Supporting Information

Accessing pyrrolo[1,2-*a*]indole derivatives via visible-light-induced dearomatizative cyclization of indoles

Zhaosheng Liu, Xiaochen Ji,* Lilan Duan, Guo-Jun Deng, Huawen Huang*

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China

E-mail: xcji@xtu.edu.cn; hwhuang@xtu.edu.cn

List of Contents

1. General information	S2
2. General procedure for hydroarylation	S2
3. Procedures for the preparation of acrylamides	S3
4. Mechanistic studies	· S4
5. Characterization data of products	
6. Copies of ¹ H and ¹³ C NMR spectra of all products	S26

1. General information

All reactions were carried out under an atmosphere of nitrogen unless otherwise noted. Colum chromatography was performed using silica gel (200-300 mesh) and thin layer chromatography was performed using silica gel (GF254). ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument using CDCl₃, acetone-d₆ or dimethyl sulfoxide-d₆ as solvent. Mass spectra were measured on Agilent 5975 GC-MS instrument (EI). High-resolution mass spectra (ESI) were obtained with the Thermo Scientific LTQ Orbitrap XL mass spectrometer. The structures of known compounds were further corroborated by comparing their ¹H NMR, ¹³C NMR data and HRMS data with those of literature. Melting points were measured with a YUHUA X-5 melting point instrument and were uncorrected. Reagents were used as received or prepared in our laboratory.

2. General procedure for hydroarylation

Standard conditions A: A 10 mL reaction vessel was charged with 2-methyl-1-(1,2,3,4-tetrahydro-9H-carbazol-9-yl)prop-2-en-1-one (**1a**, 48 mg, 0.2 mmol), NaBr (23 mg, 0.2 mmol, 1 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (5 mg, 0.004 mmol), CF₃SO₃H·5H₂O (5.4 M, 36 μ L, 0.2 mmol), H₂O (54 μ L, 15 equiv), 2,2'-bipyridine (15 mg, 0.5 equiv), PhCl (1 mL). The atmosphere was exchanged by applying vacuum and backfilling with argon (this process was conducted for three times). The resulting mixture was stirred at 2000 RPM for 48 hours under irradiation with a 35 W blue LED. The crude reaction mixture was quenched with saturated sodium carbonate and extracted with ethyl acetate (3 × 20 mL). The extracts were combined, dried over sodium sulfate, filtered and the volatiles were removed under reduced pressure. The reaction yield was quantified by separation, and then column chromatography was performed using silica gel (GF254) to give product **2a**.

Standard conditions B: A 10 mL reaction vessel was charged with 2-methyl-1-(1,2,3,4-tetrahydro-9H-carbazol-9-yl)prop-2-en-1-one (**1a**, 48 mg, 0.2 mmol), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (5 mg, 0.004 mmol), $CF_3SO_3H \cdot 5H_2O$ (5.4 M, 36 µL, 0.2 mmol), CH_3OH (96 µL, 15 equiv), 2,2'-bipyridine (37 mg, 1.2 equiv), PhCl (1 mL). The atmosphere was exchanged by applying vacuum and backfilling with argon (this process was conducted for three times). The resulting mixture was stirred

at 2000 RPM for 48 hours under irradiation with a 35 W blue LED. The crude reaction mixture was quenched with saturated sodium carbonate and extracted with ethyl acetate (3×20 mL). The extracts were combined, dried over sodium sulfate, filtered and the volatiles were removed under reduced pressure. The reaction yield was quantified by separation, and then column chromatography was performed using silica gel (200-300 mesh) or thin layer chromatography was performed using silica gel (GF254) to give product **4a**.

3. Procedures for the preparation of acrylamides

3.1 General Procedure for preparation of substrates:

To a solution of aniline **S1** (8.0 mmol) in CH_2Cl_2 (20 mL) was added TBAB (1.03 g, 0.4 equiv) and NaH (640 mg, 2 equiv) at 0°C. Methacryloyl chloride (0.93 mL, 9.6 mmol) was added by dropwise and the resulting solution was stirred at rt for 24 h. Then the reaction mixture was poured into water and the aqueous layer was extracted with CH_2Cl_2 (3×15 mL). The combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography (SiO₂; gradient eluent: petroleum ether to 3% EtOAc in petroleum ether) to provide amide **S2** as yellow oil.

4. Mechanistic studies

4.1. Stern–Volmer Quenching

Formulation solution:

2-methyl-1-(1,2,3,4-tetrahydro-9H-carbazol-9-yl)prop-2-en-1-one (**1a**, 597.5 mg) was dissolved in DCE in a 25 mL volumetric flask to set the concentration to be 0.1 M. 2,2'-bipyridine (390 mg) was dissolved in DCE in a 25 mL volumetric flask to set the concentration to be 0.1 M. TfOH (220 μ L) was dissolved in acetone in a 25 mL volumetric flask to set the concentration to be 0.1 M. CH₃OH (80 mg) was dissolved

in DCE in a 25 mL volumetric flask to set the concentration to be 0.1 M. Photocatalyst $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (2.5 mg) was dissolved in DCE (25.0 mL) to set the concentration to be 0.1 mM.

Experimental procedure: The resulting 0.1 M solution (50 μ L) was added to cuvette to obtain different concentrations of catalyst solution. This solution was then diluted to a volume of 2.0 mL by adding further solvent (acetone) to prepare a 2.5 μ M solution. The resulting mixture was sparged with nitrogen for 3 minutes and then irradiated at 425 nm. Fluorescence emission spectra were recorded (3 trials per sample). Into this solution, 10.0 μ L of a **1a** solution was successively added and uniformly stirred, and the resulting mixture was bubbled with nitrogen for 3 minutes and irradiated at 425 nm. Fluorescence emission spectra of 0 μ L, 5.0 μ L, 10.0 μ L, 15.0 μ L, 20.0 μ L, 25.0 μ L, 30.0 μ L fluorescence intensity. Follow this method and make changes to the amount to obtain the Stern–Volmer relationship in turn.

(a) $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ quenched by **1a**.

(b) $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ quenched by bpy, bpy + TfOH and bpy + CH₃OH. Linear quenching is not observed.

4.2. Switched light on/off experiment

4.3. Cyclic Voltammetry

Cyclic voltammograms were recorded with a CHI830b potentiostat at room temperature in MeCN. n-Bu4NBF4 (0.1 M) was used as the supporting electrolyte, and a glass carbon electrode was used as the working electrode. The auxiliary electrode was a platinum wire electrode. All potentials are referenced against the Hg/Hg₂Cl₂ (SCE) redox couple. The scan rate was 100 mV·s⁻¹.

4.4 Radical quenching experiment

The following reaction was carried out under standard condition: A 10 mL reaction vessel was charged with 2-methyl-1-(1,2,3,4-tetrahydro-9H-carbazol-9-yl)prop-2-en-1-one (**1a**, 48 mg, 0.2 mmol), NaBr (23 mg, 0.2 mmol, 1 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (5 mg, 0.004 mmol), CF₃SO₃H (5.4 M, 36 μ L, 0.2 mmol), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (94 mg, 0.6 mmol, 3.0 equiv) or 1,1-Diphenylethylene (108 mg, 0.6 mmol, 3.0 equiv) or 2,6-di-tert-butyl-4-methylphenol (BHT) (132 mg, 3.0 equiv), H₂O (54 μ L, 15 equiv), 2,2'-bipyridine (15 mg, 0.5 equiv), PhCl (1 mL). The atmosphere was exchanged by applying vacuum and backfilling with Ar (this process was conducted for three times). The resulting mixture was stirred at 2000 RPM for 24 hours under irradiation with a 35 W blue LED. After completion, the consequence was detected by GC-MS.

TEMPO (3equiv): NR 1,1-Diphenylethylene (3equiv): 23% BHT (3equiv): 27%

4.5 Possible intermediate

Formation of bromine in ring: A 10 mL reaction vessel was charged with 2-methyl-2-bromo-2-methyl-1-(1,2,3,4-tetrahydro-9H-carbazol-9-yl)propan-1-one (1q, 64 mg, 0.2 mmol), NaBr (23 mg, 0.2 mmol, 1 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (5 mg, 0.004 mmol), CF₃SO₃H·5H₂O (5.4 M, 36 μ L, 0.2 mmol), H₂O (54 μ L, 15 equiv), 2,2'-bipyridine (15 mg, 0.5 equiv), PhCl (1 mL). The atmosphere was exchanged by applying vacuum and backfilling with argon (this process was conducted for three times). The resulting mixture was stirred at 2000 RPM for 48 hours under irradiation with a 35 W blue LED. The crude reaction mixture was quenched with saturated sodium carbonate and extracted with ethyl acetate (3 × 20 mL). The extracts were combined, dried over sodium sulfate, filtered and the volatiles were removed under reduced pressure. No target product was obtained by TLC analysis.

4.6 H/D exchange Using **D**₂**O** under standard condition

4.7 NOESY spectra of 2-(tert-butyl)-12b-hydroxy-6-methyl-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1 -k]carbazol-7-one (2n)

5. Characterization data of products

12b-hydroxy-6-methyl-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1-k]carbazol-7one (2a)

Prepared according to standard conditions A. Purification by thin layer chromatography was performed (PE/EA: 3/1) to yield **2a** (31 mg, 61%) as a solid. mp: 155 - 157 °C. dr 6:1 (by GC-MS).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 (d, *J* = 7.6 Hz, 1H), 7.32 (t, *J* = 7.7 Hz, 2H), 7.15 (t, *J* = 7.5 Hz, 1H), 2.88 – 2.78 (m, 1H), 2.70 – 2.61 (m, 1H), 2.44 (d, *J* = 14.5 Hz, 1H), 1.98 (d, *J* = 11.3 Hz, 1H), 1.76 – 1.67 (m, 2H), 1.60 – 1.52 (m, 1H), 1.46 (dd, *J* = 13.0, 3.0 Hz, 1H), 1.38 (dd, *J* = 13.4, 3.0 Hz, 1H), 1.30 (d, *J* = 7.6 Hz, 3H), 1.27 – 1.07 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.8, 139.2, 138.9, 129.6, 125.1, 123.0, 117.7, 78.1, 74.6, 42.2, 38.6, 30.6, 30.2, 22.8, 21.8, 19.6. HRMS (ESI): m/z calcd for C₁₆H₂₀NO₂⁺ (M+H)⁺: 258.1489; found: 258.1489.

Crystal Data for **2a**: C₁₆H₁₉NO₂ (M = 257.32 g/mol): monoclinic, space group P2₁/c (no. 14), a = 16.3685(3) Å, b = 10.1416(2) Å, c = 33.0222(7) Å, $\beta = 92.147(2)^{\circ}$, V = 5477.93(19) Å³, Z = 16, T = 295.62(13) K, μ (Cu K α) = 0.652 mm⁻¹, *Dcalc* = 1.248 g/cm³, 39310 reflections measured ($5.356^{\circ} \le 2\Theta \le 133.196^{\circ}$), 9638 unique ($R_{int} = 0.0723$, $R_{sigma} = 0.0562$) which were used in all calculations. The final R_1 was 0.0728 (I > 2 σ (I)) and wR_2 was 0.2424 (all data). 11-fluoro-12b-hydroxy-6-methyl-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1-k]c arbazol-7-one (2b)

Prepared according to standard conditions A. Purification by thin layer chromatography was performed (PE/EA: 3/1) to yield **2b** (45 mg, 69%) as a solid. mp: 139 - 140 °C. dr 4.8:1 (by GC-MS).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 (dd, J = 8.5, 4.5 Hz, 1H), 7.05 (dd, J = 7.9, 2.5 Hz, 1H), 6.97 (dd, J = 8.7, 2.5 Hz, 1H), 3.69 (brs, 1H), 2.85 – 2.75 (m, 1H), 2.61 – 2.48 (m, 1H), 2.42 – 2.30 (m, 1H), 1.96 (d, J = 13.3 Hz, 1H), 1.78 – 1.62 (m, 2H), 1.58 (d, J = 12.6 Hz, 1H), 1.44 (dd, J = 13.1, 3.0 Hz, 1H), 1.34 (dd, J = 13.5, 2.7 Hz, 1H), 1.26 (d, J = 7.7 Hz, 3H), 1.21 – 1.07 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.8, 160.3 ($J_{C-F} = 243$ Hz), 141.5 ($J_{C-F} = 7$ Hz), 134.9, 118.6 ($J_{C-F} = 8$ Hz), 115.9 ($J_{C-F} = 24$ Hz), 110.7 ($J_{C-F} = 24$ Hz), 78.0, 75.0, 42.0, 38.3, 30.6, 30.1, 22.7. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -116.14. HRMS (ESI): m/z calcd for C₁₆H₁₉FNO₂⁺ (M+H)⁺: 276.1394; found: 276.1397.

11-chloro-12b-hydroxy-6-methyl-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1-k]c arbazol-7-one (2c)

Prepared according to standard conditions A. Purification by thin layer chromatography was performed (PE/EA: 3/1) to yield **2c** (44 mg, 76%) as a solid. mp: 144 - 146 °C. dr 3:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.44 (d, *J* = 8.0 Hz, 0.25H), 7.34 (d, *J* = 8.0 Hz, 0.75H), 7.31 – 7.23 (m, 2H), 3.66 (brs, 1H), 3.11 – 2.98 (m, 0.25H), 2.80 (dd, *J* = 12.8, 0.75H), 7.31 – 7.23 (m, 2H), 3.66 (brs, 1H), 3.11 – 2.98 (m, 0.25H), 2.80 (dd, *J* = 12.8, 0.75H), 7.31 – 7.23 (m, 2H), 3.66 (brs, 1H), 3.11 – 2.98 (m, 0.25H), 2.80 (dd, *J* = 12.8, 0.75H), 7.31 – 7.23 (m, 2H), 3.66 (brs, 1H), 3.11 – 2.98 (m, 0.25H), 7.34 (d, *J* = 12.8, 0.75H), 7.31 – 7.23 (m, 2H), 3.66 (brs, 1H), 3.11 – 2.98 (m, 0.25H), 2.80 (dd, *J* = 12.8, 0.75H), 7.31 – 7.23 (m, 2H), 7.31 –

11.0 Hz, 0.75H), 2.62 – 2.50 (m, 0.75H), 2.45 – 2.33 (m, 1H), 2.23 (t, J = 12.2 Hz, 0.25H), 2.08 – 1.92 (m, 0.25H), 1.79 – 1.53 (m, 3H), 1.45 (dd, J = 13.1, 3.0 Hz, 0.75H), 1.35 – 1.10 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.9, 172.8, 141.3, 140.8, 137.4, 136.3, 130.2, 129.8, 129.4, 123.7, 118.7, 117. 8, 78.1, 74.9, 72.9, 42.1, 40.5, 38.3, 31.4, 30.9, 30.5, 30.1, 22.8, 22.7, 21.9, 21.7, 19.5, 15.2. HRMS (ESI): m/z calcd for C₁₆H₁₉ClNO₂⁺ (M+H)⁺: 292.1099; found: 292.1099.

11-bromo-12b-hydroxy-6-methyl-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1-k]c arbazol-7-one (2d)

Prepared according to standard conditions A. Purification by thin layer chromatography was performed (PE/EA: 3/1) to yield **2d** (51 mg, 77%) as a solid. mp: 147 - 150 °C. dr 5.7:1.

¹H NMR (400 MHz, Chloroform-*d*) δ7.44 (d, J = 8.0 Hz, 0.15H), 7.34 (d, J = 8.2 Hz, 0.85H), 7.30 (t, J = 2.4 Hz, 1H), 7.25 (d, J = 8.3, 0.7H), 7.24 (d, J = 8.0 Hz, 0.3H), 3.67 (brs, 1H), 3.12 – 2.97 (m, 0.15H), 2.80 (dd, J = 13.1, 10.7 Hz, 1H), 2.63 – 2.52 (m, 0.85H), 2.42 – 2.34 (m, 1H), 2.23 (t, J = 11.8 Hz, 0.15H), 2.05-1.95 (m, 1H), 1.75 – 1.53 (m, 3H), 1.45 (dd, J = 13.1, 3.0 Hz, 1H), 1.39 – 1.10 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.8, 172.8, 141.5, 137.4, 130.2, 129.4, 123.7, 118.6, 117.8, 78.0, 74.8, 42.1, 38.3, 30.5, 30.1, 22. 6, 21.6, 19.4. HRMS (ESI): m/z calcd for C₁₆H₁₉BrNO₂⁺ (M+H)⁺: 336.0594; found: 336.0594.

12b-hydroxy-11-iodo-6-methyl-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1-k]car bazol-7-one (2e)

Prepared according to standard conditions A. Purification by thin layer chromatography was performed (PE/EA: 3/1) to yield **2e** (48 mg, 63%) as a solid. mp: 190 - 194 °C. dr 10:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 (d, J = 2.4 Hz, 1.8H), 7.60 (d, J = 1.7 Hz, 0.2H), 7.29 (d, J = 8.6 Hz, 0.1H), 7.19 (d, J = 8.1 Hz, 0.9H), 3.55 (brs, 1H), 3.04 (m, 0.1H), 2.79 (dd, J = 12.8, 11.0 Hz, 1H), 2.58 (m, 0.9H), 2.37 (d, J = 12.7 Hz, 1H), 1.96 (d, J = 13.4 Hz, 1H), 1.77 – 1.53 (m, 3H), 1.45 (dd, J = 13.1, 3.0 Hz, 1H), 1.39 – 1.07 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.9, 170.9, 141.9, 138.5, 138.2, 132.4, 119.6, 88.2, 78.0, 74.7, 42.2, 38.4, 30.5, 30.0, 22.7, 21.6, 19. 5. HRMS (ESI): m/z calcd for C₁₆H₁₉INO₂⁺ (M+H)⁺: 384.0455; found: 384.0456.

12b-hydroxy-6-methyl-11-(trifluoromethoxy)-1,3,4,5,6,12b-hexahydro-2H,7H-py rrolo[2,1-k]carbazol-7-one (2f)

Prepared according to standard conditions A. Purification by thin layer chromatography was performed (PE/EA: 3/1) to yield **2f** (73 mg, 63%) as a solid. mp: 133 - 135 °C. dr 9:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.49 (d, J = 8.3 Hz, 0.1H), 7.41 (d, J = 8.4 Hz, 0.9H), 7.20 (s, 1H), 7.15 (d, J = 8.4 Hz, 1H), 4.22 (brs, 1H), 3.02 (m, 0.1H), 2.84 – 2.70 (m, 1H), 2.39 – 2.32 (m, 1.9H), 2.23 (t, J = 11.8 Hz, 0.1H), 1.95 (d, J = 12.9 Hz, 1H), 1.77 – 1.53 (m, 2H), 1.57 (d, J = 12.5 Hz, 1H), 1.42 (dd, J = 13.2, 2.9 Hz, 1H), 1.38 – 1.06 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.1, 146.3, 141.5, 137.4,

122.3, 120.3 ($J_{C-F} = 255 \text{ Hz}$), 118.3, 77.9, 75.0, 42.0, 38.4, 30.5, 30.1, 22.6, 21.6, 19.2. HRMS (ESI): m/z calcd for C₁₇H₁₈F₃KNO₃⁺ (M+K)⁺: 380.0870; found: 380.0875.

12b-hydroxy-6-methyl-11-(trifluoromethyl)-1,3,4,5,6,12b-hexahydro-2H,7H-pyrr olo[2,1-k]carbazol-7-one (2g)

Prepared according to standard conditions A. Purification by thin layer chromatography was performed (PE/EA: 3/1) to yield **2g** (32 mg, 51%) as a solid. mp: 194 – 196 °C. dr 10:1 (by GC-MS).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 (d, J = 8.3 Hz, 2H), 7.54 (d, J = 7.9 Hz, 1H), 3.35 (s, 1H), 2.84 (dd, J = 12.9, 11.0 Hz, 1H), 2.64 – 2.55 (m, 1H), 2.46 (d, J = 14.6 Hz, 1H), 2.01 (d, J = 15.1 Hz, 1H), 1.81 – 1.71 (m, 2H), 1.60 (d, J = 13.8 Hz, 1H), 1.49 (dd, J = 13.1, 3.1 Hz, 1H), 1.35 – 1.08 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.1, 141.7, 140.1, 127.2 ($J_{C-F} = 32$ Hz), 127.1 ($J_{C-F} = 4$ Hz), 124.1 ($J_{C-F} = 270$ Hz), 120.4 ($J_{C-F} = 4$ Hz), 117.5, 77.9, 74.7, 42.2, 38.4, 30.5, 30.0, 22.6, 21.5, 19.3. HRMS (ESI): m/z calcd for C₁₇H₁₈F₃KNO₂⁺ (M+K)⁺: 364.0921; found: 364.0926.

11-chloro-12b-hydroxy-6-phenyl-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1-k]c arbazol-7-one (2h)

Prepared according to standard conditions A. Purification by thin layer chromatography was performed (PE/EA: 3/1) to yield **2h** (47 mg, 70%) as a solid. mp: 233 - 237 °C. dr >20:1 (by GC-MS).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 (d, J = 7.9 Hz, 1H), 7.36 – 7.28 (m, 4H), 7.23 (d, J = 7.3 Hz, 1H), 7.19 (d, J = 7.3 Hz, 2H), 3.82 (dd, J = 11.4, 3.3 Hz, 1H), 3.72 (s, 1H), 3.17 – 3.08 (m, 1H), 2.38 (d, J = 14.7 Hz, 1H), 1.98 – 1.85 (m, 2H), 1.69 (t, J = 11.9 Hz, 2H), 1.51 (d, J = 8.7 Hz, 1H), 1.38 – 1.07 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.9, 141.5, 140.4, 137.4, 130.6, 129.6, 128.8, 127.4, 126.9, 123.8, 118.9, 78.1, 75.0, 52.7, 37.5, 30.9, 30. 6, 22.6, 21.6

11-bromo-12b-hydroxy-6-phenyl-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1-k]c arbazol-7-one (2i)

Prepared according to standard conditions A. Purification by thin layer chromatography was performed (PE/EA: 3/1) to yield **2i** (59 mg, 74%) as a solid. mp: 204 - 209 °C. dr >20:1 (by GC-MS).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 – 7.42 (m, 3H), 7.33 (t, J = 7.4 Hz, 2H), 7.26 (d, J = 7.6 Hz, 1H), 7.18 (d, J = 7.6 Hz, 2H), 3.80 (dd, J = 11.3, 2.9 Hz, 1H), 3.73 (s, 1H), 3.12 (t, J = 12.4 Hz, 1H), 2.38 (d, J = 14.9 Hz, 1H), 1.98 – 1.85 (m, 2H), 1.70 (dd, J = 19.0, 9.0 Hz, 2H), 1.52 (d, J = 10.9 Hz, 1H), 1.35 – 1.11 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.0, 141.9, 140.4, 137.9, 132.6, 128.8, 127.5, 126.7, 118.2, 78.2, 74.9, 52.8, 37.6, 30.9, 30.6, 22.7, 21.6. HRMS (ESI): m/z calcd for C₂₁H₂₁BrNO₂⁺ (M+H)⁺: 398.0750; found: 398.0752.

12b-hydroxy-11-iodo-6-phenyl-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1-k]car bazol-7-one (2j)

Prepared according to standard conditions A. Purification by thin layer chromatography was performed (PE/EA: 3/1) to yield **2j** (66 mg, 75%) as a solid. mp: 182 - 185 °C. dr >20:1 (by GC-MS).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 – 7.64 (m, 2H), 7.34 (t, J = 8.0 Hz, 3H), 7.23 (d, J = 7.4 Hz, 1H), 7.17 (d, J = 7.3 Hz, 2H), 3.79 (dd, J = 11.4, 3.3 Hz, 1H), 3.71 (s, 1H), 3.17 – 3.05 (m, 1H), 2.37 (d, J = 14.8 Hz, 1H), 1.99 – 1.83 (m, 2H), 1.75 – 1.62 (m, 2H), 1.55 – 1.45 (m, 1H), 1.37 – 1.08 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.0, 142.1, 138.5, 128.9, 127.5, 127.0, 119. 9, 88.8, 78.2, 74.8, 52.8, 37.6, 30.9, 30.6, 22. 7, 21.6. HRMS (ESI): m/z calcd for C₂₁H₂₀INNaO₂⁺ (M+Na)⁺: 468.0431; found: 468.0432.

12b-hydroxy-6-phenyl-11-(trifluoromethoxy)-1,3,4,5,6,12b-hexahydro-2H,7H-py rrolo[2,1-k]carbazol-7-one (2k)

Prepared according to standard conditions A. Purification by thin layer chromatography was performed (PE/EA: 3/1) to yield **2k** (50 mg, 62%) as a solid. mp: 170 - 173 °C. dr >20:1 (by GC-MS).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 (d, J = 8.1 Hz, 1H), 7.33 (t, J = 7.4 Hz, 2H), 7.25 – 7.18 (m, 5H), 3.90 (dd, J = 11.3, 3.3 Hz, 1H), 3.33 (s, 1H), 3.20 – 3.10 (m, 1H), 2.40 (d, J = 14.8 Hz, 1H), 2.00 – 1.90 (m, 2H), 1.70 (dd, J = 28.5, 15.8 Hz, 2H), 1.53 (d, J = 11.9 Hz, 1H), 1.40 – 1.08 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.1, 146.4, 141.4, 140.3, 137. 5, 128.8, 127.4, 127.0, 122. 6,120.4 ($J_{C-F} = 255$ Hz),

116.6, 78.2, 75.1, 52.7, 37. 5, 31.0, 30.6, 22.6, 21.5. HRMS (ESI): m/z calcd for C₂₂H₂₀F₃NNaO₃⁺ (M+Na)⁺: 426.1287; found: 426.1289.

6-benzyl-11-bromo-12b-hydroxy-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1-k]c arbazol-7-one (2l)

Prepared according to standard conditions A. Purification by thin layer chromatography was performed (PE/EA: 3/1) to yield **2l** (49 mg, 60%) as a solid. mp: 210 - 213 °C. dr >20:1 (by GC-MS).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.41 (m, 3H), 7.33 (t, J = 7.4 Hz, 2H), 7.25 (d, J = 10.0 Hz, 2H), 7.15 (d, J = 7.4 Hz, 2H), 3.18 (s, 1H), 3.10 (dd, J = 13.5, 4.0 Hz, 1H), 2.96 – 2.87 (m, 1H), 2.80 (dd, J = 13.4, 10.2 Hz, 1H), 2.65 – 2.56 (m, 1H), 2.36 (d, J = 12.9 Hz, 1H), 1.75 – 1.48 (m, 4H), 1.28 – 1.10 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.6, 141.6, 138.9, 138.1, 132.5, 129.1, 128.6, 126.5, 126.5, 119.2, 117.9, 78.3, 74.7, 48.8, 38.7, 37.9, 30.5, 26.5, 22.7, 21.5. HRMS (ESI): m/z calcd for C₂₂H₂₂BrNNaO₂⁺ (M+Na)⁺: 434.0726; found: 434.0727.

12b-hydroxy-2,6-dimethyl-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1-k]carbazo 1-7-one (2m)

Prepared according to standard conditions A. Purification by thin layer chromatography was performed (PE/EA: 3/1) to yield **2m** (33 mg, 61%) as a solid. mp: 190 – 196 °C. dr 6:1 (by GC-MS).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 (d, J = 7.7 Hz, 1H), 7.36 – 7.28 (m, 2H), 7.15 (t, J = 7.4 Hz, 1H), 2.85 – 2.76 (m, 1H), 7.18 – 7.11 (m, 1H), 2.41 (dd, J = 10.4, 1.8 Hz, 1H), 1.95 (d, J = 13.2 Hz, 1H), 1.54 – 1.30 (m, 5H), 1.26 (d, J = 7.7 Hz, 3H), 0.97 (d, J = 5.9 Hz, 3H), 0.84 (d, J = 6.8 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.9, 139.5, 138.8, 129.5, 125.1, 123.0, 117.6, 78.2, 74.2, 42.2, 39.3, 38.1, 30.3, 30.2, 29.5, 21.9, 19.5. HRMS (ESI): m/z calcd for C₁₇H₂₁NO₂⁺ (M+H)⁺: 272.1645; found: 272.1645.

2-(tert-butyl)-12b-hydroxy-6-methyl-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1 -k]carbazol-7-one (2n)

Prepared according to standard conditions A. Purification by thin layer chromatography was performed (PE/EA: 3/1) to yield **2n** (39 mg, 62%) as a solid. mp: 183 - 185 °C. dr 5:1 (by GC-MS).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 (d, *J* = 7.9 Hz, 1H), 7.31 (t, *J* = 7.1 Hz, 2H), 7.15 (t, *J* = 7.5 Hz, 1H), 3.56 (s, 1H), 2.87 – 2.76 (m, 1H), 2.62 – 2.44 (m, 2H), 2.01 (d, *J* = 13.7 Hz, 1H), 1.60 (d, *J* = 10.6 Hz, 1H), 1.51 – 1.33 (m, 3H), 1.26 (d, *J* = 7.6 Hz, 3H), 1.06 – 0.96 (m, 2H), 0.90 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.8, 139.5, 138.6, 129.4, 125.1, 117.6, 78.7, 74.2, 44.5, 42.2, 38.3, 32.1, 31.9, 30.2, 27.3, 22.8, 19.5. HRMS (ESI): m/z calcd for C₂₀H₂₈NO₂⁺ (M+H)⁺: 314.2115; found: 314.2115.

12b-hydroxy-6-methyl-2-phenyl-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1-k]ca rbazol-7-one (20)

Prepared according to standard conditions A. Purification by thin layer chromatography was performed (PE/EA: 3/1) to yield **20** (37 mg, 56%) as a solid. mp: 180 - 183 °C. dr 7:1 (by GC-MS).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 (d, J = 7.7 Hz, 1H), 7.36 (dt, J = 24.2, 7.3 Hz, 4H), 7.27 – 7.20 (m, 4H), 3.04 (s, 1H), 2.98 – 2.88 (m, 1H), 2.75 – 2.60 (m, 2H), 2.52 (t, J = 12.3 Hz, 1H), 2.12 (d, J = 13.3 Hz, 1H), 2.05 – 1.93 (m, 1H), 1.81 – 1.48 (m, 4H), 1.34 (d, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 175.9, 145.0, 139.0, 129.8, 128.6, 126.7, 126.5, 125.3, 122.9, 117.8, 78.5, 74.0, 42.2, 40.7, 38.4, 37.9, 30.3, 29.7, 19.6. HRMS (ESI): m/z calcd for C₂₂H₂₃KNO₂⁺ (M+K)⁺: 372.1360; found: 372.1361.

9-hydroxy-2,9a-dimethyl-1,2,9,9a-tetrahydro-3H-pyrrolo[1,2-a]indol-3-one (2p)

Prepared according to standard conditions A. Purification by thin layer chromatography was performed (PE/EA: 3/1) to yield **2p** (24 mg, 56%) as a solid. mp: 207 - 210 °C. dr 10:1 (by GC-MS).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 (t, *J* = 6.6 Hz, 2H), 7.33 (td, *J* = 7.7, 1.0 Hz, 1H), 7.22 – 7.10 (m, 1H), 4.28 (s, 1H), 2.84 (dd, *J* = 13.3, 10.5 Hz, 1H), 2.31 – 2.22 (m, 1H), 1.44 (dd, *J* = 13.3, 2.3 Hz, 1H), 1.32 (s, 3H), 1.26 (d, *J* = 7.7 Hz, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.8, 138.5, 136.2, 129.9, 126.8, 125.1, 116.5, 76.4, 71.4, 41.7, 31.9, 26.8, 19.0. HRMS (ESI): m/z calcd for C₁₃H₁₅NNaO₂⁺ (M+Na)⁺: 240.0995; found: 240.1384.

Crystal Data for **2p**: C₁₃H₁₅NO₂ (*M* =217.26 g/mol): monoclinic, space group P2₁/c (no. 14), *a* = 19.4445(16) Å, *b* = 8.0850(5) Å, *c* = 15.4094(13) Å, β = 111.936(10)°, *V* = 2247.1(3) Å³, *Z* = 8, *T* = 149.99(10) K, μ (Mo K α) = 0.087 mm⁻¹, *Dcalc* = 1.284 g/cm³, 10183 reflections measured (4.516° ≤ 2 Θ ≤ 50°), 3955 unique (*R*_{int} = 0.0447, R_{sigma} = 0.0615) which were used in all calculations. The final *R*₁ was 0.0753 (I > 2 σ (I)) and *wR*₂ was 0.2340 (all data).

12b-methoxy-6-methyl-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1-k]carbazol-7one (4a)

Prepared according to standard conditions B. Purification by thin layer chromatography was performed (PE/EA: 6/1) to yield **4a** (33 mg, 60%) as a colorless liquid. dr 2:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 (d, J = 7.8 Hz, 0.3H), 7.61 (dd, J = 17.8, 7.8 Hz, 0.6H), 7.38 – 7.33 (m, 1H), 7.25 (d, J = 7.2 Hz, 2H), 7.15 – 7.10 (m, 1H), 7.09 (d, J = 7.5 Hz, 0.3H), 3.13 – 3.07 (m, 0.3H), 2.97 – 2.90 (m, 1H), 2.84 (s, 3H), 2.57 (d, J = 15.2 Hz, 1H), 2.34 (t, J = 11.8 Hz, 0.3H), 2.05 – 1.89 (m, 0.7H), 1.79 – 1.69 (m, 1H), 1.68 – 1.38 (m, 5H), 1.34 – 1.22 (m, 2H), 1.13 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.3, 140.5, 134.5, 129.7, 124.6, 123.6, 123.2, 118.1, 82.0,

74.8, 49.5, 42.1, 40.6, 38.9, 35.1, 27.7, 26.9, 22.5, 22.4, 21.9, 21.7, 15.6. HRMS (ESI): m/z calcd for C₁₇H₂₂NO₂⁺ (M+H)⁺: 272.1645; found: 272.1646.

11-bromo-12b-methoxy-6-methyl-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1-k] carbazol-7-one (4b)

Prepared according to standard conditions B. Purification by thin layer chromatography was performed (PE/EA: 6/1) to yield **4b** (40 mg, 57%) as a colorless liquid. dr 3:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 (d, J = 8.3 Hz, 0.25H), 7.52 – 7.42 (m, 2H), 7.36 (d, J = 1.7 Hz, 0.25H), 7.35 (d, J = 1.7 Hz, 0.75H), 3.10 – 3.03 (m, 0.25H), 2.94 – 2.83 (m, 4H), 2.51 (d, J = 13.5 Hz, 1H), 2.36 – 2.30 (t, J = 12.1 Hz, 0.25H), 2.04 – 1.90 (m, 0.75H), 1.75 (d, J = 11.0 Hz, 1H), 1.65 – 1.54 (m, 1H), 1.52 – 1.36 (m, 5H), 1.27 – 1.22 (m, 2H), 1.16 – 1.08 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.3, 139.5, 137.1, 132.6, 127.6, 119.5, 118.2, 116.4, 82.2, 80.8, 75.0, 73.1, 49.5, 41.95, 38.8, 35.1, 30.9, 30.5, 27.4, 26.6, 22.3, 21.8, 21.5, 19.5, 15.5. HRMS (ESI): m/z calcd for C₁₇H₂₁BrNO₂⁺ (M+H)⁺: 350.0750; found: 350.0753.

11-chloro-12b-methoxy-6-methyl-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1-k]c arbazol-7-one (4c)

Prepared according to standard conditions B. Purification by thin layer chromatography was performed (PE/EA: 6/1) to yield **4c** (39 mg, 64%) as a colorless liquid. dr 3:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 (d, J = 8.3 Hz, 0.25H), 7.50 (d, J = 8.3 Hz, 0.75H), 7.32 (dt, J = 8.3, 2.6 Hz, 1H), 7.22 (d, J = 2.0 Hz, 0.25H), 7.20 (d, J = 2.0 Hz, 0.75H), 3.10 – 3.02 (m, 0.25H), 2.95 – 2.88 (m, 1H), 2.87 (d, J = 1.6 Hz, 3H), 2.51 (d, J = 13.6 Hz, 1H), 2.36 – 2.30 (t, J = 12.1 Hz, 0.25H), 2.04 – 1.90 (m, 0.75H), 1.80 – 1.70 (m, 1H), 1.66 – 1.55 (m, 1H), 1.54 – 1.36 (m, 5H), 1.27 – 1.22 (m, 2H), 1.17 – 1.08 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.3, 139.0, 136.6, 129.6, 128.9, 124.8, 119.0, 117.7, 82.1, 75.0, 49.5, 41.9, 40.4, 38.7, 35.0, 30.9, 30.5, 22.3, 22.3, 21.7, 21.4, 19.5, 15.5. HRMS (ESI): m/z calcd for C₁₇H₂₁ClNO₂⁺ (M+H)⁺: 306.1225; found: 306.1258.

11-iodo-12b-methoxy-6-methyl-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1-k]car bazol-7-one (4d)

Prepared according to standard conditions B. Purification by thin layer chromatography was performed (PE/EA: 6/1) to yield **4d** (37 mg, 47%) as a colorless liquid. dr 3:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 – 7.64 (m, 1H), 7.55 (d, J = 1.4 Hz, 0.25H), 7.53 (d, J = 1.3 Hz, 0.75H), 7.40 (d, J = 8.2 Hz, 0.25H), 7.35 (d, J = 8.1 Hz, 0.75H), 3.12 – 3.01 (m, 0.25H), 2.96 – 2.83 (m, 4H), 2.50 (d, J = 13.4 Hz, 1H), 2.33 (t, J = 11.5 Hz, 0.25H), 2.03 – 1.90 (m, 0.75H), 1.76 (d, J = 13.3 Hz, 1H), 1.59 (d, J = 11.8 Hz, 1H), 1.52 – 1.37 (m, 5H), 1.31 – 1.21 (m, 2H), 1.17 – 1.08 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 176.2, 140.1, 138.5, 137.3, 133.3, 119.9, 118.7, 86.8, 82.1, 74.8, 49.5, 41.9, 40.5, 38.7, 35.0, 30.9, 30.4, 27.3, 26.6, 22.3, 22.2, 21.7, 21.4, 19.5, 15.4. HRMS (ESI): m/z calcd for $C_{17}H_{21}INO_2^+$ (M+H)⁺: 398.0611; found: 398.0613.

12b-methoxy-6-methyl-11-(trifluoromethoxy)-1,3,4,5,6,12b-hexahydro-2H,7H-py rrolo[2,1-k]carbazol-7-one (4e)

Prepared according to standard conditions B. Purification by thin layer chromatography was performed (PE/EA: 6/1) to yield **4e** (43 mg, 61%) as a colorless liquid. dr 3:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 (d, J = 8.5 Hz, 0.25H), 7.57 (d, J = 8.4 Hz, 0.75H), 7.22 (d, J = 8.5 Hz, 1H), 7.10 (s, 1H), 6.97 (d, J = 9.7 Hz, 1H), 4.18 (dd, J = 11.5, 5.0 Hz, 1H), 3.14 – 3.02 (m, 0.25H), 2.96 – 2.89 (m, 1H), 2.94 (s, 3H), 2.69 (dd, J = 10.7, 5.2 Hz, 2H), 2.58 (d, J = 13.8 Hz, 1H), 2.53 (d, J = 13.7 Hz, 1H), 2.35 (t, J = 11.6 Hz, 0.25H), 2.04 – 1.89 (m, 0.75H), 1.77 (d, J = 16.4 Hz, 1H), 1.61 (d, J = 14.0 Hz, 1H), 1.56 – 1.32 (m, 5H), 1.30 – 1.20 (m, 2H), 1.18 – 1.00 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.1, 145.4, 141.0, 139.3, 136.8, 128.9, 127.7, 127.0, 122.7, 119.4, 114.6, 110.7, 110.3, 82.5, 75.3, 52.8, 49.5, 38.2, 32.1, 26.4, 23.3, 22.3, 21.5, 20.8. HRMS (ESI): m/z calcd for C₂₃H₂₃F₃NO₃⁺ (M+H)⁺: 418.1625; found: 418.1626.

11-chloro-12b-methoxy-6-phenyl-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1-k]c arbazol-7-one (4f)

Prepared according to standard conditions B. Purification by thin layer chromatography was performed (PE/EA: 6/1) to yield **4f** (43 mg, 58%) as a colorless liquid. dr 5.7:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.58 (d, J = 8.2 Hz, 1H), 7.34 (d, J = 10.5 Hz, 7H), 7.27 (d, J = 10.8 Hz, 4H), 4.26 (dd, J = 11.2, 8.7 Hz, 0.15H), 4.17 (dd, J = 11.5, 4.9 Hz, 0.85H), 3.28 – 3.17 (m, 1H), 2.97 (s, 0.4H), 2.94 (s, 2.6H), 2.73 – 2.62 (m, 0.15H), 2.56 (d, J = 14.2 Hz, 1H), 2.38 – 2.31 (m, 0.15H), 2.24 (dd, J = 12.6, 8.6 Hz, 0.15H), 2.16 (d, J = 16.3 Hz, 0.15H), 2.00 – 1.82 (m, 3H), 1.81 – 1.62 (m, 1H), 1.61 – 1.42 (m, 3H), 1.31 – 1.07 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.7, 141.0, 139.2, 136.8, 129.8, 129.7, 129.3, 129.1, 128.8, 128.7, 128.6, 128.1, 127.7, 126.9, 124.9, 124.8, 112.0, 119.6, 117.9, 82.5, 81.0, 75.1, 52.8, 49.6, 49.5, 38.2, 35.0, 31.9, 27.0, 26.5, 21.8, 21.5. HRMS (ESI): m/z calcd for C₂₂H₂₂ClKNO₂⁺ (M+K)⁺: 406.0971; found: 406.0972.

6-methyl-12b-(propylthio)-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1-k]carbazo 1-7-one (4g)

Prepared according to standard conditions C. Purification by thin layer chromatography was performed (PE/EA: 6/1) to yield **4g** (47 mg, 60%) as a colorless liquid, dr 5.7:1..

¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.52 (m, 1H), 7.30-7.22 (m, 1H), 7.20 – 7.08 (m, 2H), 3.15 – 2.96 (m, 2H), 2.60 (d, *J* = 15.4 Hz, 1H), 2.53 (t, *J* = 11.1 Hz, 0.15H), 2.19 (dd, *J* = 12.6, 8.2 Hz, 0.15H), 1.98 – 1.71 (m, 4.7H), 1.70 – 1.54 (m, 3H), 1.44 (d, *J* = 7.2 Hz, 2.6H), 1.34 – 1.16 (m, 4.4H), 0.78 – 0.70 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.8, 139.0, 137.7, 128.4, 124.5, 123.1, 117.3, 116.0, 74.9, 60.8, 42.3, 32.2, 31.0, 23.0, 22.5, 21.6, 19.7, 15.6, 13.5. HRMS (ESI): m/z calcd for C₁₉H₂₆NOS⁺ (M+H)⁺: 316.1730; found: 316.1731.

11-chloro-6-methyl-12b-(propylthio)-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1 -k]carbazol-7-one (4h)

Prepared according to standard conditions C. Purification by thin layer chromatography was performed (PE/EA: 6/1) to yield **4h** (57 mg, 65%) as a colorless liquid. dr 3:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 – 7.44 (m, 1H), 7.27 – 7.19 (m, 1H), 7.17 (d, J = 1.8 Hz, 0.25H), 7.13 (d, J = 1.8 Hz, 0.75H), 3.14 – 2.97 (m, 2H), 2.53 (d, J = 14.2 Hz, 2H), 2.19 (dd, J = 12.6, 8.2 Hz, 0.25H), 2.07 – 1.77 (m, 4.75H), 1.76 – 1.53 (m, 3H), 1.43 (d, J = 7.1 Hz, 3H), 1.35 – 1.19 (m, 4H), 0.83 – 0.74 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.8, 137.5, 129.7, 123.4, 118.2, 116.9, 75.0, 60.7, 42.2, 40.7, 39.0, 35.3, 35.0, 33.4, 32.0, 31.2, 31.0, 22.9, 22.4, 21.5, 19.6, 15.6, 13.5. HRMS (ESI): m/z calcd for C₁₉H₂₅ClNOS⁺ (M+H)⁺: 350.1340; found: 350.1342.

12b-(cyclohexylthio)-6-methyl-1,3,4,5,6,12b-hexahydro-2H,7H-pyrrolo[2,1-k]car bazol-7-one (4i)

Prepared according to standard conditions C. Purification by thin layer chromatography was performed (PE/EA: 6/1) to yield **4i** (40 mg, 56%) as a colorless liquid. dr 4:1.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.59 (d, J = 7.8 Hz, 0.2H), 7.55 (d, J = 7.7 Hz, 0.8H), 7.30 – 7.19 (m, 2H), 7.11 (t, J = 7.6 Hz, 1H), 3.08 – 2.98 (m, 2H), 2.61 (d, J = 14.4 Hz, 1H), 2.52 (t, J = 11.7 Hz, 0.2H), 2.17 (dd, J = 12.6, 8.2 Hz, 0.2H), 1.98 – 1.79 (m, 3H), 1.71 – 1.55 (m, 3H), 1.55 – 1.34 (m, 6H), 1.28 (dd, J = 19.9, 8.0 Hz, 3H), 1.20 – 0.89 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.9, 139.2, 137.9, 128.4, 124.3, 123.0, 117.5, 75.1, 61.9, 42.4, 42.3, 40.9, 39.0, 36.3, 35.8, 35.4, 34.9, 33.3, 33.3, 26.4, 25.3, 23.1, 23.0, 21.6, 19.8, 15.4. HRMS (ESI): m/z calcd for C₂₂H₃₀NOS⁺ (M+H)⁺: 356.2043; found: 356.2044.

6. Copies of ¹H and ¹³C NMR spectra of all products

¹H and ¹³C NMR spectra of 2a

7.516 7.497 7.497 7.1305 7.130

¹H, ¹⁹F and ¹³C NMR spectra of 2b

¹H and ¹³C NMR spectra of 2c

¹H and ¹³C NMR spectra of 2d

¹H and ¹³C NMR spectra of 2e

S31

¹H and ¹³C NMR spectra of 2f

¹H and ¹³C NMR spectra of 2g

S33

¹H and ¹³C NMR spectra of 2h

S34

¹H and ¹³C NMR spectra of 2i

¹H and ¹³C NMR spectra of 2j

¹H and ¹³C NMR spectra of 2k

¹H and ¹³C NMR spectra of 2l

S38

¹H and ¹³C NMR spectra of 2m

¹H and ¹³C NMR spectra of 2n

S40

¹H and ¹³C NMR spectra of 20

¹H and ¹³C NMR spectra of 2p

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H and ¹³C NMR spectra of 4a

S43

¹H and ¹³C NMR spectra of 4b

S44

¹H and ¹³C NMR spectra of 4c

¹H and ¹³C NMR spectra of 4d

¹H and ¹³C NMR spectra of 4e

¹H and ¹³C NMR spectra of 4f

¹H and ¹³C NMR spectra of 4g

¹H and ¹³C NMR spectra of 4h

¹H and ¹³C NMR spectra of 4i

S51