3 (29 mg, 0.2 mmol, 5.0 equiv.) in toluene (1.0 mL). The mixture was then stirred at 110 °C. After completion of the reaction as indicated by TLC, the solvent was evaporated, and the residue was purified by column chromatography on silica gel to provide the product **4f** in 42% yield (10.4 mg).

4. Computational details

All the DFT calculations have been carried out with the Gaussian 16 package of program^{S5}, and visualization of computed structures was generated using CYLView.^{S6} Full geometry optimization and Gibbs free energy correction were performed with the B3LYP-D3BJ/6-31+G(d,p) level in the gas phase (T=298 K, P=1 bar).^{S7} The correctness of the optimized transition states (TS) and stable structures have been verified by intrinsic reaction coordinate (IRC) and the analytical frequency calculations respectively. In this study, the Non-Covalent Interaction (NCI) analysis^{S8} was conducted using Multiwfn software,^{S9} and the results were visualized using VMD.^{S10}

5. Compounds Characterization Data

2-isocyanophenyl benzoate (1a)

Colourless solid (870 mg, Yield 87%), mp 90-93°C; $R_f = 0.20$ (n-hexane /ethyl acetate 15:1); ¹**H-NMR** (300 MHz, CDCl₃) $\delta_H = 8.27$ (dd, J = 8.5, 1.4 Hz, 2H), 7.70 (tt, J = 7.5, 1.3 Hz, 1H), 7.55 (t, J = 7.5, 2H), 7.52 – 7.44 (m, 2H), 7.43 – 7.36 (m, 1H), 7.32 (td, J = 7.9, 1.6 Hz, 1H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃) $\delta_c = 169.2$, 163.9, 146.6, 134.2, 130.5, 130.4, 128.8, 128.4, 127.7, 126.6, 123.6 ppm; **HRMS-ESI** (m/z): calculated for C₁₄H₉NO₂ [M+H]⁺ 224.0705 found 224.0705.

2-isocyano-5-methylphenyl 4-methoxybenzoate (1b)

Pink solid (650 mg, Yield 65%), mp 92-95 °C, $R_f = 0.21$ (n-hexane /ethyl acetate 20:1); ¹**H-NMR** (300 MHz, CDCl₃) $\delta_H = 8.14$ (d, J = 9.1 Hz, 2H), 7.30 (d, J = 8.1 Hz, 1H), 7.13 (br s, 1H), 7.03 (dd, J = 8.1, 1 Hz, 1H), 6.95 (d, J = 9.1 Hz, 2H), 3.85 (s, 3H), 2.36 (s, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃) $\delta_c = 168.2$, 164.3, 163.7, 146.5, 141.2, 132.6(2C), 127.2, 127.1, 124.1, 120.7, 114.1(2C), 55.6, 21.5 ppm; **HRMS-ESI** (m/z): calculated for $C_{16}H_{13}NO_3$ [M+H]⁺ 268.0967 found 268.0962.

2-isocyano-5-methylphenyl 4-methylbenzoate (1c)

 $\begin{array}{l} \mbox{Colourless solid (750 mg, Yield 75\%), mp 78-81°C, R_f= 0.25 (n-hexane /ethyl acetate 20:1); 1H-NMR (400 MHz, CDCl_3) (mixture of rotamers) δ_H= 8.15 (d, J= 8.3 Hz, 1H), 8.06 (d, J= 8.3 Hz, 2H), 7.39 - 7.31 (m, 3H), 7.22 - 7.08 (m, 1H), 2.51 - 2.41 (m, 6H, Me) ppm; 1C-NMR (101 MHz, CDCl_3) δ_c= 168.3, 164.1, 162.6, 146.4, 145.6, 145.1, 141.3, 130.7, 130.1, 129.6, 129.5, 127.2, 127.1, 126.2, 125.7, 124.1, 21.9, 21.5 ppm; $$HRMS-ESI (m/z): calculated for $C_{16}H_{13}NO_2$ [M+H]^+ 252.1018 found 252.1014. \\ \end{array}$

2-isocyano-5-methylphenyl 3-methylbenzoate (1d)

Colourless solid (485 mg, Yield 85%), mp 81-84°C, R_f = 0.19 (*n*-hexane /ethyl acetate 20:1); ¹**H-NMR** (400 MHz,) $\delta_{H} = 8.00 - 7.96$ (m, 2H) (7.98 (dd, J = 5.9, 1.7 Hz, 2H)), 7.41 (d, J = 7.7 Hz, 1H), 7.35(t, J = 7.9 Hz, 1H), 7.29 (d, J = 8.1 Hz, 1H), 7.10 (d, J = 1.7 Hz, 1H), 7.03 (dd, J = 8.2, 1.7 Hz, 1H), 2.38 (s, 3H), 2.34 (s, 3H) ppm; ¹³C-NMR (101 MHz, CDCl₃) $\delta_{C} = 168.2, 164.2, 146.4, 141.3, 138.6, 135.4, 135.0, 130.9, 128.8, 128.7, 127.8, 127.6, 127.2, 124.0, 21.5, 21.3 ppm;$ **HRMS-ESI** $(m/z): calculated for <math>C_{16}H_{13}NO_2$ [M+H]⁺ 252.1018 found 252.1010.

2-isocyano-5-methylphenyl benzoate (1e)

Colourless solid (710 mg, Yield 70 %), mp 108-111 °C, $R_f = 0.22$ (n-hexane /ethyl acetate 20:1); ¹H-NMR (300 MHz, CDCl₃) $\delta_H = 8.25$ (dd, J = 8.5, 1.3 Hz, 2H), 7.73 – 7.62 (m, 1H), 7.62 – 7.48 (m, 2H), 7.37 (d, J = 8.1 Hz, 1H), 7.20 (br s, 1H), 7.12 (d, J = 8.1 Hz, 1H), 2.42 (s, 3H) ppm; ¹³C-NMR (75 MHz, CDCl₃) $\delta_c = 168.5$, 164.0, 146.3, 141.3, 134.2, 130.4, 128.7, 127.2, 124.1, 124.0, 117.7, 21.4 ppm; HRMS-ESI (m/z): calculated for $C_{15}H_{13}NO_2$ [M+H]⁺ 238.0862 found 238.0863.

4-bromo-2-isocyanophenyl benzoate (1f)

Colourless solid (420 mg, Yield 52%), mp 90-93 °C, $R_f = 0.25$ (n-hexane /ethyl acetate 15:1); ¹**H-NMR** (300 MHz, CDCl₃) $\delta_H = 8.14$ (d, J = 8.0 Hz, 1H), 8.13 (d, J = 8.0 Hz, 1H), 7.60 (t, J = 7.3 Hz, 1H), 7.56 – 7.52 (m, 1H), 7.52 – 7.38 (m, 3H), 7.21 (d, J = 8.7 Hz, 1H) ppm; ¹³**C-NMR** (76 MHz, CDCl₃) $\delta_c = 171.0$, 163.6, 162.3, 145.8, 134.6, 134.4, 133.5, 130.6, 130.5, 130.4, 128.9, 128.8, 128.1, 125.0, 118.9 ppm; **HRMS-ESI** (m/z): calculated for C₁₄H₈BrNO₂ [M+H]⁺ 301.9810 found 301.9804.

4-bromo-2-isocyanophenyl 4-methoxybenzoate (1g)

Colourless solid (370 mg, Yield 46%), mp 125-128 °C, $R_f = 0.17$ (n-hexane /ethyl acetate 20:1); ¹H-NMR (300 MHz, CDCl₃) $\delta_H = 8.11$ (d, J = 8.6 Hz, 2H), 7.62 – 7.40 (m, 2H), 7.20 (br s, 1H), 6.93 (d, J = 8.6 Hz, 2H), 3.83 (s, 3H) ppm; ¹³C-NMR (76 MHz, CDCl₃) $\delta_c = 170.8$, 164.6, 163.2, 146.0, 133.5, 132.8, 130.3, 125.1, 120.3, 118.6, 114.2, 55.6 ppm; HRMS-ESI (m/z): calculated for $C_{15}H_{10}BrNO_3$ [M+H]⁺ 331.9916 found 331.9911.

5-chloro-2-isocyanophenyl benzoate (1h)

Colourless solid (375 mg, Yield 73%), mp 81-83°C, R_f = 0.2 (n-hexane /ethyl acetate 12:1); ¹**H-NMR** (300 MHz, CDCl₃) δ_{H} = 8.26 (d, *J* = 7.1 Hz, 2H), 7.72 (t, *J* = 7.7 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 2H), 7.54 – 7.46 (m, 2H), 7.39 (d, *J* = 8.8 Hz, 1H) ppm; ¹³**C-NMR** (75 MHz, CDCl₃) δ_{c} = 170.8, 163.7, 162.4, 145.3, 134.6, 134.5, 131.7, 130.6, 130.5, 128.9, 128.8, 128.0, 127.5, 124.7 ppm; **HRMS-ESI** (m/z): calculated for C₁₄H₈CINO₂ [M+H]⁺ 258.0316 found 258.0317.

5-chloro-2-isocyanophenyl 3-nitrobenzoate (1i)

Colourless solid (280 mg, Yield 56%), mp 114-117°C, $R_f = 0.21$ (n-hexane /ethyl acetate 15:1); ¹H-NMR (300 MHz, CDCl₃) $\delta_H = 9.10$ (s, 1H), 8.59 (d, J = 8.0 Hz, 2H), 7.82 (t, J = 8.0 Hz, 1H), 7.59 – 7.50 (m, 2H), 7.40 (d, J = 8.7 Hz, 1H) ppm; ¹³C-NMR (75 MHz, CDCl₃) $\delta_c = 171.4,163.0, 161.7, 148.5, 144.7, 136.0, 132.5, 130.8, 130.3, 129.8, 128.8, 127.7, 125.5, 124.4 ppm; HRMS-ESI (m/z): calculated for <math>C_{14}H_7CIN_2O_4$ [M+H]⁺ 303.0166 found 303.0161.

5-chloro-2-isocyanophenyl 4-nitrobenzoate (1j)

Colourless solid (254 mg, Yield 50%), 112-115°C, $R_f = 0.18$ (n-hexane /ethyl acetate 15:1); ¹H-NMR (300 MHz, CDCl₃) $\delta_H = 8.42$ (d, J = 9.0 Hz, 4H), 7.55 – 7.46 (m, 2H), 7.39 (d, J = 8.9 Hz, 1H) ppm; ¹³C-NMR (75 MHz, CDCl₃) $\delta_c = 171.3$, 163.7, 161.4, 151.0, 144.3, 133.0, 132.0, 131.1(2C), 130.2, 127.2, 123.8, 123.4(2C) ppm; HRMS-ESI (m/z): calculated for $C_{14}H_7CIN_2O_4$ [M+H]⁺ 303.0166 found 303.0159.

5-chloro-2-isocyanophenyl 4-methoxybenzoate (1k)

Colourless solid (322 mg, Yield 64%), 127-130°C, R_f = 0.22 (n-hexane /ethyl acetate 20:1); ¹**H-NMR** (400 MHz, CDCl₃) δ_{H} = 8.20 (d, J = 9.0 Hz, 2H), 7.49 (dd, J = 8.2, 2.5 Hz, 1H), 7.45 (d, J = 2.5 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.03 (d, J = 9.0 Hz, 2H), 3.93 (s, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃) δ_{c} = 170.6, 164.5, 163.3, 145.4, 132.8, 131.5, 130.5, 127.5, 124.8, 120.2, 114.2, 55.6 ppm; **HRMS-ESI** (m/z): calculated for C₁₅H₁₀CINO₃ [M+H]⁺ 288.0421 found 288.0414.

2-isocyano-5-methoxyphenyl benzoate (11)

Colourless solid (370 mg, Yield 74%), mp 93-96°C, $R_f = 0.20$ (n-hexane /ethyl acetate 15:1); ¹**H-NMR** (250 MHz, DMSO) (mixture of two rotamers, 72/28) major rotamer: $\delta_H = 8.15$ (d, J = 7.5 Hz, 2H), 7.61 (t, J = 7.4 Hz, 2H), 7.55 – 7.40 (m, 2H), 7.34 (br s, 1H), 7.15 (dd, J = 8.7, 2.7 Hz, 1H), 3.80 (s, 3H) ppm; ¹³**C-NMR** (63 MHz, CDCl₃) $\delta_c = 168.9$, 164.3, 157.8, 139.9, 135.0, 133.3, 130.4, 129.6, 129.0, 128.4, 125.0, 120.3, 117.6, 112.7, 56.5 ppm; **HRMS-ESI** (m/z): calculated for $C_{15}H_{11}NO_3$ [M+H]⁺ 254.0811 found 254.0818.

2-isocyano-5-methoxyphenyl 4-methoxybenzoate (1m)

Colourless solid (350 mg, Yield 43%), 135-138°C, R_f = 0.21 (n-hexane /ethyl acetate 15:1); ¹**H-NMR** (250 MHz, CDCl₃) $\delta_{H} = 8.19$ (d, J = 8.4 Hz, 2H), 7.25 (d, J = 5.6 Hz, 1H), 7.12 – 6.88 (m, 4H), 3.90 (s, 3H), 3.83 (s, 3H) ppm; ¹³**C-NMR** (63 MHz, CDCl₃) $\delta_{c} = 168.7$, 164.3, 164.0, 157.2, 140.2, 132.6, 124.3, 120.8, 116.3, 114.0, 112.2, 55.9, 55.5 ppm; **HRMS-ESI** (m/z): calculated for C₁₆H₁₃NO₄ [M+H]⁺ 284.0917 found 284.0918.

2-isocyanophenyl 4-methoxybenzoate (1n)

Colourless solid (770 mg, Yield 77%), mp 104-107°C, R_f = 0.20 (n-hexane /ethyl acetate 15:1); $^1\text{H-NMR}$ (300 MHz, CDCl₃): δ_{H} = 8.21 (d, J = 8.9 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.39 (d, J = 7.2 Hz, 1H), 7.31 – 7.24 (m, 1H), 7.01 (d, J = 8.9 Hz, 2H), 3.90 (s, 3H) ppm; $^{13}\text{C-NMR}$ (75 MHz, CDCl₃) δ_c = 169.3, 164.0, 163.0, 146.4, 132.2 (2C), 129.6, 127.0, 125.7, 123.2, 120.4, 113.7 (2C), 55.0 ppm; HRMS-ESI (m/z): calculated for $C_{15}H_{11}NO_3$ [M+H]⁺ 254.0811 found 254.0818.

2-isocyanophenyl 3-methylbenzoate (1o)

Colourless solid (412 mg, Yield 82%), mp 67-70°C; $R_f = 0.21$ (n-hexane /ethyl acetate 20:1); ¹**H-NMR** (400 MHz, CDCl₃) $\delta_H = 8.11 - 8.05$ (m, 2H), 7.50 (td, J = 7.7, 2.0 Hz, 3H), 7.44 (d, J = 7.9 Hz, 1H), 7.42 - 7.38 (m, 1H), 7.33 (td, J = 7.7, 1.5 Hz, 1H), 2.48 (s, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃) $\delta_c = 169.1$, 164.1, 146.7, 138.7, 135.0, 131.0, 130.4, 128.7, 128.3, 127.7 (2C), 126.5, 123.6, 21.3 ppm; **HRMS-ESI** (m/z): calculated for $C_{15}H_{11}NO_2$ [M+H]⁺ 238.0862 found 238.0857.

2-isocyanophenyl furan-2-carboxylate (1p)

Colourless solid (550 mg, Yield 55%), mp 95-98°C, R_f = 0.20 (n-hexane /ethyl acetate 15:1); ¹**H-NMR** (300 MHz, CDCl₃): δ_{H} = 7.75 (dd, *J* = 2.4, 0.9 Hz, 1H), 7.56 – 7.46 (m, 3H), 7.45 – 7.39 (m, 1H), 7.39 – 7.33 (m, 1H), 6.66 (dd, *J* = 3.6, 1.8 Hz, 1H). ¹³**C-NMR** (75 MHz, CDCl₃) δ_{c} = 169.4, 165.6, 155.4, 148.0, 145.8, 142.9, 130.4, 127.7, 126.8, 123.5, 120.8, 112.5 ppm; **HRMS-ESI** (m/z): calculated for C₁₂H₇NO₃ [M+H]⁺ 214.0498 found 214.0491.

(Z)-2-((3-benzoyl-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl benzoate (2a)

Yellow solid (83 mg, Yield 83%), mp 147-150°C, $R_f = 0.18$ (n-hexanes /ethyl acetate 15:1); ¹H-NMR (300 MHz, CDCl₃) (mixture of two rotamers, 67/33): δ_{H} = 8.37 (d, J = 7.7 Hz, 1H, minor rotamer), 8.25 (d, J = 8.8 Hz, 2H, major rotamer), 8.10 (br s, 2H, minor rotamer), 7.91 (d, J = 8.5 Hz, 2H, major rotamer), 7.75 (t, J = 9.0 Hz, 2H, mixture of two rotamers), 7.70 – 7.64 (m, 1H, minor rotamer), 7.63 – 7.47 (m, 3H, mixture of two rotamers), 7.44 – 7.27 (m, 5H, mixture of two rotamers), 7.29 – 7.15 (m, 4H, mixture of two rotamers) ppm; ¹³C-NMR (75 MHz, CDCl₃) major rotamer: δ_c = 190.6, 165.3, 164.5, 156.6, 145.7, 143.8, 141.3, 136.3, 134.5, 134.0, 131.4, 130.8, 130.3, 130.1, 129.2, 128.8, 128.6, 128.3, 127.1, 126.7, 126.2, 125.1, 123.2, 122.9, 122.3, 116.0 ppm; HRMS-ESI (m/z): calc. for C₂₈H₁₈N₂O₄ [M+H]⁺ 447.1339, found 447.1335.

(Z)-2-((3-(4-methoxybenzoyl)-7-methyl-2H-benzo[b][1,4]oxazin-2-ylidene)amino)-5-methylphenyl 4-methoxybenzoate (2b)

Yellow solid (67 mg, Yield 67%), mp 150-153°C, $R_f = 0.2$ (n-hexane /ethyl acetate 8:1); **1H-NMR** (400 MHz, CDCl₃): $\delta_{H} = 7.84$ (d, J = 8.8 Hz, 2H), 7.71 (d, J = 8.9 Hz, 2H), 7.49 (d, J = 8.2 Hz, 1H), 7.46 (d, J = 8.2 Hz, 1H), 7.07 (dd, J = 6.4, 2.0 Hz, 1H), 7.04 (dd, J = 7.4, 1.8 Hz, 1H), 7.00 (br s, 2H), 6.79 (d, J = 8.8 Hz, 2H), 6.65 (d, J = 8.9 Hz, 2H), 3.89 (s, 3H, OMe), 3.81 (s, 3H, OMe), 2.43 (s, 3H, Me), 2.39 (s, 3H,Me) ppm; ¹³C-NMR (101 MHz, CDCl₃): $\delta_{c} = 189.6$, 164.4, 164.1, 163.4, 156.0, 145.6, 144.2, 142.3, 141.3, 136.9, 133.8, 132.0, 128.9, 128.8, 127.3, 126.6, 125.9, 123.7, 123.4, 121.7, 116.3, 113.7, 113.4, 55.4, 55.3, 21.6, 21.1 ppm; HRMS-ESI (m/z): calc. for $C_{32}H_{26}N_2O_6$ [M+H]⁺ 535.1863, found 535.1863.

(Z)-5-methyl-2-((7-methyl-3-(4-methylbenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 4-methylbenzoate (2c)

Yellow solid (57 mg, Yield 57%), mp 148-151°C, R_f = 0.2 (n-hexane /ethyl acetate 8:1); ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 8.2 Hz, 2H), 7.63 (d, J = 8.2 Hz, 2H), 7.46 (dd, J = 8.0, 1.1 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H), 7.09 (dd, J = 8.2, 2.0 Hz, 1H), 7.03 – 7.01 (m, 3H), 6.97 (d, J = 8.0 Hz, 2H), 2.44 (s, 3H), 2.43 (s, 3H), 2.39 (s, 3H), 2.32 (s, 3H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ_c = 190.6, 164.7, 155.9, 145.6, 144.9, 144.0, 143.7, 142.4, 136.9, 133.7, 131.8, 130.0, 129.7, 129.1, 128.9, 128.8, 126.7, 126.6, 125.9, 123.7, 123.4, 116.3, 21.8, 21.7, 21.6, 21.1 ppm; HRMS-ESI (m/z): calc. for C₃₂H₂₆N₂O₄ [M+H]⁺ 503.1965, found 503.1966.

(Z)-5-methyl-2-((7-methyl-3-(3-methylbenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 3-methylbenzoate (2d)

Yellow solid (63 mg, Yield 63%), mp 124-127°C, R_f = 0.2 (n-hexane /ethyl acetate 8:1); $^1\text{H-NMR}$ (400 MHz, CDCl₃): δ_{H} = 7.75 (d, J = 7.8 Hz, 1H), 7.72 (br s, 1H), 7.61 (br s, 1H), 7.55 – 7.48 (m, 3H), 7.35 (d, J = 7.6 Hz, 1H), 7.27 (d, J = 8.7 Hz, 1H), 7.24 – 7.20 (m, 1H), 7.12 (dd, J = 8.3, 2.0 Hz, 1H), 7.10 – 7.04 (m, 4H), 2.46 (s, 3H), 2.41 (s, 3H), 2.35 (s, 3H), 2.28 (s, 3H) ppm; $^{13}\text{C-NMR}$ (101 MHz, CDCl₃): δ_{c} = 191.1, 164.9, 155.9, 145.6, 144.1, 142.5, 141.2, 138.2, 137.9, 137.0, 134.9, 134.2, 133.9, 133.6, 130.4, 129.8, 128.9, 128.3, 128.1, 127.2, 127.1, 126.8, 126.0, 123.9, 123.4, 116.3, 21.6, 21.2 ppm; HRMS-ESI (m/z): calc. for $C_{32}H_{26}N_2O_4$ [M+H]* 503.1965, found 503.1969.

(Z)-2-((3-benzoyl-7-methyl-2H-benzo[b][1,4]oxazin-2-ylidene)amino)-5-methylphenyl benzoate (2e)

Yellow solid (78 mg, Yield 78%), mp 162-165°C, R_f = 0.2 (n-hexane /ethyl acetate 8:1); ¹**H-NMR** (400 MHz, CDCl₃): δ_{H} = 7.91 (d, *J* = 7.0 Hz, 2H), 7.72 (d, *J* = 7.0 Hz, 2H), 7.56 – 7.50 (m, 2H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.44 – 7.32 (m, 3H), 7.19 (t, *J* = 7.8 Hz, 2H), 7.11 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.09 – 7.01 (m, 3H), 2.44 (s, 3H), 2.39 (s, 3H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ_{c} = 190.9, 164.6, 155.7, 145.6, 144.2, 142.5, 141.2, 137.1, 134.1, 134.0, 133.6, 133.1, 132.4, 130.0, 129.5, 129.3, 128.9, 128.4, 128.3, 126.8, 126.0, 123.8, 123.4, 116.3, 21.6, 21.2 ppm; HRMS-ESI (m/z): calc. for C₃₀H₂₂N₂O₄ [M+H]⁺ 475.1652, found 475.1653.

(Z)-2-((3-benzoyl-6-bromo-2H-benzo[b][1,4]oxazin-2-ylidene)amino)-4-bromophenyl benzoate (2f)

Yellow solid (62 mg, Yield 62%), mp 158-161°C, $R_f = 0.2$ (n-hexane /ethyl acetate 8:1); ¹**H-NMR** (400 MHz, CDCl₃): $\delta_{H}= 7.91$ (d, J = 6.9 Hz, 2H), 7.77 (d, J = 2.4 Hz, 1H), 7.72 (d, J = 6.8 Hz, 2H), 7.65 (d, J = 2.4 Hz, 1H), 7.63 – 7.54 (m, 2H), 7.45 (t, J = 7.5 Hz, 1H), 7.42 – 7.34 (m, 3H), 7.24 (t, J = 7.8 Hz, 2H), 7.14 (d, J = 5.6 Hz, 1H), 7.11 (d, J = 5.4 Hz, 1H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): δ_c = 189.8, 164.2, 157.1, 144.5, 142.9, 141.3, 137.4, 134.4, 134.3, 133.7, 133.6, 132.0, 131.7, 130.0, 129.6, 129.5, 128.7, 128.6, 128.4, 126.6, 124.4, 118.8, 117.6, 117.5 ppm; **HRMS-ESI** (m/z): calc. for C₂₈H₁₆Br₂N₂O₄ [M+H]⁺ 602.9549, found 602.9545.

(Z)-4-bromo-2-((6-bromo-3-(4-methoxybenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 4-methoxybenzoate (2g)

Yellow solid (56 mg, Yield 56%), mp 159-162°C, R_f = 0.2 (n-hexane /ethyl acetate 8:1); ¹**H-NMR** (250 MHz, CDCl₃): $\delta_{H^{=}}$ 7.81 (d, *J* = 8.5 Hz, 2H), 7.69 (d, *J* = 8.5 Hz, 2H), 7.56 (dd, *J* = 8.7, 2.4 Hz, 2H), 7.34 (dd, *J* = 8.6, 2.4 Hz, 1H), 7.08 (dd, *J* = 5.2, 3.5 Hz, 2H), 7.05 – 6.95 (m, 1H), 6.80 (d, *J* = 8.4 Hz, 2H), 6.69 (d, *J* = 8.4 Hz, 2H), 3.87 (s, 2H), 3.81 (s, 3H) ppm; ¹³**C-NMR** (63 MHz, CDCl₃): $\delta_{c^{=}}$ 187.0, 165.2, 164.2, 163.8, 157.3, 152.1, 150.1, 146.0, 144.6, 135.7, 134.1, 132.8, 132.5, 132.1, 131.1, 129.5, 126.8, 126.5, 124.9, 124.5, 123.8, 121.0, 120.6, 119.2, 118.4, 117.6, 114.3, 114.0, 113.6, 55.7, 55.5 ppm; **HRMS-ESI** (m/z): calc. for C₃₀H₂₀Br₂N₂O₆ [M+H]⁺ 662.9760, found 662.9768.

(Z)-2-((3-benzoyl-7-chloro-2H-benzo[b][1,4]oxazin-2-ylidene)amino)-5-chlorophenyl benzoate (2h)

Yellow solid (55 mg, Yield 55%), mp 175-178°C, R_f = 0.2 (n-hexane /ethyl acetate 8:1); ¹**H-NMR** (300 MHz, CDCl₃): δ_{H} = 7.90 (d, *J* = 7.2 Hz, 2H), 7.72 (d, *J* = 7.2 Hz, 2H), 7.61 (d, *J* = 2.5 Hz, 1H), 7.57 (d, *J* = 7.2 Hz, 1H), 7.51 (d, *J* = 2.5 Hz, 1H), 7.44 (dd, *J* = 5.1, 2.5 Hz, 1H), 7.42 – 7.31 (m, 3H), 7.27 – 7.14 (m, 5H) ppm; ¹³C-NMR (75 MHz, CDCl₃): δ_{c} = 189.9, 164.3, 157.2, 144.0, 142.4, 141.3, 137.1, 134.4, 133.6, 133.6, 131.4, 131.3, 131.3, 130.5, 130.0, 129.5, 129.0, 128.7, 128.6, 128.4, 126.6, 124.0, 123.7, 117.2 ppm; **HRMS-ESI** (m/z): calc. for C₂₈H₁₆Cl₂N₂O₄ [M+H]⁺ 515.0559, found 515.0554.

(Z)-5-chloro-2-((7-chloro-3-(3-nitrobenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 3-nitrobenzoate (2i)

Yellow solid (37 mg, Yield 37%), mp 187-190°C, R_f = 0.2 (n-hexane /ethyl acetate 10:1); ¹**H-NMR** (400 MHz, CDCl₃): δ_{H} = 8.66 (s, 1H), 8.48 – 8.40 (m, 2H), 8.30 (t, *J* = 7.5 Hz, 2H), 8.05 (d, *J* = 7.8 Hz, 1H), 7.75 (d, *J* = 2.4 Hz, 1H), 7.65 (d, *J* = 7.8 Hz, 2H), 7.59 – 7.49 (m, 2H), 7.34 – 7.29 (m, 2H), 7.18 (d, *J* = 8.7 Hz, 1H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): δ_{c} = 187.3, 162.2, 155.6, 148.1, 148.0, 143.9, 143.5, 140.9, 136.0, 135.6, 135.0, 134.8, 132.2, 131.9, 131.2, 131.0, 130.5, 130.0, 129.8, 129.3, 128.4, 128.0, 127.7, 124.8, 124.2, 124.0, 123.6, 117.4 ppm; **HRMS-ESI** (m/z): calc. for C₂₈H₁₄Cl₂N₄O₈ [M+H]⁺ 605.0261, found 605.0262.

(Z)-5-chloro-2-((7-chloro-3-(4-nitrobenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 4-nitrobenzoate (2j)

Yellow solid (43 mg, Yield 43%), mp 182-185°C, $R_f = 0.2$ (n-hexane /ethyl acetate 10:1); ¹H-NMR (400 MHz, CDCl₃) (mixture of two rotamers, 67/33) major rotamer: δ_{H} = 8.42 (d, J = 8.8 Hz, 4H), 8.24 (d, J = 8.8 Hz, 4H), 7.87 (d, J = 2.5 Hz, 2H), 7.69 (dd, J = 8.9, 2.5 Hz, 2H), 7.42 (d, J = 8.9 Hz, 2H), ppm; ¹³C-NMR (101 MHz, CDCl₃): δ_c = 186.8, 161.1, 153.9, 151.1, 150.0, 149.6, 146.2, 145.7, 138.5, 134.0, 131.7, 131.2, 130.6, 130.5, 129.8, 128.6, 128.6, 126.7, 126.5, 126.5, 124.3, 124.2, 124.0, 121.8, 120.6, 119.2, 118.2, 111.7 ppm; HRMS-ESI (m/z): calc. for C₂₈H₁₄Cl₂N₄O₈ [M+H]⁺ 605.0261, found 605.0259.

(Z)-5-chloro-2-((7-chloro-3-(4-methoxybenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 4-methoxybenzoate (2k)

Yellow solid (46 mg, Yield 46%), mp 167-170°C, R_f = 0.2 (n-hexanes /ethyl acetate 15:1); ¹**H-NMR** (400 MHz, CDCl₃): δ_{H} = 7.85 (d, J = 8.9 Hz, 2H), 7.73 (d, J = 8.9 Hz, 2H), 7.62 (d, J = 2.5 Hz, 1H), 7.50 (d, J = 2.5 Hz, 1H), 7.43 (dd, J = 8.7, 2.5 Hz, 1H), 7.24 (dd, J = 8.7, 2.5 Hz, 1H), 7.18 (t, J = 8.8 Hz, 2H), 6.83 (d, J = 8.9 Hz, 2H), 6.72 (d, J = 8.9 Hz, 2H), 3.92 (s, 3H), 3.85 (s, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): δ_{c} = 187.0, 165.1, 164.5, 164.2, 152.2, 150.1, 145.9, 145.5, 140.3, 132.9, 132.7, 132.2, 131.2, 130.8, 129.5, 126.9, 126.4, 125.1, 124.2, 118.0, 114.7, 114.3, 114.1, 113.9, 55.7, 55.6 ppm; **HRMS-ESI** (m/z): calc. for C₃₀H₂₀Cl₂N₂O₆ [M+H]⁺ 575.0770, found 575.0776.

(Z)-2-((3-benzoyl-7-methoxy-2H-benzo[b][1,4]oxazin-2-ylidene)amino)-5-methoxyphenyl benzoate (2l)

Yellow solid (52 mg, Yield 52%), mp 155-158°C, $R_f = 0.22$ (n-hexanes /ethyl acetate 15:1); ¹**H-NMR** (400 MHz, CDCl₃): Since this product appears as the mixture of rotamers, the ¹H-NMR spectrum is not very characteristic (for more detail show Figure S83). ^{S11} ¹³**C-NMR** (76 MHz, CDCl₃): δ_c = 190.7, 165.3, 164.9, 157.8, 156.7, 134.2, 133.2, 132.1, 130.9, 130.3, 130.0, 129.6, 129.0, 128.9, 128.6, 128.3, 126.9, 122.7, 118.7, 116.6, 111.0, 107.4, 55.9, 55.8 ppm; **HRMS-ESI** (m/z): calc. for C₃₀H₂₂N₂O₆ [M+H]⁺ 507.1550, found 507.15558.

(*Z*)-5-methoxy-2-((7-methoxy-3-(4-methoxybenzoyl)-2*H*-benzo[*b*][1,4]oxazin-2-ylidene)amino)phenyl 4-methoxybenzoateze (2m)

Yellow solid (65 mg, Yield 65%), mp 152-155°C, R_f = 0.21 (n-hexanes /ethyl acetate 10:1); ¹**H-NMR** (250 MHz, CDCl₃) (mixture of two rotamers, 81/19) major rotamer: δ_{H} = 7.82 (d, *J* = 8.2 Hz, 2H), 7.70 (d, *J* = 8.2 Hz, 2H), 7.27 (br s, 1H), 7.15 – 7.07 (m, 2H), 7.05 – 6.90 (m, 3H), 6.75 (d, *J* = 7.9 Hz, 2H), 6.62 (d, *J* = 8.4 Hz, 2H), 3.98 – 3.79 (m, 12H, 40Me) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ_{c} = 187.7, 165.0, 164.1, 163.9, 157.3, 156.6, 151.5, 151.0, 141.2, 132.8(2C), 132.7, 132.1(2C), 127.1, 124.0, 121.3, 117.5, 116.6, 114.3, 114.0, 113.9, 113.8, 111.6, 56.0, 55.7, 55.4, 55.3 ppm; HRMS-ESI (m/z): calc. for C₃₂H₂₆N₂O₈ [M+H]⁺ 567.1761, found 567.1761.

(Z)-2-((3-(4-methoxybenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 4-methoxybenzoate (2n)

Yellow solid (81 mg, Yield 81%), mp 157-160°C R_f = 0.2 (n-hexanes /ethyl acetate 15:1); ¹**H-NMR** (300 MHz, CDCl₃) (mixture of two rotamers, 58/42): δ_{H} = 8.26 (d, J = 8.0 Hz, 1H, minor rotamer), 8.12 (d, J = 8.9 Hz, 1H, major rotamer), 7.95 – 7.91 (m, 1H, minor rotamer), 7.75 (d, J = 8.8 Hz, 2H, major rotamer), 7.70 – 7.65 (m, 2H, mixture of two rotamers), 7.51 (dd, J = 7.8, 1.7 Hz, 1H, minor rotamer), 7.43 (dd, J = 7.6, 1.9 Hz, 1H, minor rotamer), 7.37 – 7.30 (m, 1H, minor rotamer), 7.20 – 7.05 (m, 4H, mixture of two rotamers), 6.94 (d, J = 9.0 Hz, 1H, minor rotamer), 6.81 (d, J = 8.9 Hz, 1H, minor rotamer), 6.70 (d, J = 9.0 Hz, 2H, major rotamer), 6.58 (d, J = 8.9 Hz, 2H, major rotamer), 3.74 (s, 3H, OMe, minor rotamer), 3.79 (s, 3H, OMe, major rotamer), 3.76 (s, 3H, OMe, minor rotamer), 3.72 (s, 3H, OMe, major rotamer) ppm; ¹³C-NMR (75 MHz, CDCl₃) mixture of two rotamers: δ_c = 191.3, 164.8, 164.3, 163.5, 145.7, 144.0, 141.5, 136.5, 132.5, 132.1, 131.3, 130.9, 129.3, 128.9, 127.1, 126.5, 126.0, 125.1, 124.8, 123.7, 123.0, 121.6, 116.0, 114.2, 114.0, 113.8, 113.5, 55.4, 55.3 ppm. HRMS-ESI

(m/z): calc. for C₃₀H₂₂N₂O₆ $[M+H]^+$ 507.1550, found 507.1557.

(Z)-2-((3-(3-methylbenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 3-methylbenzoate (20)

Yellow solid (66 mg, Yield 66%), mp 107-110°C, $R_f = 0.2$ (n-hexanes /ethyl acetate 15:1); ¹**H-NMR** (400 MHz, CDCl₃) Since this product appears as the mixture of two rotamers, the ¹H-NMR spectrum is not very characteristic (for more detail show Figure S92, a mixture of two rotamers, 75/25): δ_{H} = 8.15 – 8.06 (m, 1H), 7.92 – 7.82 (m, 1H), 7.28 – 7.71 (m, 1H), 7.71 – 7.61 (m, 2H), 7.57 – 7.50 (m, 2H), 7.47 – 7.42 (m, 2H), 7.38 – 7.30 (m, 2H), 7.38 – 7.21 (m, 4H), 7.11 – 7.05 (m, 1H), 7.52 – 7.23 (m, 6H) ppm; ¹³C-NMR (101 MHz, CDCl₃) major rotamer: δ_c = 189.4, 167.3, 163.9, 151.2, 150.7, 147.0, 138.9, 135.7, 134.8, 134.1, 133.1, 130.5 (2C), 130.2 (2C), 129.7, 128.8 (2C), 128.2, 127.6 (2C), 126.1, 122.4, 120.6, 119.8, 116.9, 21.4, 21.0 ppm; HRMS-ESI (m/z): calc. for C₃₀H₂₂N₂O₄ [M+H]⁺ 475.1652, found 475.1658.

(Z)-2-((3-(furan-2-carbonyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl furan-2-carboxylate (2p)

Yellow solid (47 mg, Yield 47%), mp 144-147°C, $R_f = 0.15$ (n-hexanes /ethyl acetate 10:1); ¹**H-NMR** (400 MHz, CDCl₃): Since this product appears as the mixture of rotamers, the ¹H-NMR spectrum is not very characteristic (for more detail show Figure S95). ¹³**C-NMR** (101 MHz, CDCl₃) mixture of two rotamers: δ_c = 175.9, 157.3, 155.4, 150.6, 150.2, 149.0, 147.7, 147.2, 145.2, 143.1, 133.6, 130.4, 128.8, 127.4, 127.3, 126.7, 126.2, 125.2, 124.1, 123.4, 122.7, 122.4, 121.1, 120.6, 119.9, 116.9, 116.7, 113.0, 112.2, 112.1 ppm; . **HRMS-ESI** (m/z): calc. for C₂₄H₁₄N₂O₆ [M+H]⁺ 427.0924, found 427.0925.

2-cyano-5-methylphenyl 4-methoxybenzoate (3b)

white solid (25 mg, Yield 25%), mp 184-187°C, R_f = 0.22 (n-hexanes /ethyl acetate 8:1); **¹H-NMR** (300 MHz, CDCl₃): δ_{H} = 8.20 (d, J = 9.0 Hz, 2H), 7.59 (d, J = 7.9 Hz, 1H), 7.30 – 7.25 (m, 1H), 7.20 – 7.10 (m, 1H), 7.01 (d, J = 9.0 Hz, 2H), 3.91 (s, 3H), 2.46 (s, 3H) ppm; ¹³C-NMR (75 MHz, CDCl₃): δ_{c} = 164.4, 163.7, 152.7, 145.5, 132.7, 127.0, 126.9, 123.9, 123.9, 120.6, 115.6, 114.1, 113.9, 103.9, 55.5, 21.9 ppm; HRMS-ESI (m/z): calc. for C₁₆H₁₃NO₃ [M+H]⁺ 268.0967, found 268.0968.

2-cyano-5-methoxyphenyl 4-methoxybenzoate (3m)

White solid (33 mg, Yield 33%), mp 148-151°C, $R_f = 0.25$ (n-hexanes /ethyl acetate 10:1); ¹H-NMR (250 MHz, DMSO): $\delta_{H} = 8.09$ (d, J = 9.2 Hz, 2H), 7.61 – 7.42 (m, 2H), 7.42 – 7.28 (m, 1H), 7.13 (d, J = 9.2 Hz, 2H), 3.86 (s, 3H, OMe), 3.81 (s, 3H, OMe) ppm; ¹³C-NMR (63 MHz, DMSO): $\delta_c = 164.6$, 157.4, 146.1, 132.7 (2C), 125.3, 121.6, 120.3, 117.7, 115.6, 115.0, 107.2, 56.5, 56.2 ppm; HRMS-ESI (m/z): calc. for C₁₆H₁₃NO₄ [M+H]⁺ 284.0917, found 284.0918.

2-phenylbenzo[d]oxazole (4a)

White solid (59 mg, Yield 59%), mp 101-103°C, $R_f = 0.18$ (n-hexanes /ethyl acetate 20:1); ¹H-NMR (400 MHz, CDCl₃): $\delta_H = 8.34 - 8.27$ (m, 2H), 7.86 - 7.78 (m, 1H), 7.67 - 7.60 (m, 1H), 7.60 - 7.52 (m, 3H), 7.42 - 7.36 (m, 2H) ppm; ¹³C-NMR (101 MHz, CDCl₃): $\delta_c = 163.1$, 150.8, 142.2, 131.5, 128.9, 127.7, 127.2, 125.1, 124.6, 120.1, 110.6 ppm; HRMS-ESI (m/z): calc. for $C_{13}H_9NO$ [M+H]⁺ 196.0756, found 196.0753.

(Z)-3-((3-benzoyl-6-phenyl-2H-benzo[b][1,4]oxazin-2-ylidene)amino)-[1,1'-biphenyl]-4-yl benzoate (4f)

Yellow solid (12 mg, Yield 42%), R_f = 0.2 (n-hexane /ethyl acetate 12:1); ¹**H-NMR** (500 MHz, CDCl₃): δ_{H} = 7.97 (d, *J* = 6.9 Hz, 2H), 7.85 (d, *J* = 2.2 Hz, 1H), 7.81 (d, *J* = 6.9 Hz, 2H), 7.73 (d, *J* = 2.2 Hz, 1H), 7.68 – 7.62 (m, 2H), 7.60 – 7.57 (m, 2H), 7.57 – 7.53 (m, 1H), 7.51 – 7.42 (m, 6H), 7.42 – 7.35 (m, 4H), 7.34 – 7.30 (m, 1H), 7.28 – 7.21 (m, 4H) ppm; ¹³**C-NMR** (126 MHz, CDCl₃): δ_{c} = 190.5, 164.5, 156.8, 145.0, 142.8, 141.6, 140.4, 139.5, 139.1, 138.6, 136.6, 134.1, 133.3, 131.0, 130.4, 130.3, 130.1, 129.6, 129.3, 129.0, 128.9, 128.5, 128.4, 127.9, 127.6, 127.5, 127.2, 126.9, 125.2, 123.2, 122.4, 116.3 ppm; **HRMS-ESI** (m/z): calc. for C₄₀H₂₆N₂O₄ [M+H]⁺ 599.1965, found 599.1963.

6. References

- [S1] T. Okitsu, K. Nagase, N. Nishio and A. Wada, Org. Lett., 2012, 14, 708–711.
- $\label{eq:second} [S2] \quad G.\ Siano,\ S.\ Crespi,\ M.\ Mella\ and\ S.\ M.\ Bonesi,\ J.\ Org.\ Chem.,\ \textbf{2019},\ 84,\ 4338-4352.$
- [S3] S. Su, J. Li, M. Sun, H. Zhao, Y. Chen and J. Li, Chem. Comm., 2018, 54, 9611–9614.
- [S4] M. C.Pirrung, S. Ghorai, J. Am. Chem. Soc., 2006, 128, 11772–11773.
- [S5] Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- [S6] CYLview20; C. Y. Legault, Université de Sherbrooke, 2020 (http://www.cylview.org).
- [S7] (a) A. D. Becke, J. Chem. Phys., 1993, 98, 1372–1377. (b) A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652. (c) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789. (d) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104. (e) Z. Hu, H. Yuan, Y. Men, Q. Liu, J. Zhang, X. Xu, Angew. Chem. Int. Ed., 2016, 128, 7193–7196.
- [S8] E. R. Johnson, S. Keinan, P. Mori-Sanchez, J. Contreras-Garcia, A. J. Cohen, W. T.Yang, J. Am. Chem. Soc., 2010, 132, 18, 6498–6506.
- [S9] T. Lu, F. Chen, J. Comput. Chem., 2012, 33, 580-592
- [S10] W. Humphrey, A. Dalke, K. Schulten, J. Molec. Graphics, 1996, 14, 33–38.
- [S11] Li, Z., Song, L., Van Meervelt, L., Tian, G., & Van der Eycken, E. V, ACS Catal., 2018, 8, 6388–6393.

7. X-Ray Crystallographic Analysis

Table S2. Crystal data and structure refinement for sba188.

Identification code	sba188
Empirical formula	C ₂₈ H ₁₈ N ₂ O ₄
Formula weight	446.44
Temperature	200(2) K
Wavelength	0.71073 Å
Crystal system	triclinic
Sacas arous	n - 1
Space group	
L Unit coll dimensione	$2 = 10.0710(6)$ Å $\alpha = 02.2576(15)$ dog
	a = 10.0719(0) A $d = 92.2570(15) deg.$
	p = 10.3334(7) A $p = 111.1719(14) deg.$
Volume	$\gamma = -30.0477(10) \text{ deg.}$
Density (calculated)	1.38 g/cm ³
Absorption coefficient	0.09 mm^{-1}
Crystal shape	brick
Crystal size	0.146 x 0.128 x 0.111 mm ³
Crystal colour	yellow
Theta range for data collection	1.9 to 27.6 deg.
Index ranges	-12 ≤h ≤12, -13 ≤k ≤12, -13 ≤l ≤14
Reflections collected	14852
Independent reflections	4431 (R(int) = 0.0446)
Observed reflections	2904 (I > $2\sigma(I)$)
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.96 and 0.93
Refinement method	Full-matrix least-squares on F ²
Data/restraints/parameters	4431 / 0 / 307
GOODNESS-OF-TIL ON F	1.U1 P1 - 0.052 wP2 - 0.102
Final R multes (I>2Sigma(I))	R = 0.002, $WR = 0.103$
Largest unit, peak and note	0.17 and -0.20 eA

1a: yellow crystal (brick), dimensions 0.146 x 0.128 x 0.111 mm³, crystal system triclinic, space group P 1, Z=2, a=10.0719(6) Å, b=10.5354(7) Å, c=10.8948(7) Å, alpha=92.2576(15) deg, beta=111.1719(14) deg, gamma=93.0417(15) deg, V=1074.38(12) Å³, rho=1.380 g/cm³, T=200(2) K, Theta_{max}= 27.595 deg, radiation MoK α , lambda=0.71073 Å, 0.5 deg omega-scans with CCD area detector, covering the asymmetric unit in reciprocal space with a mean redundancy of 2.98and a completeness of 88.8% to a resolution of 0.77 Å, 14852 reflections measured, 4431 unique (R(int)=0.0446), 2904 observed (I > 2□(I)), intensities were corrected for Lorentz and polarization effects, an empirical scaling and absorption correction was applied using SADABS^[1] based on the Laue symmetry of the reciprocal space, mu=0.09mm⁻¹, T_{min}=0.93, T_{max}=0.96, structure solved with SHELXT-2018/2 (Sheldrick 2015)^[2] and refined against F² with a Full-matrix least-squares algorithm using the SHELXL-2018/3 (Sheldrick, 2018) software^[3], 307 parameters refined, hydrogen atoms were treated using appropriate riding models, goodness of fit 1.01 for observed reflections, final residual values R1(F)=0.052, wR(F²)=0.103 for observed reflections, residual electron density -0.26 to 0.17 eÅ⁻³. **CCDC 2337430** contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

Lit. 1: (SADABS-2016/2 - Bruker AXS area detector scaling and absorption correction) Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10.

Lit. 2: (SHELXT - Integrated space-group and crystal structure determination) Sheldrick G. M., Acta Cryst. A71 (2015) 3-8.

Lit. 3: (program SHELXL-2018/3 (Sheldrick, 2018) for structure refinement) Sheldrick G. M., Acta Cryst. (2015). C71, 3-8

Lit. APEX, APEX2, SMART, SAINT, SAINT-Plus: Bruker (2007). "Program name(s)". Bruker AXS Inc., Madison, Wisconsin, USA.

Table S3. Crystal data and structure refinement for sba200.

Identification code Empirical formula Formula weight	sba200 C16H13NO3 267.27	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	triclinic	
Space group	P 1	Ő
Z	2	N28
Unit cell dimensions	a = 6.7066(7) Å α = 100.298(2) deg.	
	b = $8.7863(9)$ Å β = $96.3058(19)$ deg.	
	$c = 12.6844(13) \text{ Å}$ $\gamma = 111.3892(18) \text{ deg.}$	
Volume	672.14(12) Å ³	
Density (calculated)	1.32 g/cm ³	
Absorption coefficient	0.09 mm ⁻¹	
Crystal shape	brick	
Crystal size	0.122 x 0.062 x 0.062 mm ³	
Crystal colour	colourless	
Theta range for data collection	1.7 to 29.3 deg.	
Index ranges	-9≤h ≤9, -12≤k ≤12, -17≤l ≤17	
Reflections collected	12848	
Independent reflections	3342 (R(int) = 0.0383)	
Observed reflections	2185 (I > 2□(I))	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.96 and 0.92	
Refinement method	Full-matrix least-squares on F ²	
Data/restraints/parameters	3342 / 0 / 183	
Goodness-of-fit on F ²	1.04	
Final R indices (I>2sigma(I))	R1 = 0.049, wR2 = 0.113	
Largest diff. peak and hole	0.20 and -0.20 eA ⁻³	

3b: colourless crystal (brick), dimensions 0.122 x 0.062 x 0.062 mm³, crystal system triclinic, space group P $\overline{1}$, Z=2, a=6.7066(7) Å, b=8.7863(9) Å, c=12.6844(13) Å, alpha=100.298(2) deg, beta=96.3058(19) deg, gamma=111.3892(18) deg, V=672.14(12) Å³, rho=1.321 g/cm³, T=200(2) K, Theta_{max}= 29.291 deg, radiation MoK \Box , lambda=0.71073 Å, 0.5 deg omega-scans with CCD area detector, covering the asymmetric unit in reciprocal space with a mean redundancy of 3.51and a completeness of 91.3% to a resolution of 0.73 Å, 12848 reflections measured, 3342 unique (R(int)=0.0383), 2185 observed (I > 2 \Box (I)), intensities were corrected for Lorentz and polarization effects, an empirical scaling and absorption correction was applied using SADABS^[1] based on the Laue symmetry of the reciprocal space, mu=0.09mm⁻¹, T_{min}=0.92, T_{max}=0.96, structure solved with SHELXT-2018/2 (Sheldrick 2015)^[2] and refined against F² with a Full-matrix least-squares algorithm using the SHELXL-2018/3 (Sheldrick, 2018) software^[3], 183 parameters refined, hydrogen atoms were treated using appropriate riding models, goodness of fit 1.04 for observed reflections, final residual values R1(F)=0.049, wR(F²)=0.113 for observed reflections, residual electron density -0.20 to 0.20 eÅ⁻³. **CCDC 2337863** contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

Lit. 1: (SADABS-2016/2 - Bruker AXS area detector scaling and absorption correction) Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10.

Lit. 2: (SHELXT - Integrated space-group and crystal structure determination) Sheldrick G. M., Acta Cryst. A71 (2015) 3-8.

Lit. 3: (program SHELXL-2018/3 (Sheldrick, 2018) for structure refinement) Sheldrick G. M., Acta Cryst. (2015). C71, 3-8

Lit. APEX, APEX2, SMART, SAINT, SAINT-Plus: Bruker (2007). "Program name(s)". Bruker AXS Inc., Madison, Wisconsin, USA.

8. Z-matrices

Re

С	-2.24075100	-1.45525000	-0.49708000
С	-1.62828700	-0.23503200	-0.22088200
С	-2.40578200	0.88514200	0.11822800
С	-3.79964400	0.77823400	0.18362500
С	-4.40975000	-0.44446600	-0.08440400
С	-3.63108400	-1.55442000	-0.42391100
н	-1.63328800	-2.31260600	-0.75201400
н	-4.37912700	1.65640800	0.44444900
н	-5.48978600	-0.52949300	-0.03066900
н	-4.10558700	-2.50708000	-0.63503700
С	-1.21635000	3.10114000	0.58537900
0	-0.27154400	-0.01026800	-0.33015100
С	0.64917400	-0.88940800	0.19629900
0	0.34418100	-1.93797600	0.71880000
С	2.02885000	-0.37408100	0.03177100
С	3.08709700	-1.21309000	0.41148200
С	2.29308400	0.91027800	-0.46765500
С	4.40217600	-0.77303800	0.28465300

Н	2.85952600	-2.19895600	0.80163100	
С	3.61194000	1.34576600	-0.58848500	
Н	1.47196800	1.55936400	-0.74580500	
С	4.66554700	0.50636100	-0.21572100	
н	5.22075300	-1.42344700	0.57608700	
Н	3.81674700	2.34117300	-0.96928700	
н	5.69120000	0.84966900	-0.31183100	
Ν	-1.78154700	2.08887300	0.37621300	
Electronic Energy = -744.171189 Hartree				

Thermal Correction to Free Energy = 0.150366 Hartree

Imaginary Freq= 0

ReCom

С

С

С

С

С

С

Н

н

-2.66314700	-1.13728500	-0.80833800
-1.70278300	-2.03529400	-0.34622600
-2.05012500	-3.00409400	0.61552800
-3.35260200	-3.06458900	1.11552200
-4.30902600	-2.15777400	0.66262100
-3.95954900	-1.20176300	-0.29197400
-2.39642100	-0.39716600	-1.54394700
-3.58966300	-3.81528300	1.86063300

н	-5.31887200	-2.19805900	1.05670500	н	-5.10624100	2.87028000	0.90100200
н	-4.69409700	-0.48544900	-0.64398100	н	-3.28718100	2.20210000	-2.94400300
С	-0.22056000	-4.59368100	1.42592100	н	-5.31605800	2.57718600	-1.55889000
С	0.17079000	-0.72074600	2.05288800	0	-0.37487700	-2.07466300	-0.70825900
С	2.06275300	0.83084800	1.31473800	С	0.27417500	-1.15459700	-1.47908100
С	1.77790100	1.90403600	0.45641800	0	-0.27963400	-0.32630500	-2.17216600
С	3.37716000	0.61520100	1.74126000	С	1.74372600	-1.30560800	-1.34106700
С	2.79312800	2.75113100	0.03153600	С	2.55929900	-0.37735100	-2.00339500
С	4.39366300	1.46525800	1.31328400	С	2.32045600	-2.30447000	-0.54232000
н	3.57997100	-0.22475900	2.39508300	С	3.94306900	-0.44503300	-1.86753800
С	4.10318200	2.53243800	0.46015900	Н	2.09102300	0.39411400	-2.60413800
Н	2.54235800	3.56900100	-0.63477600	С	3.70701000	-2.37269200	-0.41863500
н	5.41198100	1.29070100	1.64373400	н	1.68796500	-3.01004300	-0.01834000
Н	4.89451200	3.19560100	0.12642700	С	4.51812900	-1.44431400	-1.07704500
0	0.50622000	2.07469700	-0.05771400	Н	4.57201400	0.28322800	-2.36911200
С	-0.50956400	2.44442300	0.80233800	Н	4.15245200	-3.14724800	0.19760200
0	-0.31306400	2.71035200	1.96506200	н	5.59752400	-1.49506800	-0.96925700
С	-1.82019800	2.47184500	0.11173400	Ν	-1.08503100	-3.87934100	1.06742300
С	-2.96419500	2.68295200	0.89466300	Ν	1.05039000	-0.01219100	1.71860400
С	-1.93697800	2.29513300	-1.27397600	Electronic E	nergy = -1488.	362072 Hartre	e
С	-4.22008000	2.71463100	0.29386000	Thermal Co	rrection to Free	e Energy = 0.32	23522 Hartree
н	-2.84918500	2.81187700	1.96513600	Imaginary F	req= 0		
С	-3.19637400	2.33914800	-1.87104800	INT _{Trans}			
н	-1.05364900	2.10050200	-1.86809000				
С	-4.33678100	2.54667200	-1.09005200				

С	-4.72253200	-0.80891000	0.32015000
С	-3.41659800	-0.62934900	-0.11682700
С	-3.14331600	-0.20953600	-1.43498100
С	-4.22517000	0.04651000	-2.29249200
С	-5.53354600	-0.16665900	-1.86864000
С	-5.78452100	-0.59335000	-0.56017300
н	-4.89076200	-1.12195900	1.34466600
н	-4.00679200	0.39903300	-3.29505800
Н	-6.35767200	0.01210100	-2.55150500
Н	-6.80352500	-0.75010500	-0.22170000
С	-0.82760900	-0.53457600	-1.52208000
С	0.43009200	-0.80008900	-1.41480900
С	2.76276500	-0.94701900	-1.32458400
С	3.12341400	0.41541300	-1.28773400
С	3.77104500	-1.90020100	-1.53399700
С	4.43983400	0.81515500	-1.47669800
С	5.08607100	-1.50189100	-1.75643900
н	3.49010200	-2.94783700	-1.52970800
С	5.42255100	-0.14452600	-1.72709300
н	4.68399900	1.86937200	-1.41827000
н	5.85155600	-2.24906500	-1.93881500

Н	6.44974600	0.16808100	-1.88354800
0	2.11765000	1.34282900	-1.04435300
С	2.07575400	1.94043000	0.19684400
0	2.99152100	1.88339600	0.98708200
С	0.77170100	2.60174500	0.43875700
С	0.55656400	3.18430600	1.69708300
С	-0.25604600	2.59062700	-0.51421000
С	-0.68483200	3.73497200	2.00409800
Н	1.36467000	3.18382200	2.42028000
С	-1.49870900	3.13876500	-0.20004100
Н	-0.09048900	2.13615900	-1.48130000
С	-1.71568900	3.70671500	1.05767500
Н	-0.85354100	4.17801200	2.98051500
н	-2.29788200	3.10555300	-0.93297000
н	-2.68745700	4.12431600	1.30328700
0	-2.36739400	-0.73446300	0.78203800
С	-1.74126600	-1.95790800	0.92274600
0	-2.21341400	-2.98289500	0.48707100
С	-0.45415500	-1.82137200	1.64091700
С	0.30857900	-2.97899500	1.84237300
С	0.04422400	-0.57196400	2.03977100
С	1.56556800	-2.88744000	2.43503600
Н	-0.08929700	-3.93163800	1.51096400
С	1.30417600	-0.48578200	2.62762400
н	-0.54168900	0.32208200	1.86702600

С	2.06657100	-1.64114400	2.82180600		
Н	2.16062800	-3.78337500	2.58193000		
Н	1.70420200	0.48125800	2.91047400		
н	3.05485100	-1.56635600	3.26516000		
Ν	-1.85447500	0.08076100	-1.90338800		
Ν	1.46632100	-1.40418400	-1.05527200		
Electronic Energy = -1488.358498 Hartree					
Thermal Correction to Free Energy = 0.328208 Hartree					
Imaginary Freq= 0					

INT_{Cis}

С	-2.89330800	-2.43502500	-0.71514400
С	-2.04248200	-1.85007800	0.21714200
С	-2.54982800	-1.09417900	1.29525000
С	-3.94038200	-0.94918700	1.41162700
С	-4.79365200	-1.49247800	0.45718600
С	-4.27084700	-2.23975500	-0.60294900
Н	-2.47483600	-3.02187800	-1.52252400
Н	-4.32099600	-0.38792800	2.25790500
Н	-5.86548700	-1.34930900	0.54747300
Н	-4.93388800	-2.68321800	-1.33893400
С	-0.58850900	-0.13095700	2.14296200

С	0.57858000	0.35394300	2.00433600
С	2.52968300	1.14300400	0.96196600
С	2.04952800	1.43678000	-0.33228400
С	3.91396100	1.22959800	1.18589500
С	2.92020800	1.78019200	-1.35741500
С	4.79226500	1.54699200	0.15556900
н	4.27019100	1.02790400	2.19028100
С	4.29530300	1.82421100	-1.12106100
Н	2.50561100	2.00694300	-2.33376500
н	5.85911000	1.59147400	0.34875200
н	4.97132300	2.08673600	-1.92848900
0	0.69544700	1.36715800	-0.62986500
С	-0.11926000	2.35999500	-0.12183600
0	0.31347200	3.28337500	0.52964900
С	-1.54220900	2.13535400	-0.46118200
С	-2.49658300	2.94486800	0.17327900
С	-1.94639600	1.16116600	-1.38431900
С	-3.84870500	2.77570700	-0.11184100
н	-2.16039100	3.69111200	0.88461700
С	-3.30101800	1.00708000	-1.67439900
Н	-1.21339400	0.52605800	-1.86414400
С	-4.25115000	1.80821000	-1.03887900
Н	-4.58800700	3.39532100	0.38605500
Н	-3.61165500	0.24659700	-2.38204900
н	-5.30608700	1.67484000	-1.25906300

0	-0.67734100	-2.08600300	0.22332700	C	4.17	7458800	-0.48851800	0.59662400
С	0.10058200	-1.89083900	-0.88523300	С	3.53	3589900	-1.13438000	-0.61219600
0	-0.34720700	-1.62286800	-1.98047600	С	4.40)499900	-1.64226200	-1.65702500
С	1.53753900	-2.03399700	-0.55544800	С	5.74	4696500	-1.44026300	-1.62327900
С	2.47121900	-1.73446100	-1.55698400	С	6.35	5691200	-0.75219700	-0.50679200
С	1.97678400	-2.41774300	0.72025500	Н	6.07	7452400	0.19125100	1.39717100
С	3.83376900	-1.80996100	-1.28326400	н	3.92	2069600	-2.15403500	-2.48233900
н	2.10999600	-1.42848000	-2.53224800	н	6.37	7788100	-1.79489000	-2.43195300
С	3.34181700	-2.49682900	0.98716400	н	7.43	3281800	-0.59854500	-0.51788000
н	1.25271000	-2.64303900	1.49278500	С	1.29	9343900	-0.84589900	0.06671500
С	4.26999300	-2.18964400	-0.01099800	С	0.15	5612900	-1.57503300	0.18783400
н	4.55488900	-1.55963200	-2.05426100	С	-2.02	2125700	-2.62736700	0.03315300
н	3.68064500	-2.78488900	1.97708100	С	-2.77	7225400	-1.70349400	-0.71386400
н	5.33294700	-2.23754200	0.20480600	С	-2.58	8753000	-3.85947500	0.38132600
Ν	-1.75143600	-0.57048600	2.32395200	С	-4.06	6818600	-2.01421600	-1.11571600
Ν	1.73728600	0.83674900	2.07437600	С	-3.87	7973900	-4.17420300	-0.02831600
Electronic E	nergy = -1488.	364009 Hartre	e	н	-1.99	9320500	-4.55219000	0.96672000
Thermal Co	rrection to Free	e Energy = 0.33	31069 Hartree	С	-4.61	1791800	-3.25017700	-0.77430800
Imaginary F	req= 0			н	-4.63	3704800	-1.28856300	-1.68308700
INTY				Н	-4.31	1208500	-5.13283700	0.23748900
	3	S.		н	-5.62	2818000	-3.48809200	-1.09068300
	X	J.		0	-2.14	4778400	-0.52548700	-1.07311100
		I J	}_	С	-2.76	6124000	0.68371800	-0.78307600

С

-

5.62393000 -0.31331500 0.54900500

0

С

-3.81150300 0.75448800 -0.18813800

-1.96825500 1.82715200 -1.28160600

С	-2.47019800	3.11554300	-1.04078500
С	-0.74258900	1.66084500	-1.94006700
С	-1.74360300	4.22904100	-1.45003000
н	-3.41684500	3.21956500	-0.52266100
С	-0.01421700	2.78018600	-2.33869000
Н	-0.35007300	0.66668000	-2.11170900
С	-0.51209300	4.06171100	-2.09505500
Н	-2.12832900	5.22626000	-1.26076200
Н	0.95179100	2.64865700	-2.81300400
Н	0.06233800	4.93141300	-2.39914100
0	3.51624600	-0.19027500	1.59954100
С	1.28238200	0.59202600	0.51063800
0	1.94240200	1.41653300	-0.10563300
С	0.35065500	0.98721900	1.60171300
С	-0.22363000	2.26577000	1.55528900
С	0.04762800	0.12576300	2.66519200
С	-1.12354600	2.66252700	2.54059300
н	0.03441100	2.92425200	0.73414600
С	-0.84080800	0.53252800	3.66035800
Н	0.53022900	-0.84327800	2.72815700
С	-1.43625400	1.79507400	3.59244300
Н	-1.58482800	3.64380200	2.48806300
Н	-1.06586300	-0.13249700	4.48826800
н	-2.13914900	2.10446300	4.36013900
Ν	2.26110700	-1.39985100	-0.73747000

Ν $-0.72756700 \quad -2.34348200 \quad 0.47623300$ Electronic Energy = -1488.354907 Hartree Thermal Correction to Free Energy = 0.328090 Hartree

Imaginary Freq= 0

Prz

С	-5.27144000	-0.04864200	0.23844900
С	-3.96122800	-0.41757100	-0.04592000
С	-3.60399300	-1.75559600	-0.27753500
С	-4.60153300	-2.73898200	-0.21445600
С	-5.91704900	-2.38550700	0.07057200
С	-6.24938300	-1.04234300	0.29557000
н	-5.50742700	0.99577300	0.41081700
н	-4.31132400	-3.76818800	-0.39687000
н	-6.68587400	-3.14937600	0.11726500
н	-7.27537300	-0.76669900	0.51689700
С	-1.41191600	-1.16785400	-0.62722400
С	-1.69205900	0.24443300	-0.36092800
С	-0.77671000	2.44848100	-0.10759700
С	0.47693600	3.10051700	-0.11345600
С	-1.91819600	3.24178800	0.13469100

С	0.60078800	4.46387400	0.10509400
С	-1.79755700	4.61331700	0.35289800
Н	-2.89368200	2.77883700	0.14340400
С	-0.54394400	5.22894400	0.33948300
Н	1.58935300	4.90927600	0.08857200
н	-2.69046400	5.20355000	0.53393300
н	-0.45462900	6.29674900	0.51131900
0	1.61831100	2.37546000	-0.42349600
С	2.10475500	1.50382100	0.51701400
0	1.70814800	1.47228100	1.66109300
С	3.19480400	0.66721400	-0.04246600
С	4.10604900	0.08593800	0.84821000
С	3.32258500	0.45154200	-1.42145600
С	5.15875700	-0.68399900	0.35965400
Н	3.97458600	0.24814400	1.91215000
С	4.36499700	-0.33874700	-1.90295300
Н	2.59684200	0.88317100	-2.09972200
С	5.28981000	-0.89633400	-1.01563100
Н	5.87073600	-1.12608200	1.04965100
Н	4.45423800	-0.51974600	-2.96943400
Н	6.10706100	-1.50276100	-1.39514000
0	-3.00421800	0.57215200	-0.09228200
С	0.00321700	-1.54177400	-1.05061700
0	0.28547700	-1.46660300	-2.23608300
С	0.93064900	-2.04955900	-0.01500200

С	2.08537600	-2.73807100	-0.41787500	
С	0.67539100	-1.85235100	1.34888100	
С	2.96148900	-3.24128000	0.53651600	
н	2.27227500	-2.86495500	-1.47809000	
С	1.56729200	-2.33872900	2.30291900	
Н	-0.20093400	-1.29781300	1.66548300	
С	2.70352500	-3.04176200	1.89761700	
Н	3.85230700	-3.77660100	0.22480300	
н	1.37849400	-2.16467500	3.35716100	
Н	3.39493200	-3.42697200	2.64131300	
Ν	-2.28755300	-2.11318800	-0.57130500	
Ν	-0.73263700	1.08424800	-0.35927800	
Electronic Energy = -1488.424466 Hartree				
Thermal Correction to Free Energy = 0.333645 Hartree				

Imaginary Freq= 0

Pre

-0.11200000	4.55623700	-0.02100500
0.41098400	3.30731400	-0.49698900
1.69826800	3.17339500	0.04805600

С

С

С	2.48213200	4.32113200	0.24105800	С	-5.92371300	0.48507000	1.60403900
С	1.97982600	5.57143000	-0.10224300	н	-4.00005600	0.01287400	2.47901800
С	0.68220900	5.68487000	-0.62529100	С	-6.22732700	-0.23917800	-0.68802900
н	-1.11536500	4.62248700	-1.22922300	н	-4.54740400	-1.26308500	-1.57743900
н	3.47001200	4.19825800	0.67235200	С	-6.72013400	0.39106000	0.45811400
н	2.58464900	6.45975400	0.04496300	н	-6.30547400	0.97564800	2.49404900
н	0.28805200	6.66246900	-0.88391500	н	-6.84418100	-0.30860800	-1.57867500
С	1.43079600	0.88581100	0.23685200	н	-7.72233400	0.80943400	0.45821200
С	0.16070300	0.93496500	-0.53704400	0	-0.35752300	2.20225100	-0.71972400
С	-0.15526200	-1.32909000	-1.11133700	С	1.83483700	-0.36947700	0.99218400
С	-1.13367900	-2.30827400	-0.85360300	0	1.03222600	-0.80215500	1.80159000
С	1.11251900	-1.76532400	-1.52943400	С	3.18312000	-0.96414200	0.79309700
С	-0.83573200	-3.66195400	-0.91846000	С	3.50491700	-2.10827900	1.53898100
С	1.41637500	-3.12361300	-1.60586900	С	4.10523100	-0.46020400	-0.13563400
н	1.85111100	-1.02698500	-1.81975300	С	4.73101600	-2.74100700	1.35660900
С	0.44827300	-4.07621400	-1.28554600	н	2.77313500	-2.48835600	2.24330000
н	-1.61806100	-4.37801000	-0.69123300	С	5.33318600	-1.09582400	-0.31686700
н	2.40910200	-3.43163200	-1.91786500	н	3.86806600	0.42824300	-0.70816000
н	0.68006700	-5.13494000	-1.33678800	С	5.64733000	-2.23654400	0.42685400
0	-2.45071700	-1.92916800	-0.63119500	н	4.97369200	-3.62831100	1.93309100
С	-2.76282000	-1.23355400	0.51073000	н	6.04441300	-0.70116100	-1.03582000
0	-2.00002400	-1.11485100	1.44057700	н	6.60326300	-2.73133900	0.28311800
С	-4.14324200	-0.68625200	0.45657800	Ν	2.15973400	1.92938300	0.46153800
С	-4.63768300	-0.05069500	1.60403300	Ν	-0.53058700	0.00971800	-1.06711400
С	-4.94086500	-0.77816800	-0.69233600	Elec	tronic Energy = -1488.	409252 Hartre	e

Thermal Correction to Free Energy = 0.331456 Hartree			Н	
Imaginary	Freq= 0			С
TS1 _{Cis}				н
				н
	ib	2.00	- 4	н
	YX	Tool Start		0
		L >-		С
		J-	۵-۰	0
		0.00	5	С
С	3.20448700 -	1.07749300	1.31811300	
С	2.23660200	-1.68988300	0.52599400	С
С	2.57713300	-2.24096600	-0.72531500	С
С	3.90428800	-2.17000900	-1.16511300	С
С	4.86713600	-1.53273100	-0.38519700	н
С	4.51777700	-0.99160500	0.85420900	С
н	2.92246000	-0.65518100	2.27230400	н
н	4.15635500	-2.61820400	-2.11989300	С
н	5.89063400	-1.46973800	-0.74071100	н
н	5.26576500	-0.49967800	1.46702500	н
0	0 51434400	-2 71152100	-1.06745800	н
C	0.51454400	-2.71152100	-1.90745800	0
С	-0.27294800	-1.11106600	-1.82670800	
С	-2.47310900	-0.01013100	-1.51042300	C
С	-2.17903300	1.26471600	-0.97737000	0
С	-3.80148000	-0.38972200	-1.72093300	С
С	-3.21348700	2.14841700	-0.67353900	С
С	-4.83452100	0.48977300	-1.40884600	С

I	-3.99700200	-1.37819700	-2.12033500
;	-4.53531800	1.75119500	-0.88956000
I	-2.98462300	3.12020100	-0.26199600
I	-5.86548300	0.19305600	-1.56945700
I	-5.33648500	2.44252700	-0.64796600
)	-0.83832900	1.54081700	-0.86840800
;	-0.29560700	2.41599500	0.04887000
)	-0.95922900	3.04036800	0.84668900
;	1.17663600	2.47184500	-0.09147300
;	1.87684900	3.34603600	0.75063500
;	1.87365200	1.65905000	-0.99763200
,	3.26656500	3.40954400	0.68419900
I	1.31977000	3.95447800	1.45419200
;	3.26334600	1.72309800	-1.05552200
I	1.33365800	0.96272600	-1.62666500
,	3.96082000	2.59688500	-0.21768700
l	3.80876700	4.08550800	1.33804400
I	3.80148100	1.07472800	-1.73845200
I	5.04514200	2.63914800	-0.26163400
)	0.92240300	-1.87732100	0.92951500
;	0.19427700	-0.86063100	1.48899900
)	0.67876500	0.18802900	1.85580400
,	-1.24744500	-1.19838000	1.55640200
;	-2.12349800	-0.20571400	2.01966900
;	-1.74983200	-2.43472900	1.12459200

С	-3.49446300	-0.44825000	2.04850900	
н	-1.71815100	0.75114400	2.32898200	
С	-3.12215600	-2.67319400	1.16360400	
н	-1.07039500	-3.18937700	0.74835100	
С	-3.99443000	-1.68145700	1.62217400	
н	-4.17178200	0.32794100	2.38885300	
н	-3.51174700	-3.62835500	0.82587100	
н	-5.06425700	-1.86673700	1.63819500	
Ν	1.61704500	-2.89265300	-1.48861700	
Ν	-1.45025800	-0.88957000	-1.80319300	
Electronic Energy = -1488.328381 Hartree				
Thermal Correction to Free Energy = 0.327668 Hartree				
Imaginary F	req= -409.60			

TS1_{Trans}

С	4.29462800	-2.15017500	0.07054300
С	2.94364700	-1.82203500	0.15758300
С	1.95547900	-2.77326000	-0.16101200
С	2.33992500	-4.05860900	-0.55684100
С	3.69125300	-4.37867500	-0.67007400

С	4.66490900	-3.42729100	-0.35457400
н	5.04004000	-1.40709100	0.31881600
н	1.56615700	-4.78542800	-0.77812800
н	3.98285800	-5.37208900	-0.99511000
н	5.71803300	-3.67684300	-0.43252300
С	-0.14777900	-1.58155200	-0.44614300
С	0.36091300	-0.37145000	-1.56724300
С	-0.70497200	1.91243000	-1.43047700
С	-2.02999400	1.82649800	-0.97249400
С	-0.12602800	3.17068700	-1.63708900
С	-2.76249500	2.97844700	-0.71770200
С	-0.85649400	4.32411200	-1.36995400
н	0.90051400	3.21633900	-1.98068900
С	-2.17364900	4.22942500	-0.91215200
н	-3.78231700	2.88198900	-0.36164900
Н	-0.39716800	5.29583200	-1.51552300
Н	-2.74530300	5.12827500	-0.70505800
0	-2.62083300	0.57949600	-0.84313600
С	-2.62500700	0.00004200	0.40748800
0	-2.15916000	0.55398500	1.37894400
С	-3.28374500	-1.32514200	0.39974000
С	-3.35386100	-2.02430800	1.61214400
С	-3.81958100	-1.88619100	-0.76756900
С	-3.95586100	-3.27931200	1.65663400
н	-2.92500300	-1.57481400	2.50067300

С	-4.42276300	-3.14159500	-0.71736500	
н	-3.75095400	-1.34443200	-1.70287000	
С	-4.49100200	-3.83914200	0.49231400	
н	-4.00510400	-3.82251200	2.59505700	
н	-4.83512500	-3.57838000	-1.62148400	
н	-4.95834500	-4.81872300	0.52704900	
0	2.48097600	-0.61334600	0.65636000	
С	3.00976600	0.58670100	0.26009700	
0	3.98257900	0.69119000	-0.45536600	
С	2.23280000	1.72250400	0.81740700	
С	2.75849400	3.01360100	0.65571500	
С	0.99348300	1.54488200	1.44853300	
С	2.05402800	4.11554100	1.13348300	
Н	3.71397300	3.13011900	0.15586300	
С	0.28388800	2.65320400	1.90890400	
Н	0.57111200	0.55397500	1.55419900	
С	0.81493200	3.93563000	1.75817200	
н	2.46519900	5.11335800	1.01405800	
н	-0.69133700	2.50415300	2.35751700	
н	0.25877100	4.79706100	2.11582100	
Ν	0.60988400	-2.44128400	-0.03533800	
Ν	0.03812000	0.77540000	-1.66878400	
Electronic Energy = -1488.326944 Hartree				
Thermal Correction to Free Energy = 0.326357 Hartree				
Imaginary Freq= -440.23				

TSRot

С	5.36981600	-2.69586500	-0.21579500
С	4.21527200	-1.92916200	-0.20977500
С	2.93824700	-2.53309300	-0.30185500
С	2.85647300	-3.93342100	-0.40981800
С	4.01878000	-4.69898700	-0.44102900
С	5.27175100	-4.08515300	-0.33861800
н	6.33057800	-2.19956300	-0.13528500
н	1.87590500	-4.39120400	-0.47809800
н	3.94789500	-5.77766900	-0.53409300
н	6.17481900	-4.68644700	-0.35065600
С	0.83507300	-1.09598500	-0.16994000
С	0.05612100	-0.01005600	-0.23174000
С	-1.51172500	1.67347500	-0.13564000
С	-0.61026900	2.72466300	-0.38024300
С	-2.88117900	1.97980000	-0.04164400
С	-1.06459700	4.03096200	-0.51714300
С	-3.34454500	3.28216400	-0.18596900
С	-2.43317200	4.31318300	-0.42078000
н	-0.35364900	4.83189300	-0.69461000

Н	-4.40987000	3.47128800	-0.11291400
н	-2.79058800	5.33247100	-0.52810400
Ν	1.84933100	-1.73128800	-0.30430200
Ν	-1.13200800	0.33753100	0.07246500
Н	0.44648400	2.48906400	-0.44070600
0	-3.79473800	0.98208400	0.26332200
С	-3.99099600	-0.01641800	-0.65962800
0	-3.58761500	0.04926600	-1.79883200
С	-4.77971100	-1.13855000	-0.09167300
С	-5.18279400	-2.16156600	-0.96129500
С	-5.11126100	-1.20373500	1.26874400
С	-5.91820400	-3.23987500	-0.47432800
Н	-4.90955700	-2.09309000	-2.00852100
С	-5.84565100	-2.28641300	1.75201900
Н	-4.78696300	-0.41380800	1.93518700
С	-6.25060000	-3.30331800	0.88280100
Н	-6.23135200	-4.03029700	-1.14934200
Н	-6.09940200	-2.33848600	2.80621400
Н	-6.82259900	-4.14484200	1.26229600
0	4.30358700	-0.54920500	-0.20086900
С	3.71436300	0.12903100	0.84999700
0	3.46067800	-0.40674100	1.90439400
С	3.44183700	1.54562700	0.51491600
С	2.94031700	2.37222000	1.53119200
С	3.61822000	2.05287000	-0.77999100

С	2.62727200	3.70076900	1.25553400		
н	2.79421400	1.95415600	2.52087000		
С	3.30160800	3.38380300	-1.05099500		
н	3.98817500	1.40312000	-1.56358300		
С	2.80991300	4.20806900	-0.03494900		
н	2.23261900	4.33749400	2.04066000		
н	3.43198500	3.77535500	-2.05478100		
н	2.56258500	5.24339000	-0.24992500		
Electronic Energy = -1488.333713 Hartree					

Thermal Correction to Free Energy = 0.324999 Hartree

Imaginary Freq= -175.25

TSAcylshift

С

С

С

С

С

С

Н

Н

Н

5.26620100	-0.48089700	0.75772500
3.99509600	-0.52680900	0.18246200
3.77911600	0.02469100	-1.10575100
4.85383400	0.63964900	-1.77755400
6.10887100	0.70692500	-1.19126200
6.31260600	0.13548500	0.07563000
5.40598500	-0.91895200	1.73990900
4.66142600	1.05001000	-2.76346100
6.93017900	1.18886200	-1.71082900

Н	7.29513400	0.17869500	0.53571400	Н	1.08977300	3.57305200	1.22215600
С	1.54959500	-0.51401700	-1.13112500	Н	0.20965800	5.91229500	1.16197000
С	0.26952900	-0.76452600	-1.58214300	0	3.00560000	-1.18255400	0.83636200
С	-2.13736000	-1.48583700	-1.22103300	С	1.68389000	-0.55621000	0.82751900
С	-2.95973200	-0.54147700	-0.57216200	0	1.60249700	0.63297300	1.16142800
С	-2.63672000	-2.75302200	-1.55079800	С	0.66843600	-1.58910800	1.23107000
С	-4.27540500	-0.86814200	-0.25965000	С	-0.48559200	-1.15116300	1.88787000
С	-3.95387400	-3.07053500	-1.23578800	С	0.80153900	-2.94264500	0.89543500
Н	-1.97957200	-3.46674100	-2.03350400	С	-1.50452000	-2.05384700	2.19683200
С	-4.76788500	-2.13148200	-0.59559500	Н	-0.57312100	-0.10128600	2.14172700
Н	-4.90297200	-0.13816600	0.23245800	С	-0.21592200	-3.84384500	1.20699100
Н	-4.34315900	-4.05131900	-1.48689900	Н	1.69789900	-3.27858800	0.38571800
Н	-5.79527500	-2.38023700	-0.35134200	С	-1.37577100	-3.40030100	1.85180300
0	-2.33413000	0.62959500	-0.21675900	Н	-2.40141900	-1.70301300	2.69791900
С	-2.96002600	1.85958700	-0.31991500	Н	-0.10691400	-4.89207200	0.94444200
0	-4.09851500	1.98525000	-0.71217200	Н	-2.17286400	-4.10065200	2.08177100
С	-2.05398600	2.94972900	0.10067200	Ν	2.57054300	-0.07971400	-1.77632900
С	-2.55336500	4.26194300	0.06413800	Ν	-0.84159200	-1.15365800	-1.48917300
С	-0.73666600	2.70840700	0.51959600	Electronic E	nergy = -1488	.333561 Hartre	е
С	-1.73798700	5.32349900	0.44595100	Thermal Co	rrection to Free	e Energy = 0.32	29100 Hartree
Н	-3.57353600	4.42720200	-0.26458100	Imaginary F	req= -367.06		
С	0.07387400	3.77674000	0.90062500	TS Cyclization			
н	-0.32786700	1.70773900	0.55784400				
С	-0.42384300	5.08165300	0.86485400				

-2.12321700 6.33798900 0.41823400

н

the st
L'AL

С	-5.57645600	0.47643100	0.78628200	С
С	-4.11070000	0.44825600	0.70972000	С
С	-3.50642400	0.03661800	-0.64116100	С
С	-4.42383700	-0.16881000	-1.76304600	С
С	-5.76116400	-0.06907000	-1.60271200	н
С	-6.34179200	0.24944100	-0.30627700	С
н	-6.00065400	0.72452400	1.75343400	н
н	-3.96987100	-0.42704400	-2.71377500	С
н	-6.42837300	-0.23939300	-2.44167900	н
н	-7.42425500	0.30482000	-0.22913000	н
С	-1.27508500	-0.08934500	0.16755400	н
С	-0.63184400	1.06222700	0.32648300	0
С	0.88046100	2.88702900	-0.01487900	С
С	1.83656700	2.29827900	-0.86213700	0
С	1.00692000	4.24165800	0.31813500	С
С	2.89232500	3.04976100	-1.36945600	С
С	2.05789300	4.99809400	-0.19265200	С
н	0.26412100	4.67515500	0.97881000	С

С	3.00008900	4.40014800	-1.03492600
н	3.62227200	2.57360700	-2.01195000
н	2.14557000	6.04749100	0.06816800
н	3.82484900	4.98282200	-1.43219700
0	1.64281500	0.97478500	-1.20996500
С	2.65201700	0.05519400	-0.98634800
0	3.71980800	0.35998500	-0.50633600
С	2.24314600	-1.30731500	-1.39304800
С	3.17742600	-2.33996400	-1.22140700
С	0.96296600	-1.59139200	-1.88874300
С	2.82856600	-3.64978000	-1.53594100
н	4.15791900	-2.09739800	-0.82742700
С	0.61441400	-2.90762600	-2.18714800
Н	0.23655800	-0.79902400	-2.01129400
С	1.54344300	-3.93555100	-2.01190800
н	3.54976800	-4.44970500	-1.40014900
Н	-0.38981500	-3.12826000	-2.53149100
н	1.26514800	-4.96045800	-2.23806800
0	-3.40858900	0.74163000	1.67083300
С	-0.86074200	-1.35526500	0.80221900
0	-1.42959700	-2.40457100	0.50832800
С	0.28669700	-1.32857400	1.75795000
С	1.22582700	-2.36637700	1.68106000
С	0.44291300	-0.31835000	2.71705100
С	2.33393100	-2.36946300	2.52451200

Н	1.08347000	-3.14770600	0.94328500		
С	1.54625500	-0.33466000	3.57206300		
н	-0.30621800	0.45965500	2.81445000		
С	2.49858800	-1.35131600	3.46904500		
н	3.07186700	-3.16168600	2.44298400		
н	1.65984000	0.44522100	4.31871100		
Н	3.36371000	-1.35341400	4.12522500		
Ν	-2.26102400	-0.19949100	-0.86406300		
Ν	-0.19266300	2.17870300	0.54513500		
Electronic Energy = -1488.343889 Hartree					
Thermal Correction to Free Energy = 0.328683 Hartree					
Imaginary Freg= -70.72					

TS_{Z_E}

С	3.42276800	-1.70511000	-1.58963800
С	2.29663000	-0.88711500	-1.52734900
С	2.41262900	0.50333600	-1.35486600
С	3.68958200	1.06900500	-1.21783400
С	4.81870300	0.26055800	-1.26093700
С	4.68133800	-1.12331500	-1.45350800
н	3.29323800	-2.77309200	-1.72509600

Н	3.75837000	2.14317600	-1.08295300
н	5.80558900	0.69812100	-1.15410100
Н	5.56435400	-1.75333100	-1.49382800
С	0.12661600	0.76037200	-1.42736700
С	-0.08974600	-0.70994000	-1.40584100
С	-2.26057000	-1.83163500	-0.64327300
С	-2.34392600	-1.91765200	0.76541800
С	-3.33839600	-2.32358800	-1.39912600
С	-3.44474000	-2.46887400	1.39735800
С	-4.44602400	-2.87819900	-0.75903900
Н	-3.28917400	-2.25544600	-2.47977100
С	-4.51048300	-2.95634300	0.63442000
Н	-3.45571400	-2.50959500	2.48146100
Н	-5.26835600	-3.25175500	-1.36141500
Н	-5.37500400	-3.39073400	1.12437200
0	-1.31352000	-1.33759800	1.51117400
С	-0.09344400	-1.96620100	1.49555100
0	0.05800100	-3.11826600	1.15847500
С	1.00320300	-1.04438300	1.89427300
С	2.32129300	-1.51045200	1.78721500
С	0.75806700	0.27184500	2.30940200
С	3.38644400	-0.66427400	2.08365900
Н	2.48698800	-2.52818300	1.45300600
С	1.82825000	1.11208500	2.61518200
Н	-0.26229500	0.62809500	2.38074900

С	3.14115200	0.64818900	2.49747800		
н	4.40550200	-1.02110600	1.97857200		
н	1.63857000	2.13102600	2.93861200		
н	3.97207600	1.30980600	2.72282700		
0	1.06574300	-1.47193800	-1.62083700		
С	-1.11043100	1.61990500	-1.58607400		
0	-1.84909100	1.36686600	-2.52844800		
С	-1.38887400	2.71862100	-0.62557800		
С	-2.57009700	3.45907000	-0.80453600		
С	-0.54671100	3.01033300	0.45892000		
С	-2.90260600	4.47398600	0.08681700		
Н	-3.21179800	3.21529100	-1.64401500		
С	-0.88379900	4.02887600	1.34981700		
Н	0.36919000	2.45330700	0.59625500		
С	-2.05966700	4.76031900	1.16728100		
Н	-3.81757800	5.04076900	-0.05413200		
Н	-0.22789000	4.25324500	2.18553900		
Н	-2.32064800	5.55136100	1.86396300		
Ν	1.28683600	1.31890500	-1.34618500		
Ν	-1.16361300	-1.27747200	-1.19951500		
Electronic Energy = -1488.397647 Hartree					
Thermal Correction to Free Energy = 0.332582 Hartree					
Imaginary Freq= -151.98					
TS _{Iso}					

С	-2.19696400	-1.40718000	-0.56599300
С	-1.60173800	-0.18570300	-0.25846900
С	-2.40072100	0.92282800	0.06447200
С	-3.79265700	0.79447200	0.13378000
С	-4.38473500	-0.42932300	-0.16280200
С	-3.58651400	-1.52410500	-0.51164600
Н	-1.57542000	-2.25422700	-0.82350100
Н	-4.38744900	1.65691300	0.40991300
Н	-5.46374000	-0.53071400	-0.11657600
Н	-4.04645700	-2.48002000	-0.74003500
С	-1.71055200	2.39216600	0.06344600
0	-0.24770700	0.04136000	-0.35356500
С	0.66484400	-0.82103300	0.21414700
0	0.34874400	-1.84254000	0.78080500
С	2.04915100	-0.32435200	0.03249800
С	3.09679400	-1.13089600	0.50110700
С	2.32799900	0.90976500	-0.57388500
С	4.41599200	-0.70813400	0.35883000
Н	2.85769700	-2.07825700	0.97147300
С	3.65098400	1.32731100	-0.71226600

Н	1.51402900	1.53192700	-0.92523000	
С	4.69412400	0.52088100	-0.24831100	
н	5.22628800	-1.33305100	0.72066900	
Н	3.86770100	2.28286700	-1.17905300	
н	5.72298000	0.85035000	-0.35778400	
N	-1.69713900	2.10621000	1.23039400	
Electronic Energy = -744.109053 Hartree				

Thermal Correction to Free Energy = 0.148442 Hartree

Imaginary Freq= -385.79

Phenyl isocyanide

С	-1.44944300	1.21006200	0.00004800
С	-0.05545600	1.21840200	-0.00008100
С	0.63534100	0.00008600	0.00001000
С	-0.05532200	-1.21830000	0.00002400
С	-1.44931100	-1.21017300	-0.00004100
С	-2.14876400	-0.00010000	0.00002100
н	-1.98927300	2.15154700	0.00007600
н	0.50367500	-2.14718300	0.00002200
н	-1.98904500	-2.15170700	-0.00010800
н	-3.23400700	-0.00017000	0.00008200
С	3.19930000	-0.00012500	0.00002800

- N 2.02103400 0.00014300 -0.00000100
- H 0.50334300 2.14740000 -0.00010600

Electronic Energy = -324.504998 Hartree

Thermal Correction to Free Energy = 0.068291 Hartree

Imaginary Freq= 0

Com-M

С

С

С

С

С

С

Н

Н

Н

Н

С

С

-6.79705600	-1.49352400	0.08514800
-6.14958900	-0.25932900	0.10261100
-4.75371400	-0.22054000	-0.00505000
-4.00112200	-1.39493400	-0.12958400
-4.66636600	-2.62024300	-0.14495400
-6.05898900	-2.67436700	-0.03837000
-7.87850700	-1.53169900	0.16840200
-2.92121200	-1.33246900	-0.21024400
-4.09060800	-3.53529300	-0.24038000
-6.56800100	-3.63298200	-0.05107200
-3.53654600	2.03506400	0.02554500
-0.63020000	-0.27656500	-0.31058400
0.55767200	1.98358600	-0.18228900

С	-0.17276000	3.16864700	-0.03941200
С	1.95724300	2.02606400	-0.26240300
С	0.50471900	4.38538900	0.01750900
С	2.62796200	3.24030000	-0.20634100
С	1.89916800	4.42348500	-0.06691200
н	-0.06098700	5.30451500	0.12738800
н	3.71038300	3.24305500	-0.27003100
н	2.42289900	5.37279400	-0.02169800
Ν	-4.10450900	1.00542500	0.01201700
Ν	-0.08771400	0.76524800	-0.25068900
н	-1.25447100	3.11331400	0.02050500
0	2.67197700	0.85640200	-0.47112700
С	2.82367100	0.00433400	0.60422900
0	2.44786400	0.29038000	1.71756000
С	3.49680500	-1.25690300	0.21360500
С	3.76453800	-2.19212200	1.22362100
С	3.85481400	-1.53402000	-1.11358700
С	4.38995600	-3.39583000	0.90796600
н	3.47391000	-1.95872200	2.24190500
С	4.48000000	-2.74105800	-1.42383600
н	3.63888400	-0.80953800	-1.88938100
С	4.74843200	-3.67118200	-0.41560000
Н	4.59659400	-4.11932600	1.69023100
Н	4.75539900	-2.95721400	-2.45123400
н	5.23482200	-4.61049600	-0.66103700

 H
 -6.70409600
 0.66756300
 0.19799500

 Electronic Energy = -1068.685577
 Hartree

 Thermal Correction to Free Energy = 0.234774
 Hartree

Imaginary Freq= 0

INT_{Trans}-M

С	-6.78839400	-0.37328800	0.11739900
С	-5.80403100	0.61123200	0.19021900
С	-4.45318700	0.26961300	0.02539500
С	-4.09560800	-1.07092400	-0.21151700
С	-5.08263200	-2.04783300	-0.28238000
С	-6.43125500	-1.70350100	-0.11881600
н	-7.83213400	-0.10397100	0.24534700
н	-3.04764300	-1.32672600	-0.33488000
н	-4.80524600	-3.08171100	-0.46436500
н	-7.19707600	-2.47092700	-0.17485200
С	-2.28850400	1.13094400	-0.03264900
С	-1.02555900	1.32159300	-0.11943800
С	1.14358000	2.15767000	-0.19467100
С	0.81428400	3.52029800	-0.08798300

С	2.50318400	1.79976700	-0.25171500
С	1.81134500	4.48830900	-0.05207500
С	3.50465100	2.76212000	-0.21344600
С	3.15862900	4.11072100	-0.11688400
н	1.54342300	5.53713100	0.02556700
н	4.54009700	2.44309500	-0.25667300
н	3.93831200	4.86504500	-0.08820600
Ν	-3.52342600	1.32344100	0.11398400
Ν	0.20732300	1.11802900	-0.26724100
н	-0.23464800	3.79686500	-0.04242100
0	2.86252500	0.47201100	-0.41483400
С	2.62038900	-0.39097300	0.62990900
0	2.30511000	-0.01191100	1.73457400
С	2.82777200	-1.80478400	0.23080900
С	2.72804800	-2.78627800	1.22704800
С	3.10254100	-2.17454900	-1.09329600
С	2.90735300	-4.12879900	0.90158700
н	2.50935100	-2.47751700	2.24331500
С	3.27985700	-3.52007500	-1.41420100
н	3.16992600	-1.41063800	-1.85831400
С	3.18372500	-4.49699200	-0.41915100
н	2.83129000	-4.88756200	1.67411400
н	3.49071700	-3.80673100	-2.43973000
н	3.32270600	-5.54380300	-0.67239800
н	-6.05456600	1.65072700	0.37351400

Electronic Energy = -1068.685073 Hartree

Thermal Correction to Free Energy = 0.241267 Hartree

Imaginary Freq= 0

INT_{Cis}-M

С	-3.10407500	-1.87365400	1.26295800
С	-2.04483200	-1.35458500	0.52255600
С	-2.13236400	-1.23699700	-0.88307800
С	-3.35433900	-1.58998500	-1.48900900
С	-4.41989600	-2.09174700	-0.75143700
С	-4.29113800	-2.24598800	0.63288800
н	-2.97957600	-1.96714100	2.33676300
Н	-3.42013700	-1.46828600	-2.56478700
н	-5.34311000	-2.36660300	-1.25065800
н	-5.11046000	-2.64588200	1.22154200
С	0.07626800	-0.63029500	-1.49485700
С	1.32171700	-0.38645500	-1.61761100
С	3.52452400	-0.31155100	-0.78016300
С	3.25612200	-0.78087500	0.51806400
С	4.83845600	0.02241300	-1.14899800
С	4.29750600	-0.90467900	1.43151800
С	5.87549400	-0.10679400	-0.22819000

Н	5.01587200	0.37806700	-2.15847200	
С	5.60713800	-0.57058900	1.06366400	
н	4.08661000	-1.25634400	2.43654200	
н	6.88981400	0.15244600	-0.51504300	
н	6.41417500	-0.67020000	1.78318900	
0	-0.90085200	-1.03619000	1.23645000	
С	-0.37194900	0.23197900	1.33873200	
0	0.68851900	0.33807600	1.90857500	
С	-1.09748900	1.39270100	0.74742600	
С	-0.30475100	2.37287800	0.13129700	
С	-2.48537100	1.57066700	0.82895300	
С	-0.89777500	3.49964000	-0.43170600	
н	0.76982800	2.23313100	0.09433900	
С	-3.07166900	2.71301000	0.28343200	
н	-3.10791500	0.83635300	1.32394900	
С	-2.28326100	3.67082800	-0.35768600	
н	-0.28062700	4.24403900	-0.92444500	
Н	-4.14569000	2.85078200	0.35726600	
Н	-2.74606100	4.55103200	-0.79331800	
Ν	-1.14694400	-0.78842400	-1.76539600	
Ν	2.54489400	-0.15515300	-1.77570500	
Н	2.24039800	-1.02097400	0.80811500	
Electronic Energy = -1068.675300 Hartree				
Thermal Correction to Free Energy = 0.242136 Hartree				
Imaginary Freg= 0				

INT_Y-M

С

С

С

С

С

С

Н

Н

Н

Н

С

С

С

С

С

С

С

Н

-4.44897300	-0.13186200	-1.37601900
-3.11369100	-0.09954000	-0.78868700
-2.85947700	-1.04803200	0.35962300
-3.89871700	-1.99863100	0.70671500
-5.11600000	-1.96614400	0.10668800
-5.39222500	-1.00688200	-0.93979000
-4.64330700	0.58172400	-2.16969000
-3.66484300	-2.70357700	1.49769600
-5.89581300	-2.65927600	0.40507800
-6.38130300	-1.00209300	-1.39022600
-0.70527800	-0.25369600	0.91134000
0.54244000	-0.69824900	1.17333800
2.71500700	-1.49666400	0.58694200
2.45849900	-1.93980000	-0.71816900
4.01357300	-1.50626200	1.10223000
3.51642900	-2.37997600	-1.50984200
5.06733100	-1.94201100	0.29839300
4.17923200	-1.16552000	2.11830700
4,82187900	-2.37869200	-1.00585800

н	3.32257300	-2.72589000	-2.52033500		
н	6.07851500	-1.94394800	0.69240700		
н	5.64274500	-2.72244900	-1.62715700		
0	-2.21368500	0.61200400	-1.25253500		
С	-0.89266200	1.24742200	0.83395000		
0	-1.87742400	1.75507800	1.34621000		
С	0.21280100	2.05974100	0.25166400		
С	0.41793400	3.35808800	0.74001700		
С	1.03331000	1.56609100	-0.77168200		
С	1.45176900	4.14114700	0.23108100		
н	-0.23781300	3.73031100	1.51990600		
С	2.06091300	2.35454300	-1.28752500		
н	0.84131000	0.58394300	-1.18774600		
С	2.27661600	3.63913300	-0.78130800		
н	1.61629300	5.14097100	0.62091600		
н	2.68682500	1.97005100	-2.08679200		
н	3.08094000	4.25078500	-1.17909800		
Ν	-1.72070100	-1.17522700	0.99048500		
Ν	1.67704900	-1.03131900	1.42567200		
н	1.44022000	-1.94420900	-1.09436500		
Electronic Energy = -1068.679911 Hartree					
Thermal Correction to Free Energy = 0.242071 Hartree					
Imaginary Freq= 0					
TS1-M					

С	6.49022300	-1.04664300	-0.63089100
С	5.63917900	0.05106800	-0.75794400
С	4.41961900	0.05556100	-0.07343700
С	4.04667300	-1.02006800	0.74287700
С	4.90742500	-2.10918200	0.86401500
С	6.12766100	-2.12613300	0.17956400
Н	7.43657400	-1.05779200	-1.16233400
Н	3.09200400	-0.98915800	1.25751500
н	4.62593000	-2.94681800	1.49478900
Н	6.79404900	-2.97721400	0.27984700
С	2.46606800	1.58954200	0.00896700
С	1.08058400	0.68151600	0.68892800
С	-0.88460600	2.14556700	0.38989600
С	-0.36720800	3.44394100	0.31281300
С	-2.25498200	1.93322000	0.18681600
С	-1.21794300	4.51258900	0.03700100
С	-3.10396800	2.99665000	-0.09145000
С	-2.58404000	4.29099700	-0.16260700
н	-0.81511300	5.51869300	-0.01884000
н	-4.15842200	2.79859000	-0.24879100

Н	-3.24645300	5.12395500	-0.37480700	
Ν	3.56710900	1.15626100	-0.20658500	
Ν	-0.06416500	1.06154200	0.68191400	
н	0.69680800	3.58921200	0.46497800	
0	-2.78707800	0.65977700	0.32445800	
С	-2.47740400	-0.27032600	-0.64271000	
0	-1.88201800	0.01350900	-1.65684200	
С	-2.97805600	-1.62011600	-0.28509100	
С	-2.79686700	-2.65111700	-1.21795300	
С	-3.60635100	-1.88455200	0.94021200	
С	-3.24507700	-3.93775300	-0.92836600	
Н	-2.30398800	-2.42447800	-2.15689500	
С	-4.05233900	-3.17464900	1.22538700	
Н	-3.73695800	-1.08412700	1.65830300	
С	-3.87337500	-4.20069300	0.29321000	
Н	-3.10458600	-4.73496700	-1.65149600	
Н	-4.53724600	-3.38011600	2.17455200	
н	-4.22175100	-5.20418800	0.51867000	
н	5.90001800	0.90099800	-1.37913500	
Electronic Energy = -1068.652636 Hartree				
Thermal Correction to Free Energy = 0.236223 Hartree				
Imaginary Freq= -465.90				
TS _{Rot} -M				

С	6.59994800	0.61357900	-1.16096800			
С	5.25472600	0.26665400	-1.25205300			
С	4.48818600	0.15425800	-0.07552800			
С	5.07941500	0.40003600	1.17956800			
С	6.42365900	0.75678900	1.24346300			
С	7.19298700	0.86336500	0.08058900			
н	7.18742900	0.69371100	-2.07044600			
н	4.47796200	0.31098100	2.07726700			
н	6.87340800	0.94864900	2.21280200			
н	8.24069100	1.13824400	0.14103500			
С	2.02268800	-0.50061800	-0.19205000			
С	0.92188800	-1.28264800	-0.12331200			
С	-1.22728000	-2.14978500	-0.18115200			
С	-0.86133600	-3.50251000	-0.06906500			
С	-2.59751600	-1.82964500	-0.19388200			
С	-1.83067400	-4.49538500	0.01573200			
С	-3.57301000	-2.81557400	-0.10424000			
С	-3.18894500	-4.15327900	-0.00293300			
н	-1.53361200	-5.53642200	0.09499100			
Н	-4.61717700	-2.52312700	-0.11310600			
--	-------------	-------------	-------------	--	--	--
н	-3.94749000	-4.92674200	0.06357900			
Ν	3.17551400	-0.19161800	-0.14945500			
Ν	-0.32430700	-1.08387000	-0.31212800			
н	0.19646100	-3.74520900	-0.06064200			
0	-3.00124800	-0.51482100	-0.36393600			
С	-2.71666400	0.38192300	0.63858300			
0	-2.33987600	0.04362300	1.73760100			
С	-2.96705200	1.78017500	0.20852100			
С	-2.84415400	2.79250600	1.17055400			
С	-3.30291300	2.10587400	-1.11295200			
С	-3.06120600	4.12160200	0.81424100			
н	-2.57778800	2.51771800	2.18520600			
С	-3.51771900	3.43808500	-1.46514700			
н	-3.38709800	1.31826800	-1.85181400			
С	-3.39843300	4.44575100	-0.50387400			
н	-2.96689900	4.90422700	1.56055000			
н	-3.77537200	3.69053900	-2.48901200			
н	-3.56630400	5.48212600	-0.78144800			
Н	4.78674500	0.07812800	-2.21177400			
Electronic Energy = -1068.663300 Hartree						
Thermal Correction to Free Energy = 0.239361 Hartree						
Imaginary Freq= -89.42						
TS _{Acylshift} -M						

С	-4.09432800	-0.66575600	1.31365400
С	-2.82551800	-0.76962100	0.72723000
С	-2.71327400	-1.24608500	-0.60519100
С	-3.88242000	-1.56254000	-1.32502100
С	-5.13612000	-1.41246200	-0.75264500
С	-5.23451300	-0.97352200	0.57837600
Н	-4.15519100	-0.32673500	2.34220700
Н	-3.75899000	-1.93220300	-2.33777200
Н	-6.03018300	-1.64853500	-1.31956200
Н	-6.21017400	-0.87100300	1.04380100
С	-0.43959000	-1.06457000	-0.62707000
С	0.89044300	-1.25688300	-0.93084900
С	3.34365000	-0.91843400	-0.37466800
С	3.54268800	-0.48624100	0.94873400
С	4.41822500	-1.10735700	-1.25699200
С	4.84599400	-0.24504000	1.37713100
С	5.71058000	-0.85111400	-0.80776700
н	4.22689900	-1.44559600	-2.26933600
С	5.92640800	-0.42234400	0.50664600
н	5.01611900	0.08540500	2.39675900
Н	6.54995400	-0.98946900	-1.48131600

С

н	6.93705800	-0.22805500	0.85153000		
0	-1.76266900	-0.48102300	1.50929200		
С	-0.46485700	0.00319500	1.00918700		
0	0.49319600	-0.28740700	1.73465400		
С	-0.55979600	1.37418500	0.36825900		
С	0.65449900	2.00143500	0.04623300		
С	-1.76081700	2.03322400	0.07721000		
С	0.66785300	3.24604900	-0.57905100		
н	1.58340600	1.51031700	0.31089900		
С	-1.74532100	3.28500900	-0.54336900		
н	-2.71153100	1.59098500	0.34345600		
С	-0.53503500	3.89172900	-0.88223400		
н	1.61602500	3.71761400	-0.82020600		
н	-2.68455200	3.78694200	-0.75592300		
н	-0.52749000	4.86374800	-1.36610700		
Ν	-1.49217700	-1.51110100	-1.20658400		
Ν	2.06017900	-1.16433300	-0.80576300		
н	2.67592100	-0.35508900	1.58961400		
Electronic Energy = -1068.653984 Hartree					

Thermal Correction to Free Energy = 0.244205 Hartree

Imaginary Freq= -285.11

9. ¹H-NMR and ¹³C-NMR of unknown compounds

Figure S4. ¹³C NMR (101 MHz, CDCI₃) 2-isocyanophenyl benzoate (1a).

Figure S9. ¹H NMR (400 MHz, CDCI₃) 2-isocyano-5-methylphenyl 4-methylbenzoate (1c).

Figure S10. ¹³C NMR (101 MHz, CDCI₃) 2-isocyano-5-methylphenyl 4-methylbenzoate (1c).

Figure S12. ¹H NMR (400 MHz, CDCl₃) 2-isocyano-5-methylphenyl 3-methylbenzoate (1d).

Figure S14. HRMS-ESI 2-isocyano-5-methylphenyl 4-methylbenzoate (1d).

Figure S17. HRMS-ESI 2-isocyano-5-methylphenyl benzoate (1e).

Figure S19. ¹³C NMR (75 MHz, CDCl₃) 4-bromo-2-isocyanophenyl benzoate (1f).

Figure S21. ¹H NMR (300 MHz, CDCI₃) 4-bromo-2-isocyanophenyl 4-methoxybenzoate (1g).

Figure S22. ¹³C NMR (75 MHz, CDCI₃) 4-bromo-2-isocyanophenyl 4-methoxybenzoate (1g).

Figure S25. ¹³C NMR (75 MHz, CDCl₃) 5-chloro-2-isocyanophenyl benzoate (1h).

Figure S28. ¹³C NMR (75 MHz, CDCl₃) 5-chloro-2-isocyanophenyl 3-nitrobenzoate (1i).

Figure S29. HRMS-ESI 5-chloro-2-isocyanophenyl 3-nitrobenzoate (1i).

Figure S30. ¹H NMR (300 MHz, CDCI₃) 5-chloro-2-isocyanophenyl 4-nitrobenzoate (1j).

Figure S31. ¹³C NMR (75 MHz, CDCl₃) 5-chloro-2-isocyanophenyl 4-nitrobenzoate (1j).

Figure S32. HRMS-ESI 5-chloro-2-isocyanophenyl 4-nitrobenzoate (1j).

Figure S33. ¹H NMR (400 MHz, CDCl₃) 5-chloro-2-isocyanophenyl 4-methoxybenzoate (1k).

Figure S34. ¹³C NMR (100 MHz, CDCI₃) 5-chloro-2-isocyanophenyl 4-methoxybenzoate (1k).

Figure S35. HRMS-ESI 5-chloro-2-isocyanophenyl 4-methoxybenzoate (1k).

Figure S36. ¹H NMR (250 MHz, DMSO) 2-isocyano-5-methoxyphenyl benzoate (1I).

Figure S37. ¹³C NMR (63 MHz, DMSO) 2-isocyano-5-methoxyphenyl benzoate (11).

Figure S39. ¹H NMR (250 MHz, CDCI₃) 2-isocyano-5-methoxyphenyl 4-methoxybenzoate (1m).

Figure S40. ¹³C NMR (63 MHz, CDCl₃) 2-isocyano-5-methoxyphenyl 4-methoxybenzoate (1m).

Figure S42. ¹H NMR (300 MHz, CDCI₃) 2-isocyanophenyl 4-methoxybenzoate (1n).

Figure S45. ¹H NMR (400 MHz, CDCI₃) 2-isocyanophenyl 3-methylbenzoate (10).

Figure S46. ¹³C NMR (101 MHz, CDCI₃) 2-isocyanophenyl 3-methylbenzoate (10).

Figure S49. ¹³C NMR (76 MHz, CDCI₃) 2-isocyanophenyl furan-2-carboxylate (1p).

8.38
8.26
8.28
8.24
8.25
8.25
8.25
8.25
8.25
8.25
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709
7.709</

Figure S52. ¹³C NMR (75 MHz, CDCl₃) (Z)-2-((3-benzoyl-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl benzoate (2a).

Figure S54. ¹H NMR (400 MHz, CDCI₃) (Z)-2-((3-(4-methoxybenzoyl)-7-methyl-2H-benzo[b][1,4]oxazin-2-ylidene)amino)-5-methylphenyl 4-methoxybenzoate (2b).

Figure S55. ¹³C NMR (101 MHz, CDCl₃) (Z)-2-((3-(4-methoxybenzoyl)-7-methyl-2H-benzo[b][1,4]oxazin-2-ylidene)amino)-5-methylphenyl 4-methoxybenzoate (2b).

Figure S56. HRMS-ESI (Z)-2-((3-(4-methoxybenzoyl)-7-methyl-2H-benzo[b][1,4]oxazin-2-ylidene)amino)-5-methylphenyl 4-methoxybenzoate (2b).

Figure S57. ¹H NMR (400 MHz, CDCl₃) (Z)-5-methyl-2-((7-methyl-3-(4-methylbenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 4-methylbenzoate (2c).

Figure S58. ¹³C NMR (101 MHz, CDCl₃) (Z)-5-methyl-2-((7-methyl-3-(4-methylbenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 4-methylbenzoate (2c).

Figure S60. ¹H NMR (400 MHz, CDCI₃) (Z)-5-methyl-2-((7-methyl-3-(3-methylbenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 3-methylbenzoate (2d).

Figure S61. ¹³C NMR (101 MHz, CDCl₃) (Z)-5-methyl-2-((7-methyl-3-(3-methylbenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 3-methylbenzoate (2d).

Figure S62. HRMS-ESI (Z)-5-methyl-2-((7-methyl-3-(3-methylbenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 3-methylbenzoate (2d).

Figure S63. 1H NMR (400 MHz, CDCI₃) (Z)-2-((3-benzoyl-7-methyl-2H-benzo[b][1,4]oxazin-2-ylidene)amino)-5-methylphenyl benzoate (2e).

Figure S66. ¹H NMR (400 MHz, CDCI₃) (Z)-2-((3-benzoyl-6-bromo-2H-benzo[b][1,4]oxazin-2-ylidene)amino)-4-bromophenyl benzoate (2f).

Figure S67. ¹³C NMR (101 MHz, CDCl₃) (Z)-2-((3-benzoyl-6-bromo-2H-benzo[b][1,4]oxazin-2-ylidene)amino)-4-bromophenyl benzoate (2f).

Figure S68. HRMS-ESI (Z)-2-((3-benzoyl-6-bromo-2H-benzo[b][1,4]oxazin-2-ylidene)amino)-4-bromophenyl benzoate (2f).

~_____3.87 ^___3.81

Figure S70. ¹³C NMR (101 MHz, CDCl₃) (Z)-4-bromo-2-((6-bromo-3-(4-methoxybenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 4-methoxybenzoate (2g).

Figure S71. HRMS-ESI (Z)-4-bromo-2-((6-bromo-3-(4-methoxybenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 4-methoxybenzoate (2g).

Figure S72. ¹H NMR (300 MHz, CDCI₃) (Z)-2-((3-benzoyl-7-chloro-2H-benzo[b][1,4]oxazin-2-ylidene)amino)-5-chlorophenyl benzoate (2h).

Figure S73. ¹³C NMR (75 MHz, CDCl₃) (Z)-2-((3-benzoyl-7-chloro-2H-benzo[b][1,4]oxazin-2-ylidene)amino)-5-chlorophenyl benzoate (2h).

Figure S75. ¹H NMR (400 MHz, CDCI₃) (Z)-5-chloro-2-((7-chloro-3-(3-nitrobenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 3-nitrobenzoate (2i).

Figure S78. ¹H NMR (400 MHz, CDCI₃) (Z)-5-chloro-2-((7-chloro-3-(4-nitrobenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 4-nitrobenzoate (2j).

Figure S81. ¹H NMR (400 MHz, CDCI₃) (Z)-5-chloro-2-((7-chloro-3-(4-methoxybenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 4-methoxybenzoate (2k).

Figure S82. ¹³C NMR (101 MHz, CDCI₃) (Z)-5-chloro-2-((7-chloro-3-(4-nitrobenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 4-nitrobenzoate (2k).

Figure S83. HRMS-ESI (Z)-5-chloro-2-((7-chloro-3-(4-nitrobenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 4-nitrobenzoate (2k).

Figure S84. ¹H NMR (400 MHz, CDCI₃) (Z)-2-((3-benzoyl-7-methoxy-2H-benzo[b][1,4]oxazin-2-ylidene)amino)-5-methoxyphenyl benzoate (2l).

Figure S85. ¹³C NMR (101 MHz, CDCl₃) (Z)-2-((3-benzoyl-7-methoxy-2H-benzo[b][1,4]oxazin-2-ylidene)amino)-5-methoxyphenyl benzoate (2l).

Figure S87. ¹H NMR (250 MHz, CDCI₃) (Z)-5-methoxy-2-((7-methoxy-3-(4-methoxybenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 4-methoxybenzoate (2m).

Figure S88. ¹³C NMR (101 MHz, CDCl₃) (Z)-5-methoxy-2-((7-methoxy-3-(4-methoxybenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 4-methoxybenzoate (2m).

Figure S89. HRMS-ESI (Z)-5-methoxy-2-((7-methoxy-3-(4-methoxybenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 4-methoxybenzoate (2m).

Figure S90. ¹H NMR (300 MHz, CDCI₃) (Z)-2-((3-(4-methoxybenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 4-methoxybenzoate (2n).

Figure S91. ¹³C NMR (76 MHz, CDCl₃) (Z)-2-((3-(4-methoxybenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 4-methoxybenzoate (2n).

Figure S93. ¹H NMR (400 MHz, CDCI₃) (Z)-2-((3-(3-methylbenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 3-methylbenzoate (2o).

Figure S94. ¹³C NMR (101 MHz, CDCl₃) (Z)-2-((3-(3-methylbenzoyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl 3-methylbenzoate (2o).

Figure S97. ¹³C NMR (101 MHz, CDCl₃) (Z)-2-((3-(furan-2-carbonyl)-2H-benzo[b][1,4]oxazin-2-ylidene)amino)phenyl furan-2-carboxylate (2p).

Figure S100. ¹³C NMR (75 MHz, CDCI₃) 2-cyano-5-methylphenyl 4-methoxybenzoate (3b).

Figure S101. HRMS-ESI 2-cyano-5-methylphenyl 4-methoxybenzoate (3b).

Figure S105. ¹H NMR (400 MHz, CDCl₃) 2-phenylbenzo[d]oxazole (4a).

Figure S106. ¹³C NMR (101 MHz, CDCl₃) 2-phenylbenzo[d]oxazole (4a).

Supporting Information

Figure S109. ¹H NMR (126 MHz, CDCl₃) (Z)-3-((3-benzoyl-6-phenyl-2H-benzo[b][1,4]oxazin-2-ylidene)amino)-[1,1'-biphenyl]-4-yl benzoate (4f).

Supporting Information

